123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- /*
- * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /*
- * Refer to "The TLS Protocol Version 1.0" Section 5
- * (https://tools.ietf.org/html/rfc2246#section-5) and
- * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
- * (https://tools.ietf.org/html/rfc5246#section-5).
- *
- * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by:
- *
- * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
- * P_SHA-1(S2, label + seed)
- *
- * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are
- * two halves of the secret (with the possibility of one shared byte, in the
- * case where the length of the original secret is odd). S1 is taken from the
- * first half of the secret, S2 from the second half.
- *
- * For TLS v1.2 the TLS PRF algorithm is given by:
- *
- * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
- *
- * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as
- * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect,
- * unless defined otherwise by the cipher suite.
- *
- * P_<hash> is an expansion function that uses a single hash function to expand
- * a secret and seed into an arbitrary quantity of output:
- *
- * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
- * HMAC_<hash>(secret, A(2) + seed) +
- * HMAC_<hash>(secret, A(3) + seed) + ...
- *
- * where + indicates concatenation. P_<hash> can be iterated as many times as
- * is necessary to produce the required quantity of data.
- *
- * A(i) is defined as:
- * A(0) = seed
- * A(i) = HMAC_<hash>(secret, A(i-1))
- */
- #include <stdio.h>
- #include <stdarg.h>
- #include <string.h>
- #include "internal/cryptlib.h"
- #include <openssl/evp.h>
- #include <openssl/kdf.h>
- #include "internal/evp_int.h"
- #include "kdf_local.h"
- static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl);
- static int tls1_prf_alg(const EVP_MD *md,
- const unsigned char *sec, size_t slen,
- const unsigned char *seed, size_t seed_len,
- unsigned char *out, size_t olen);
- #define TLS1_PRF_MAXBUF 1024
- /* TLS KDF kdf context structure */
- struct evp_kdf_impl_st {
- /* Digest to use for PRF */
- const EVP_MD *md;
- /* Secret value to use for PRF */
- unsigned char *sec;
- size_t seclen;
- /* Buffer of concatenated seed data */
- unsigned char seed[TLS1_PRF_MAXBUF];
- size_t seedlen;
- };
- static EVP_KDF_IMPL *kdf_tls1_prf_new(void)
- {
- EVP_KDF_IMPL *impl;
- if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
- KDFerr(KDF_F_KDF_TLS1_PRF_NEW, ERR_R_MALLOC_FAILURE);
- return impl;
- }
- static void kdf_tls1_prf_free(EVP_KDF_IMPL *impl)
- {
- kdf_tls1_prf_reset(impl);
- OPENSSL_free(impl);
- }
- static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl)
- {
- OPENSSL_clear_free(impl->sec, impl->seclen);
- OPENSSL_cleanse(impl->seed, impl->seedlen);
- memset(impl, 0, sizeof(*impl));
- }
- static int kdf_tls1_prf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
- {
- const unsigned char *p;
- size_t len;
- const EVP_MD *md;
- switch (cmd) {
- case EVP_KDF_CTRL_SET_MD:
- md = va_arg(args, const EVP_MD *);
- if (md == NULL)
- return 0;
- impl->md = md;
- return 1;
- case EVP_KDF_CTRL_SET_TLS_SECRET:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- OPENSSL_clear_free(impl->sec, impl->seclen);
- impl->sec = OPENSSL_memdup(p, len);
- if (impl->sec == NULL)
- return 0;
- impl->seclen = len;
- return 1;
- case EVP_KDF_CTRL_RESET_TLS_SEED:
- OPENSSL_cleanse(impl->seed, impl->seedlen);
- impl->seedlen = 0;
- return 1;
- case EVP_KDF_CTRL_ADD_TLS_SEED:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- if (len == 0 || p == NULL)
- return 1;
- if (len > (TLS1_PRF_MAXBUF - impl->seedlen))
- return 0;
- memcpy(impl->seed + impl->seedlen, p, len);
- impl->seedlen += len;
- return 1;
- default:
- return -2;
- }
- }
- static int kdf_tls1_prf_ctrl_str(EVP_KDF_IMPL *impl,
- const char *type, const char *value)
- {
- if (value == NULL) {
- KDFerr(KDF_F_KDF_TLS1_PRF_CTRL_STR, KDF_R_VALUE_MISSING);
- return 0;
- }
- if (strcmp(type, "digest") == 0)
- return kdf_md2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_SET_MD, value);
- if (strcmp(type, "secret") == 0)
- return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl,
- EVP_KDF_CTRL_SET_TLS_SECRET, value);
- if (strcmp(type, "hexsecret") == 0)
- return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl,
- EVP_KDF_CTRL_SET_TLS_SECRET, value);
- if (strcmp(type, "seed") == 0)
- return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED,
- value);
- if (strcmp(type, "hexseed") == 0)
- return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED,
- value);
- return -2;
- }
- static int kdf_tls1_prf_derive(EVP_KDF_IMPL *impl, unsigned char *key,
- size_t keylen)
- {
- if (impl->md == NULL) {
- KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- if (impl->sec == NULL) {
- KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SECRET);
- return 0;
- }
- if (impl->seedlen == 0) {
- KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SEED);
- return 0;
- }
- return tls1_prf_alg(impl->md, impl->sec, impl->seclen,
- impl->seed, impl->seedlen,
- key, keylen);
- }
- const EVP_KDF tls1_prf_kdf_meth = {
- EVP_KDF_TLS1_PRF,
- kdf_tls1_prf_new,
- kdf_tls1_prf_free,
- kdf_tls1_prf_reset,
- kdf_tls1_prf_ctrl,
- kdf_tls1_prf_ctrl_str,
- NULL,
- kdf_tls1_prf_derive
- };
- /*
- * Refer to "The TLS Protocol Version 1.0" Section 5
- * (https://tools.ietf.org/html/rfc2246#section-5) and
- * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
- * (https://tools.ietf.org/html/rfc5246#section-5).
- *
- * P_<hash> is an expansion function that uses a single hash function to expand
- * a secret and seed into an arbitrary quantity of output:
- *
- * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
- * HMAC_<hash>(secret, A(2) + seed) +
- * HMAC_<hash>(secret, A(3) + seed) + ...
- *
- * where + indicates concatenation. P_<hash> can be iterated as many times as
- * is necessary to produce the required quantity of data.
- *
- * A(i) is defined as:
- * A(0) = seed
- * A(i) = HMAC_<hash>(secret, A(i-1))
- */
- static int tls1_prf_P_hash(const EVP_MD *md,
- const unsigned char *sec, size_t sec_len,
- const unsigned char *seed, size_t seed_len,
- unsigned char *out, size_t olen)
- {
- size_t chunk;
- EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL, *ctx_init = NULL;
- unsigned char Ai[EVP_MAX_MD_SIZE];
- size_t Ai_len;
- int ret = 0;
- ctx_init = EVP_MAC_CTX_new_id(EVP_MAC_HMAC);
- if (ctx_init == NULL)
- goto err;
- if (EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_FLAGS, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) != 1)
- goto err;
- if (EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_MD, md) != 1)
- goto err;
- if (EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_KEY, sec, sec_len) != 1)
- goto err;
- if (!EVP_MAC_init(ctx_init))
- goto err;
- chunk = EVP_MAC_size(ctx_init);
- if (chunk == 0)
- goto err;
- /* A(0) = seed */
- ctx_Ai = EVP_MAC_CTX_dup(ctx_init);
- if (ctx_Ai == NULL)
- goto err;
- if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len))
- goto err;
- for (;;) {
- /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */
- if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len))
- goto err;
- EVP_MAC_CTX_free(ctx_Ai);
- ctx_Ai = NULL;
- /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */
- ctx = EVP_MAC_CTX_dup(ctx_init);
- if (ctx == NULL)
- goto err;
- if (!EVP_MAC_update(ctx, Ai, Ai_len))
- goto err;
- /* save state for calculating next A(i) value */
- if (olen > chunk) {
- ctx_Ai = EVP_MAC_CTX_dup(ctx);
- if (ctx_Ai == NULL)
- goto err;
- }
- if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len))
- goto err;
- if (olen <= chunk) {
- /* last chunk - use Ai as temp bounce buffer */
- if (!EVP_MAC_final(ctx, Ai, &Ai_len))
- goto err;
- memcpy(out, Ai, olen);
- break;
- }
- if (!EVP_MAC_final(ctx, out, NULL))
- goto err;
- EVP_MAC_CTX_free(ctx);
- ctx = NULL;
- out += chunk;
- olen -= chunk;
- }
- ret = 1;
- err:
- EVP_MAC_CTX_free(ctx);
- EVP_MAC_CTX_free(ctx_Ai);
- EVP_MAC_CTX_free(ctx_init);
- OPENSSL_cleanse(Ai, sizeof(Ai));
- return ret;
- }
- /*
- * Refer to "The TLS Protocol Version 1.0" Section 5
- * (https://tools.ietf.org/html/rfc2246#section-5) and
- * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
- * (https://tools.ietf.org/html/rfc5246#section-5).
- *
- * For TLS v1.0 and TLS v1.1:
- *
- * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
- * P_SHA-1(S2, label + seed)
- *
- * S1 is taken from the first half of the secret, S2 from the second half.
- *
- * L_S = length in bytes of secret;
- * L_S1 = L_S2 = ceil(L_S / 2);
- *
- * For TLS v1.2:
- *
- * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
- */
- static int tls1_prf_alg(const EVP_MD *md,
- const unsigned char *sec, size_t slen,
- const unsigned char *seed, size_t seed_len,
- unsigned char *out, size_t olen)
- {
- if (EVP_MD_type(md) == NID_md5_sha1) {
- /* TLS v1.0 and TLS v1.1 */
- size_t i;
- unsigned char *tmp;
- /* calc: L_S1 = L_S2 = ceil(L_S / 2) */
- size_t L_S1 = (slen + 1) / 2;
- size_t L_S2 = L_S1;
- if (!tls1_prf_P_hash(EVP_md5(), sec, L_S1,
- seed, seed_len, out, olen))
- return 0;
- if ((tmp = OPENSSL_malloc(olen)) == NULL) {
- KDFerr(KDF_F_TLS1_PRF_ALG, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- if (!tls1_prf_P_hash(EVP_sha1(), sec + slen - L_S2, L_S2,
- seed, seed_len, tmp, olen)) {
- OPENSSL_clear_free(tmp, olen);
- return 0;
- }
- for (i = 0; i < olen; i++)
- out[i] ^= tmp[i];
- OPENSSL_clear_free(tmp, olen);
- return 1;
- }
- /* TLS v1.2 */
- if (!tls1_prf_P_hash(md, sec, slen, seed, seed_len, out, olen))
- return 0;
- return 1;
- }
|