sha512.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765
  1. /*
  2. * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <openssl/opensslconf.h>
  10. /*-
  11. * IMPLEMENTATION NOTES.
  12. *
  13. * As you might have noticed 32-bit hash algorithms:
  14. *
  15. * - permit SHA_LONG to be wider than 32-bit
  16. * - optimized versions implement two transform functions: one operating
  17. * on [aligned] data in host byte order and one - on data in input
  18. * stream byte order;
  19. * - share common byte-order neutral collector and padding function
  20. * implementations, ../md32_common.h;
  21. *
  22. * Neither of the above applies to this SHA-512 implementations. Reasons
  23. * [in reverse order] are:
  24. *
  25. * - it's the only 64-bit hash algorithm for the moment of this writing,
  26. * there is no need for common collector/padding implementation [yet];
  27. * - by supporting only one transform function [which operates on
  28. * *aligned* data in input stream byte order, big-endian in this case]
  29. * we minimize burden of maintenance in two ways: a) collector/padding
  30. * function is simpler; b) only one transform function to stare at;
  31. * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  32. * apply a number of optimizations to mitigate potential performance
  33. * penalties caused by previous design decision;
  34. *
  35. * Caveat lector.
  36. *
  37. * Implementation relies on the fact that "long long" is 64-bit on
  38. * both 32- and 64-bit platforms. If some compiler vendor comes up
  39. * with 128-bit long long, adjustment to sha.h would be required.
  40. * As this implementation relies on 64-bit integer type, it's totally
  41. * inappropriate for platforms which don't support it, most notably
  42. * 16-bit platforms.
  43. */
  44. #include <stdlib.h>
  45. #include <string.h>
  46. #include <openssl/crypto.h>
  47. #include <openssl/sha.h>
  48. #include <openssl/opensslv.h>
  49. #include "internal/cryptlib.h"
  50. #include "internal/sha.h"
  51. #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
  52. defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
  53. defined(__s390__) || defined(__s390x__) || \
  54. defined(__aarch64__) || \
  55. defined(SHA512_ASM)
  56. # define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  57. #endif
  58. int sha512_224_init(SHA512_CTX *c)
  59. {
  60. c->h[0] = U64(0x8c3d37c819544da2);
  61. c->h[1] = U64(0x73e1996689dcd4d6);
  62. c->h[2] = U64(0x1dfab7ae32ff9c82);
  63. c->h[3] = U64(0x679dd514582f9fcf);
  64. c->h[4] = U64(0x0f6d2b697bd44da8);
  65. c->h[5] = U64(0x77e36f7304c48942);
  66. c->h[6] = U64(0x3f9d85a86a1d36c8);
  67. c->h[7] = U64(0x1112e6ad91d692a1);
  68. c->Nl = 0;
  69. c->Nh = 0;
  70. c->num = 0;
  71. c->md_len = SHA224_DIGEST_LENGTH;
  72. return 1;
  73. }
  74. int sha512_256_init(SHA512_CTX *c)
  75. {
  76. c->h[0] = U64(0x22312194fc2bf72c);
  77. c->h[1] = U64(0x9f555fa3c84c64c2);
  78. c->h[2] = U64(0x2393b86b6f53b151);
  79. c->h[3] = U64(0x963877195940eabd);
  80. c->h[4] = U64(0x96283ee2a88effe3);
  81. c->h[5] = U64(0xbe5e1e2553863992);
  82. c->h[6] = U64(0x2b0199fc2c85b8aa);
  83. c->h[7] = U64(0x0eb72ddc81c52ca2);
  84. c->Nl = 0;
  85. c->Nh = 0;
  86. c->num = 0;
  87. c->md_len = SHA256_DIGEST_LENGTH;
  88. return 1;
  89. }
  90. int SHA384_Init(SHA512_CTX *c)
  91. {
  92. c->h[0] = U64(0xcbbb9d5dc1059ed8);
  93. c->h[1] = U64(0x629a292a367cd507);
  94. c->h[2] = U64(0x9159015a3070dd17);
  95. c->h[3] = U64(0x152fecd8f70e5939);
  96. c->h[4] = U64(0x67332667ffc00b31);
  97. c->h[5] = U64(0x8eb44a8768581511);
  98. c->h[6] = U64(0xdb0c2e0d64f98fa7);
  99. c->h[7] = U64(0x47b5481dbefa4fa4);
  100. c->Nl = 0;
  101. c->Nh = 0;
  102. c->num = 0;
  103. c->md_len = SHA384_DIGEST_LENGTH;
  104. return 1;
  105. }
  106. int SHA512_Init(SHA512_CTX *c)
  107. {
  108. c->h[0] = U64(0x6a09e667f3bcc908);
  109. c->h[1] = U64(0xbb67ae8584caa73b);
  110. c->h[2] = U64(0x3c6ef372fe94f82b);
  111. c->h[3] = U64(0xa54ff53a5f1d36f1);
  112. c->h[4] = U64(0x510e527fade682d1);
  113. c->h[5] = U64(0x9b05688c2b3e6c1f);
  114. c->h[6] = U64(0x1f83d9abfb41bd6b);
  115. c->h[7] = U64(0x5be0cd19137e2179);
  116. c->Nl = 0;
  117. c->Nh = 0;
  118. c->num = 0;
  119. c->md_len = SHA512_DIGEST_LENGTH;
  120. return 1;
  121. }
  122. #ifndef SHA512_ASM
  123. static
  124. #endif
  125. void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
  126. int SHA512_Final(unsigned char *md, SHA512_CTX *c)
  127. {
  128. unsigned char *p = (unsigned char *)c->u.p;
  129. size_t n = c->num;
  130. p[n] = 0x80; /* There always is a room for one */
  131. n++;
  132. if (n > (sizeof(c->u) - 16)) {
  133. memset(p + n, 0, sizeof(c->u) - n);
  134. n = 0;
  135. sha512_block_data_order(c, p, 1);
  136. }
  137. memset(p + n, 0, sizeof(c->u) - 16 - n);
  138. #ifdef B_ENDIAN
  139. c->u.d[SHA_LBLOCK - 2] = c->Nh;
  140. c->u.d[SHA_LBLOCK - 1] = c->Nl;
  141. #else
  142. p[sizeof(c->u) - 1] = (unsigned char)(c->Nl);
  143. p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8);
  144. p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16);
  145. p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24);
  146. p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32);
  147. p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40);
  148. p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48);
  149. p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56);
  150. p[sizeof(c->u) - 9] = (unsigned char)(c->Nh);
  151. p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8);
  152. p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16);
  153. p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24);
  154. p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32);
  155. p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40);
  156. p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48);
  157. p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56);
  158. #endif
  159. sha512_block_data_order(c, p, 1);
  160. if (md == 0)
  161. return 0;
  162. switch (c->md_len) {
  163. /* Let compiler decide if it's appropriate to unroll... */
  164. case SHA224_DIGEST_LENGTH:
  165. for (n = 0; n < SHA224_DIGEST_LENGTH / 8; n++) {
  166. SHA_LONG64 t = c->h[n];
  167. *(md++) = (unsigned char)(t >> 56);
  168. *(md++) = (unsigned char)(t >> 48);
  169. *(md++) = (unsigned char)(t >> 40);
  170. *(md++) = (unsigned char)(t >> 32);
  171. *(md++) = (unsigned char)(t >> 24);
  172. *(md++) = (unsigned char)(t >> 16);
  173. *(md++) = (unsigned char)(t >> 8);
  174. *(md++) = (unsigned char)(t);
  175. }
  176. /*
  177. * For 224 bits, there are four bytes left over that have to be
  178. * processed separately.
  179. */
  180. {
  181. SHA_LONG64 t = c->h[SHA224_DIGEST_LENGTH / 8];
  182. *(md++) = (unsigned char)(t >> 56);
  183. *(md++) = (unsigned char)(t >> 48);
  184. *(md++) = (unsigned char)(t >> 40);
  185. *(md++) = (unsigned char)(t >> 32);
  186. }
  187. break;
  188. case SHA256_DIGEST_LENGTH:
  189. for (n = 0; n < SHA256_DIGEST_LENGTH / 8; n++) {
  190. SHA_LONG64 t = c->h[n];
  191. *(md++) = (unsigned char)(t >> 56);
  192. *(md++) = (unsigned char)(t >> 48);
  193. *(md++) = (unsigned char)(t >> 40);
  194. *(md++) = (unsigned char)(t >> 32);
  195. *(md++) = (unsigned char)(t >> 24);
  196. *(md++) = (unsigned char)(t >> 16);
  197. *(md++) = (unsigned char)(t >> 8);
  198. *(md++) = (unsigned char)(t);
  199. }
  200. break;
  201. case SHA384_DIGEST_LENGTH:
  202. for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
  203. SHA_LONG64 t = c->h[n];
  204. *(md++) = (unsigned char)(t >> 56);
  205. *(md++) = (unsigned char)(t >> 48);
  206. *(md++) = (unsigned char)(t >> 40);
  207. *(md++) = (unsigned char)(t >> 32);
  208. *(md++) = (unsigned char)(t >> 24);
  209. *(md++) = (unsigned char)(t >> 16);
  210. *(md++) = (unsigned char)(t >> 8);
  211. *(md++) = (unsigned char)(t);
  212. }
  213. break;
  214. case SHA512_DIGEST_LENGTH:
  215. for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
  216. SHA_LONG64 t = c->h[n];
  217. *(md++) = (unsigned char)(t >> 56);
  218. *(md++) = (unsigned char)(t >> 48);
  219. *(md++) = (unsigned char)(t >> 40);
  220. *(md++) = (unsigned char)(t >> 32);
  221. *(md++) = (unsigned char)(t >> 24);
  222. *(md++) = (unsigned char)(t >> 16);
  223. *(md++) = (unsigned char)(t >> 8);
  224. *(md++) = (unsigned char)(t);
  225. }
  226. break;
  227. /* ... as well as make sure md_len is not abused. */
  228. default:
  229. return 0;
  230. }
  231. return 1;
  232. }
  233. int SHA384_Final(unsigned char *md, SHA512_CTX *c)
  234. {
  235. return SHA512_Final(md, c);
  236. }
  237. int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
  238. {
  239. SHA_LONG64 l;
  240. unsigned char *p = c->u.p;
  241. const unsigned char *data = (const unsigned char *)_data;
  242. if (len == 0)
  243. return 1;
  244. l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff);
  245. if (l < c->Nl)
  246. c->Nh++;
  247. if (sizeof(len) >= 8)
  248. c->Nh += (((SHA_LONG64) len) >> 61);
  249. c->Nl = l;
  250. if (c->num != 0) {
  251. size_t n = sizeof(c->u) - c->num;
  252. if (len < n) {
  253. memcpy(p + c->num, data, len), c->num += (unsigned int)len;
  254. return 1;
  255. } else {
  256. memcpy(p + c->num, data, n), c->num = 0;
  257. len -= n, data += n;
  258. sha512_block_data_order(c, p, 1);
  259. }
  260. }
  261. if (len >= sizeof(c->u)) {
  262. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  263. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  264. while (len >= sizeof(c->u))
  265. memcpy(p, data, sizeof(c->u)),
  266. sha512_block_data_order(c, p, 1),
  267. len -= sizeof(c->u), data += sizeof(c->u);
  268. else
  269. #endif
  270. sha512_block_data_order(c, data, len / sizeof(c->u)),
  271. data += len, len %= sizeof(c->u), data -= len;
  272. }
  273. if (len != 0)
  274. memcpy(p, data, len), c->num = (int)len;
  275. return 1;
  276. }
  277. int SHA384_Update(SHA512_CTX *c, const void *data, size_t len)
  278. {
  279. return SHA512_Update(c, data, len);
  280. }
  281. void SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
  282. {
  283. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  284. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  285. memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p;
  286. #endif
  287. sha512_block_data_order(c, data, 1);
  288. }
  289. unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
  290. {
  291. SHA512_CTX c;
  292. static unsigned char m[SHA384_DIGEST_LENGTH];
  293. if (md == NULL)
  294. md = m;
  295. SHA384_Init(&c);
  296. SHA512_Update(&c, d, n);
  297. SHA512_Final(md, &c);
  298. OPENSSL_cleanse(&c, sizeof(c));
  299. return md;
  300. }
  301. unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
  302. {
  303. SHA512_CTX c;
  304. static unsigned char m[SHA512_DIGEST_LENGTH];
  305. if (md == NULL)
  306. md = m;
  307. SHA512_Init(&c);
  308. SHA512_Update(&c, d, n);
  309. SHA512_Final(md, &c);
  310. OPENSSL_cleanse(&c, sizeof(c));
  311. return md;
  312. }
  313. #ifndef SHA512_ASM
  314. static const SHA_LONG64 K512[80] = {
  315. U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
  316. U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
  317. U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
  318. U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
  319. U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
  320. U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
  321. U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
  322. U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
  323. U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
  324. U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
  325. U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
  326. U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
  327. U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
  328. U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
  329. U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
  330. U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
  331. U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
  332. U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
  333. U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
  334. U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
  335. U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
  336. U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
  337. U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
  338. U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
  339. U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
  340. U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
  341. U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
  342. U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
  343. U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
  344. U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
  345. U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
  346. U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
  347. U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
  348. U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
  349. U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
  350. U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
  351. U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
  352. U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
  353. U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
  354. U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
  355. };
  356. # ifndef PEDANTIC
  357. # if defined(__GNUC__) && __GNUC__>=2 && \
  358. !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  359. # if defined(__x86_64) || defined(__x86_64__)
  360. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  361. asm ("rorq %1,%0" \
  362. : "=r"(ret) \
  363. : "J"(n),"0"(a) \
  364. : "cc"); ret; })
  365. # if !defined(B_ENDIAN)
  366. # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
  367. asm ("bswapq %0" \
  368. : "=r"(ret) \
  369. : "0"(ret)); ret; })
  370. # endif
  371. # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
  372. # if defined(I386_ONLY)
  373. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  374. unsigned int hi=p[0],lo=p[1]; \
  375. asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  376. "roll $16,%%eax; roll $16,%%edx; "\
  377. "xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  378. : "=a"(lo),"=d"(hi) \
  379. : "0"(lo),"1"(hi) : "cc"); \
  380. ((SHA_LONG64)hi)<<32|lo; })
  381. # else
  382. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  383. unsigned int hi=p[0],lo=p[1]; \
  384. asm ("bswapl %0; bswapl %1;" \
  385. : "=r"(lo),"=r"(hi) \
  386. : "0"(lo),"1"(hi)); \
  387. ((SHA_LONG64)hi)<<32|lo; })
  388. # endif
  389. # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  390. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  391. asm ("rotrdi %0,%1,%2" \
  392. : "=r"(ret) \
  393. : "r"(a),"K"(n)); ret; })
  394. # elif defined(__aarch64__)
  395. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  396. asm ("ror %0,%1,%2" \
  397. : "=r"(ret) \
  398. : "r"(a),"I"(n)); ret; })
  399. # if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
  400. __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
  401. # define PULL64(x) ({ SHA_LONG64 ret; \
  402. asm ("rev %0,%1" \
  403. : "=r"(ret) \
  404. : "r"(*((const SHA_LONG64 *)(&(x))))); ret; })
  405. # endif
  406. # endif
  407. # elif defined(_MSC_VER)
  408. # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  409. # pragma intrinsic(_rotr64)
  410. # define ROTR(a,n) _rotr64((a),n)
  411. # endif
  412. # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && \
  413. !defined(OPENSSL_NO_INLINE_ASM)
  414. # if defined(I386_ONLY)
  415. static SHA_LONG64 __fastcall __pull64be(const void *x)
  416. {
  417. _asm mov edx,[ecx + 0]
  418. _asm mov eax,[ecx + 4]
  419. _asm xchg dh, dl
  420. _asm xchg ah, al
  421. _asm rol edx, 16
  422. _asm rol eax, 16
  423. _asm xchg dh, dl
  424. _asm xchg ah, al
  425. }
  426. # else
  427. static SHA_LONG64 __fastcall __pull64be(const void *x)
  428. {
  429. _asm mov edx,[ecx + 0]
  430. _asm mov eax,[ecx + 4]
  431. _asm bswap edx
  432. _asm bswap eax
  433. }
  434. # endif
  435. # define PULL64(x) __pull64be(&(x))
  436. # endif
  437. # endif
  438. # endif
  439. # ifndef PULL64
  440. # define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
  441. # define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
  442. # endif
  443. # ifndef ROTR
  444. # define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
  445. # endif
  446. # define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
  447. # define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
  448. # define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
  449. # define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
  450. # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  451. # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  452. # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  453. /*
  454. * This code should give better results on 32-bit CPU with less than
  455. * ~24 registers, both size and performance wise...
  456. */
  457. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  458. size_t num)
  459. {
  460. const SHA_LONG64 *W = in;
  461. SHA_LONG64 A, E, T;
  462. SHA_LONG64 X[9 + 80], *F;
  463. int i;
  464. while (num--) {
  465. F = X + 80;
  466. A = ctx->h[0];
  467. F[1] = ctx->h[1];
  468. F[2] = ctx->h[2];
  469. F[3] = ctx->h[3];
  470. E = ctx->h[4];
  471. F[5] = ctx->h[5];
  472. F[6] = ctx->h[6];
  473. F[7] = ctx->h[7];
  474. for (i = 0; i < 16; i++, F--) {
  475. # ifdef B_ENDIAN
  476. T = W[i];
  477. # else
  478. T = PULL64(W[i]);
  479. # endif
  480. F[0] = A;
  481. F[4] = E;
  482. F[8] = T;
  483. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  484. E = F[3] + T;
  485. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  486. }
  487. for (; i < 80; i++, F--) {
  488. T = sigma0(F[8 + 16 - 1]);
  489. T += sigma1(F[8 + 16 - 14]);
  490. T += F[8 + 16] + F[8 + 16 - 9];
  491. F[0] = A;
  492. F[4] = E;
  493. F[8] = T;
  494. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  495. E = F[3] + T;
  496. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  497. }
  498. ctx->h[0] += A;
  499. ctx->h[1] += F[1];
  500. ctx->h[2] += F[2];
  501. ctx->h[3] += F[3];
  502. ctx->h[4] += E;
  503. ctx->h[5] += F[5];
  504. ctx->h[6] += F[6];
  505. ctx->h[7] += F[7];
  506. W += SHA_LBLOCK;
  507. }
  508. }
  509. # elif defined(OPENSSL_SMALL_FOOTPRINT)
  510. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  511. size_t num)
  512. {
  513. const SHA_LONG64 *W = in;
  514. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2;
  515. SHA_LONG64 X[16];
  516. int i;
  517. while (num--) {
  518. a = ctx->h[0];
  519. b = ctx->h[1];
  520. c = ctx->h[2];
  521. d = ctx->h[3];
  522. e = ctx->h[4];
  523. f = ctx->h[5];
  524. g = ctx->h[6];
  525. h = ctx->h[7];
  526. for (i = 0; i < 16; i++) {
  527. # ifdef B_ENDIAN
  528. T1 = X[i] = W[i];
  529. # else
  530. T1 = X[i] = PULL64(W[i]);
  531. # endif
  532. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  533. T2 = Sigma0(a) + Maj(a, b, c);
  534. h = g;
  535. g = f;
  536. f = e;
  537. e = d + T1;
  538. d = c;
  539. c = b;
  540. b = a;
  541. a = T1 + T2;
  542. }
  543. for (; i < 80; i++) {
  544. s0 = X[(i + 1) & 0x0f];
  545. s0 = sigma0(s0);
  546. s1 = X[(i + 14) & 0x0f];
  547. s1 = sigma1(s1);
  548. T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
  549. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  550. T2 = Sigma0(a) + Maj(a, b, c);
  551. h = g;
  552. g = f;
  553. f = e;
  554. e = d + T1;
  555. d = c;
  556. c = b;
  557. b = a;
  558. a = T1 + T2;
  559. }
  560. ctx->h[0] += a;
  561. ctx->h[1] += b;
  562. ctx->h[2] += c;
  563. ctx->h[3] += d;
  564. ctx->h[4] += e;
  565. ctx->h[5] += f;
  566. ctx->h[6] += g;
  567. ctx->h[7] += h;
  568. W += SHA_LBLOCK;
  569. }
  570. }
  571. # else
  572. # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  573. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
  574. h = Sigma0(a) + Maj(a,b,c); \
  575. d += T1; h += T1; } while (0)
  576. # define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
  577. s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
  578. s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
  579. T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
  580. ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
  581. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  582. size_t num)
  583. {
  584. const SHA_LONG64 *W = in;
  585. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1;
  586. SHA_LONG64 X[16];
  587. int i;
  588. while (num--) {
  589. a = ctx->h[0];
  590. b = ctx->h[1];
  591. c = ctx->h[2];
  592. d = ctx->h[3];
  593. e = ctx->h[4];
  594. f = ctx->h[5];
  595. g = ctx->h[6];
  596. h = ctx->h[7];
  597. # ifdef B_ENDIAN
  598. T1 = X[0] = W[0];
  599. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  600. T1 = X[1] = W[1];
  601. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  602. T1 = X[2] = W[2];
  603. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  604. T1 = X[3] = W[3];
  605. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  606. T1 = X[4] = W[4];
  607. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  608. T1 = X[5] = W[5];
  609. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  610. T1 = X[6] = W[6];
  611. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  612. T1 = X[7] = W[7];
  613. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  614. T1 = X[8] = W[8];
  615. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  616. T1 = X[9] = W[9];
  617. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  618. T1 = X[10] = W[10];
  619. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  620. T1 = X[11] = W[11];
  621. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  622. T1 = X[12] = W[12];
  623. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  624. T1 = X[13] = W[13];
  625. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  626. T1 = X[14] = W[14];
  627. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  628. T1 = X[15] = W[15];
  629. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  630. # else
  631. T1 = X[0] = PULL64(W[0]);
  632. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  633. T1 = X[1] = PULL64(W[1]);
  634. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  635. T1 = X[2] = PULL64(W[2]);
  636. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  637. T1 = X[3] = PULL64(W[3]);
  638. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  639. T1 = X[4] = PULL64(W[4]);
  640. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  641. T1 = X[5] = PULL64(W[5]);
  642. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  643. T1 = X[6] = PULL64(W[6]);
  644. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  645. T1 = X[7] = PULL64(W[7]);
  646. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  647. T1 = X[8] = PULL64(W[8]);
  648. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  649. T1 = X[9] = PULL64(W[9]);
  650. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  651. T1 = X[10] = PULL64(W[10]);
  652. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  653. T1 = X[11] = PULL64(W[11]);
  654. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  655. T1 = X[12] = PULL64(W[12]);
  656. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  657. T1 = X[13] = PULL64(W[13]);
  658. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  659. T1 = X[14] = PULL64(W[14]);
  660. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  661. T1 = X[15] = PULL64(W[15]);
  662. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  663. # endif
  664. for (i = 16; i < 80; i += 16) {
  665. ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
  666. ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
  667. ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
  668. ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
  669. ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
  670. ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
  671. ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
  672. ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
  673. ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
  674. ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
  675. ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
  676. ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
  677. ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
  678. ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
  679. ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
  680. ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
  681. }
  682. ctx->h[0] += a;
  683. ctx->h[1] += b;
  684. ctx->h[2] += c;
  685. ctx->h[3] += d;
  686. ctx->h[4] += e;
  687. ctx->h[5] += f;
  688. ctx->h[6] += g;
  689. ctx->h[7] += h;
  690. W += SHA_LBLOCK;
  691. }
  692. }
  693. # endif
  694. #endif /* SHA512_ASM */