123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744 |
- # Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
- # Copyright (c) 2020, Intel Corporation. All Rights Reserved.
- #
- # Licensed under the Apache License 2.0 (the "License"). You may not use
- # this file except in compliance with the License. You can obtain a copy
- # in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- #
- #
- # Originally written by Sergey Kirillov and Andrey Matyukov.
- # Special thanks to Ilya Albrekht for his valuable hints.
- # Intel Corporation
- #
- # December 2020
- #
- # Initial release.
- #
- # Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
- #
- # IceLake-Client @ 1.3GHz
- # |---------+----------------------+--------------+-------------|
- # | | OpenSSL 3.0.0-alpha9 | this | Unit |
- # |---------+----------------------+--------------+-------------|
- # | rsa2048 | 2 127 659 | 1 015 625 | cycles/sign |
- # | | 611 | 1280 / +109% | sign/s |
- # |---------+----------------------+--------------+-------------|
- #
- # $output is the last argument if it looks like a file (it has an extension)
- # $flavour is the first argument if it doesn't look like a file
- $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
- $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
- $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
- $avx512ifma=0;
- $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
- ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
- ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
- die "can't locate x86_64-xlate.pl";
- if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
- =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
- $avx512ifma = ($1>=2.26);
- }
- if (!$avx512ifma && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
- `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
- $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
- }
- if (!$avx512ifma && `$ENV{CC} -v 2>&1`
- =~ /(Apple)?\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
- my $ver = $3 + $4/100.0 + $5/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
- if ($1) {
- # Apple conditions, they use a different version series, see
- # https://en.wikipedia.org/wiki/Xcode#Xcode_7.0_-_10.x_(since_Free_On-Device_Development)_2
- # clang 7.0.0 is Apple clang 10.0.1
- $avx512ifma = ($ver>=10.0001)
- } else {
- $avx512ifma = ($ver>=7.0);
- }
- }
- open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
- or die "can't call $xlate: $!";
- *STDOUT=*OUT;
- if ($avx512ifma>0) {{{
- @_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
- $code.=<<___;
- .extern OPENSSL_ia32cap_P
- .globl ossl_rsaz_avx512ifma_eligible
- .type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
- .align 32
- ossl_rsaz_avx512ifma_eligible:
- mov OPENSSL_ia32cap_P+8(%rip), %ecx
- xor %eax,%eax
- and \$`1<<31|1<<21|1<<17|1<<16`, %ecx # avx512vl + avx512ifma + avx512dq + avx512f
- cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx
- cmove %ecx,%eax
- ret
- .size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
- ___
- ###############################################################################
- # Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
- #
- # AMM is defined as presented in the paper [1].
- #
- # The input and output are presented in 2^52 radix domain, i.e.
- # |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
- # |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
- #
- # NB: the AMM implementation does not perform "conditional" subtraction step
- # specified in the original algorithm as according to the Lemma 1 from the paper
- # [2], the result will be always < 2*m and can be used as a direct input to
- # the next AMM iteration. This post-condition is true, provided the correct
- # parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
- # which matches our case: 1040 > 1024 + 2 * 1.
- #
- # [1] Gueron, S. Efficient software implementations of modular exponentiation.
- # DOI: 10.1007/s13389-012-0031-5
- # [2] Gueron, S. Enhanced Montgomery Multiplication.
- # DOI: 10.1007/3-540-36400-5_5
- #
- # void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res,
- # const BN_ULONG *a,
- # const BN_ULONG *b,
- # const BN_ULONG *m,
- # BN_ULONG k0);
- ###############################################################################
- {
- # input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
- my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
- my $mask52 = "%rax";
- my $acc0_0 = "%r9";
- my $acc0_0_low = "%r9d";
- my $acc0_1 = "%r15";
- my $acc0_1_low = "%r15d";
- my $b_ptr = "%r11";
- my $iter = "%ebx";
- my $zero = "%ymm0";
- my $Bi = "%ymm1";
- my $Yi = "%ymm2";
- my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm3",map("%ymm$_",(16..19)));
- my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm4",map("%ymm$_",(20..23)));
- # Registers mapping for normalization.
- my ($T0,$T0h,$T1,$T1h,$T2) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (25..26)));
- sub amm52x20_x1() {
- # _data_offset - offset in the |a| or |m| arrays pointing to the beginning
- # of data for corresponding AMM operation;
- # _b_offset - offset in the |b| array pointing to the next qword digit;
- my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
- my $_R0_xmm = $_R0;
- $_R0_xmm =~ s/%y/%x/;
- $code.=<<___;
- movq $_b_offset($b_ptr), %r13 # b[i]
- vpbroadcastq %r13, $Bi # broadcast b[i]
- movq $_data_offset($a), %rdx
- mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
- addq %r13, $_acc # acc += t0
- movq %r12, %r10
- adcq \$0, %r10 # t2 += CF
- movq $_k0, %r13
- imulq $_acc, %r13 # acc * k0
- andq $mask52, %r13 # yi = (acc * k0) & mask52
- vpbroadcastq %r13, $Yi # broadcast y[i]
- movq $_data_offset($m), %rdx
- mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
- addq %r13, $_acc # acc += t0
- adcq %r12, %r10 # t2 += (t1 + CF)
- shrq \$52, $_acc
- salq \$12, %r10
- or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
- vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
- vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
- vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
- vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
- vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
- vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
- vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
- vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
- vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
- vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
- # Shift accumulators right by 1 qword, zero extending the highest one
- valignq \$1, $_R0, $_R0h, $_R0
- valignq \$1, $_R0h, $_R1, $_R0h
- valignq \$1, $_R1, $_R1h, $_R1
- valignq \$1, $_R1h, $_R2, $_R1h
- valignq \$1, $_R2, $zero, $_R2
- vmovq $_R0_xmm, %r13
- addq %r13, $_acc # acc += R0[0]
- vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
- vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
- vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
- vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
- vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
- vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
- vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
- vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
- vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
- vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
- ___
- }
- # Normalization routine: handles carry bits and gets bignum qwords to normalized
- # 2^52 representation.
- #
- # Uses %r8-14,%e[bcd]x
- sub amm52x20_x1_norm {
- my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
- $code.=<<___;
- # Put accumulator to low qword in R0
- vpbroadcastq $_acc, $T0
- vpblendd \$3, $T0, $_R0, $_R0
- # Extract "carries" (12 high bits) from each QW of R0..R2
- # Save them to LSB of QWs in T0..T2
- vpsrlq \$52, $_R0, $T0
- vpsrlq \$52, $_R0h, $T0h
- vpsrlq \$52, $_R1, $T1
- vpsrlq \$52, $_R1h, $T1h
- vpsrlq \$52, $_R2, $T2
- # "Shift left" T0..T2 by 1 QW
- valignq \$3, $T1h, $T2, $T2
- valignq \$3, $T1, $T1h, $T1h
- valignq \$3, $T0h, $T1, $T1
- valignq \$3, $T0, $T0h, $T0h
- valignq \$3, .Lzeros(%rip), $T0, $T0
- # Drop "carries" from R0..R2 QWs
- vpandq .Lmask52x4(%rip), $_R0, $_R0
- vpandq .Lmask52x4(%rip), $_R0h, $_R0h
- vpandq .Lmask52x4(%rip), $_R1, $_R1
- vpandq .Lmask52x4(%rip), $_R1h, $_R1h
- vpandq .Lmask52x4(%rip), $_R2, $_R2
- # Sum R0..R2 with corresponding adjusted carries
- vpaddq $T0, $_R0, $_R0
- vpaddq $T0h, $_R0h, $_R0h
- vpaddq $T1, $_R1, $_R1
- vpaddq $T1h, $_R1h, $_R1h
- vpaddq $T2, $_R2, $_R2
- # Now handle carry bits from this addition
- # Get mask of QWs which 52-bit parts overflow...
- vpcmpuq \$6, .Lmask52x4(%rip), $_R0, %k1 # OP=nle (i.e. gt)
- vpcmpuq \$6, .Lmask52x4(%rip), $_R0h, %k2
- vpcmpuq \$6, .Lmask52x4(%rip), $_R1, %k3
- vpcmpuq \$6, .Lmask52x4(%rip), $_R1h, %k4
- vpcmpuq \$6, .Lmask52x4(%rip), $_R2, %k5
- kmovb %k1, %r14d # k1
- kmovb %k2, %r13d # k1h
- kmovb %k3, %r12d # k2
- kmovb %k4, %r11d # k2h
- kmovb %k5, %r10d # k3
- # ...or saturated
- vpcmpuq \$0, .Lmask52x4(%rip), $_R0, %k1 # OP=eq
- vpcmpuq \$0, .Lmask52x4(%rip), $_R0h, %k2
- vpcmpuq \$0, .Lmask52x4(%rip), $_R1, %k3
- vpcmpuq \$0, .Lmask52x4(%rip), $_R1h, %k4
- vpcmpuq \$0, .Lmask52x4(%rip), $_R2, %k5
- kmovb %k1, %r9d # k4
- kmovb %k2, %r8d # k4h
- kmovb %k3, %ebx # k5
- kmovb %k4, %ecx # k5h
- kmovb %k5, %edx # k6
- # Get mask of QWs where carries shall be propagated to.
- # Merge 4-bit masks to 8-bit values to use add with carry.
- shl \$4, %r13b
- or %r13b, %r14b
- shl \$4, %r11b
- or %r11b, %r12b
- add %r14b, %r14b
- adc %r12b, %r12b
- adc %r10b, %r10b
- shl \$4, %r8b
- or %r8b,%r9b
- shl \$4, %cl
- or %cl, %bl
- add %r9b, %r14b
- adc %bl, %r12b
- adc %dl, %r10b
- xor %r9b, %r14b
- xor %bl, %r12b
- xor %dl, %r10b
- kmovb %r14d, %k1
- shr \$4, %r14b
- kmovb %r14d, %k2
- kmovb %r12d, %k3
- shr \$4, %r12b
- kmovb %r12d, %k4
- kmovb %r10d, %k5
- # Add carries according to the obtained mask
- vpsubq .Lmask52x4(%rip), $_R0, ${_R0}{%k1}
- vpsubq .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
- vpsubq .Lmask52x4(%rip), $_R1, ${_R1}{%k3}
- vpsubq .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
- vpsubq .Lmask52x4(%rip), $_R2, ${_R2}{%k5}
- vpandq .Lmask52x4(%rip), $_R0, $_R0
- vpandq .Lmask52x4(%rip), $_R0h, $_R0h
- vpandq .Lmask52x4(%rip), $_R1, $_R1
- vpandq .Lmask52x4(%rip), $_R1h, $_R1h
- vpandq .Lmask52x4(%rip), $_R2, $_R2
- ___
- }
- $code.=<<___;
- .text
- .globl ossl_rsaz_amm52x20_x1_ifma256
- .type ossl_rsaz_amm52x20_x1_ifma256,\@function,5
- .align 32
- ossl_rsaz_amm52x20_x1_ifma256:
- .cfi_startproc
- endbranch
- push %rbx
- .cfi_push %rbx
- push %rbp
- .cfi_push %rbp
- push %r12
- .cfi_push %r12
- push %r13
- .cfi_push %r13
- push %r14
- .cfi_push %r14
- push %r15
- .cfi_push %r15
- .Lossl_rsaz_amm52x20_x1_ifma256_body:
- # Zeroing accumulators
- vpxord $zero, $zero, $zero
- vmovdqa64 $zero, $R0_0
- vmovdqa64 $zero, $R0_0h
- vmovdqa64 $zero, $R1_0
- vmovdqa64 $zero, $R1_0h
- vmovdqa64 $zero, $R2_0
- xorl $acc0_0_low, $acc0_0_low
- movq $b, $b_ptr # backup address of b
- movq \$0xfffffffffffff, $mask52 # 52-bit mask
- # Loop over 20 digits unrolled by 4
- mov \$5, $iter
- .align 32
- .Lloop5:
- ___
- foreach my $idx (0..3) {
- &amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
- }
- $code.=<<___;
- lea `4*8`($b_ptr), $b_ptr
- dec $iter
- jne .Lloop5
- ___
- &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
- $code.=<<___;
- vmovdqu64 $R0_0, `0*32`($res)
- vmovdqu64 $R0_0h, `1*32`($res)
- vmovdqu64 $R1_0, `2*32`($res)
- vmovdqu64 $R1_0h, `3*32`($res)
- vmovdqu64 $R2_0, `4*32`($res)
- vzeroupper
- mov 0(%rsp),%r15
- .cfi_restore %r15
- mov 8(%rsp),%r14
- .cfi_restore %r14
- mov 16(%rsp),%r13
- .cfi_restore %r13
- mov 24(%rsp),%r12
- .cfi_restore %r12
- mov 32(%rsp),%rbp
- .cfi_restore %rbp
- mov 40(%rsp),%rbx
- .cfi_restore %rbx
- lea 48(%rsp),%rsp
- .cfi_adjust_cfa_offset -48
- .Lossl_rsaz_amm52x20_x1_ifma256_epilogue:
- ret
- .cfi_endproc
- .size ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
- ___
- $code.=<<___;
- .data
- .align 32
- .Lmask52x4:
- .quad 0xfffffffffffff
- .quad 0xfffffffffffff
- .quad 0xfffffffffffff
- .quad 0xfffffffffffff
- ___
- ###############################################################################
- # Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
- #
- # See description of ossl_rsaz_amm52x20_x1_ifma256() above for details about Almost
- # Montgomery Multiplication algorithm and function input parameters description.
- #
- # This function does two AMMs for two independent inputs, hence dual.
- #
- # void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG out[2][20],
- # const BN_ULONG a[2][20],
- # const BN_ULONG b[2][20],
- # const BN_ULONG m[2][20],
- # const BN_ULONG k0[2]);
- ###############################################################################
- $code.=<<___;
- .text
- .globl ossl_rsaz_amm52x20_x2_ifma256
- .type ossl_rsaz_amm52x20_x2_ifma256,\@function,5
- .align 32
- ossl_rsaz_amm52x20_x2_ifma256:
- .cfi_startproc
- endbranch
- push %rbx
- .cfi_push %rbx
- push %rbp
- .cfi_push %rbp
- push %r12
- .cfi_push %r12
- push %r13
- .cfi_push %r13
- push %r14
- .cfi_push %r14
- push %r15
- .cfi_push %r15
- .Lossl_rsaz_amm52x20_x2_ifma256_body:
- # Zeroing accumulators
- vpxord $zero, $zero, $zero
- vmovdqa64 $zero, $R0_0
- vmovdqa64 $zero, $R0_0h
- vmovdqa64 $zero, $R1_0
- vmovdqa64 $zero, $R1_0h
- vmovdqa64 $zero, $R2_0
- vmovdqa64 $zero, $R0_1
- vmovdqa64 $zero, $R0_1h
- vmovdqa64 $zero, $R1_1
- vmovdqa64 $zero, $R1_1h
- vmovdqa64 $zero, $R2_1
- xorl $acc0_0_low, $acc0_0_low
- xorl $acc0_1_low, $acc0_1_low
- movq $b, $b_ptr # backup address of b
- movq \$0xfffffffffffff, $mask52 # 52-bit mask
- mov \$20, $iter
- .align 32
- .Lloop20:
- ___
- &amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
- # 20*8 = offset of the next dimension in two-dimension array
- &amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
- $code.=<<___;
- lea 8($b_ptr), $b_ptr
- dec $iter
- jne .Lloop20
- ___
- &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
- &amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
- $code.=<<___;
- vmovdqu64 $R0_0, `0*32`($res)
- vmovdqu64 $R0_0h, `1*32`($res)
- vmovdqu64 $R1_0, `2*32`($res)
- vmovdqu64 $R1_0h, `3*32`($res)
- vmovdqu64 $R2_0, `4*32`($res)
- vmovdqu64 $R0_1, `5*32`($res)
- vmovdqu64 $R0_1h, `6*32`($res)
- vmovdqu64 $R1_1, `7*32`($res)
- vmovdqu64 $R1_1h, `8*32`($res)
- vmovdqu64 $R2_1, `9*32`($res)
- vzeroupper
- mov 0(%rsp),%r15
- .cfi_restore %r15
- mov 8(%rsp),%r14
- .cfi_restore %r14
- mov 16(%rsp),%r13
- .cfi_restore %r13
- mov 24(%rsp),%r12
- .cfi_restore %r12
- mov 32(%rsp),%rbp
- .cfi_restore %rbp
- mov 40(%rsp),%rbx
- .cfi_restore %rbx
- lea 48(%rsp),%rsp
- .cfi_adjust_cfa_offset -48
- .Lossl_rsaz_amm52x20_x2_ifma256_epilogue:
- ret
- .cfi_endproc
- .size ossl_rsaz_amm52x20_x2_ifma256, .-ossl_rsaz_amm52x20_x2_ifma256
- ___
- }
- ###############################################################################
- # Constant time extraction from the precomputed table of powers base^i, where
- # i = 0..2^EXP_WIN_SIZE-1
- #
- # The input |red_table| contains precomputations for two independent base values.
- # |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
- #
- # Extracted value (output) is 2 20 digit numbers in 2^52 radix.
- #
- # void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
- # const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
- # int red_table_idx1, int red_table_idx2);
- #
- # EXP_WIN_SIZE = 5
- ###############################################################################
- {
- # input parameters
- my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
- ("%rdi","%rsi","%rdx","%rcx"); # Unix order
- my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
- my ($t6,$t7,$t8,$t9) = map("%ymm$_", (16..19));
- my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (20..24));
- my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
- my $t0xmm = $t0;
- $t0xmm =~ s/%y/%x/;
- $code.=<<___;
- .text
- .align 32
- .globl ossl_extract_multiplier_2x20_win5
- .type ossl_extract_multiplier_2x20_win5,\@abi-omnipotent
- ossl_extract_multiplier_2x20_win5:
- .cfi_startproc
- endbranch
- vmovdqa64 .Lones(%rip), $ones # broadcast ones
- vpbroadcastq $red_tbl_idx1, $idx1
- vpbroadcastq $red_tbl_idx2, $idx2
- leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
- # zeroing t0..n, cur_idx
- vpxor $t0xmm, $t0xmm, $t0xmm
- vmovdqa64 $t0, $cur_idx
- ___
- foreach (1..9) {
- $code.="vmovdqa64 $t0, $t[$_] \n";
- }
- $code.=<<___;
- .align 32
- .Lloop:
- vpcmpq \$0, $cur_idx, $idx1, %k1 # mask of (idx1 == cur_idx)
- vpcmpq \$0, $cur_idx, $idx2, %k2 # mask of (idx2 == cur_idx)
- ___
- foreach (0..9) {
- my $mask = $_<5?"%k1":"%k2";
- $code.=<<___;
- vmovdqu64 `${_}*32`($red_tbl), $tmp # load data from red_tbl
- vpblendmq $tmp, $t[$_], ${t[$_]}{$mask} # extract data when mask is not zero
- ___
- }
- $code.=<<___;
- vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
- addq \$`2*20*8`, $red_tbl
- cmpq $red_tbl, %rax
- jne .Lloop
- ___
- # store t0..n
- foreach (0..9) {
- $code.="vmovdqu64 $t[$_], `${_}*32`($out) \n";
- }
- $code.=<<___;
- ret
- .cfi_endproc
- .size ossl_extract_multiplier_2x20_win5, .-ossl_extract_multiplier_2x20_win5
- ___
- $code.=<<___;
- .data
- .align 32
- .Lones:
- .quad 1,1,1,1
- .Lzeros:
- .quad 0,0,0,0
- ___
- }
- if ($win64) {
- $rec="%rcx";
- $frame="%rdx";
- $context="%r8";
- $disp="%r9";
- $code.=<<___;
- .extern __imp_RtlVirtualUnwind
- .type rsaz_def_handler,\@abi-omnipotent
- .align 16
- rsaz_def_handler:
- push %rsi
- push %rdi
- push %rbx
- push %rbp
- push %r12
- push %r13
- push %r14
- push %r15
- pushfq
- sub \$64,%rsp
- mov 120($context),%rax # pull context->Rax
- mov 248($context),%rbx # pull context->Rip
- mov 8($disp),%rsi # disp->ImageBase
- mov 56($disp),%r11 # disp->HandlerData
- mov 0(%r11),%r10d # HandlerData[0]
- lea (%rsi,%r10),%r10 # prologue label
- cmp %r10,%rbx # context->Rip<.Lprologue
- jb .Lcommon_seh_tail
- mov 152($context),%rax # pull context->Rsp
- mov 4(%r11),%r10d # HandlerData[1]
- lea (%rsi,%r10),%r10 # epilogue label
- cmp %r10,%rbx # context->Rip>=.Lepilogue
- jae .Lcommon_seh_tail
- lea 48(%rax),%rax
- mov -8(%rax),%rbx
- mov -16(%rax),%rbp
- mov -24(%rax),%r12
- mov -32(%rax),%r13
- mov -40(%rax),%r14
- mov -48(%rax),%r15
- mov %rbx,144($context) # restore context->Rbx
- mov %rbp,160($context) # restore context->Rbp
- mov %r12,216($context) # restore context->R12
- mov %r13,224($context) # restore context->R13
- mov %r14,232($context) # restore context->R14
- mov %r15,240($context) # restore context->R14
- .Lcommon_seh_tail:
- mov 8(%rax),%rdi
- mov 16(%rax),%rsi
- mov %rax,152($context) # restore context->Rsp
- mov %rsi,168($context) # restore context->Rsi
- mov %rdi,176($context) # restore context->Rdi
- mov 40($disp),%rdi # disp->ContextRecord
- mov $context,%rsi # context
- mov \$154,%ecx # sizeof(CONTEXT)
- .long 0xa548f3fc # cld; rep movsq
- mov $disp,%rsi
- xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
- mov 8(%rsi),%rdx # arg2, disp->ImageBase
- mov 0(%rsi),%r8 # arg3, disp->ControlPc
- mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
- mov 40(%rsi),%r10 # disp->ContextRecord
- lea 56(%rsi),%r11 # &disp->HandlerData
- lea 24(%rsi),%r12 # &disp->EstablisherFrame
- mov %r10,32(%rsp) # arg5
- mov %r11,40(%rsp) # arg6
- mov %r12,48(%rsp) # arg7
- mov %rcx,56(%rsp) # arg8, (NULL)
- call *__imp_RtlVirtualUnwind(%rip)
- mov \$1,%eax # ExceptionContinueSearch
- add \$64,%rsp
- popfq
- pop %r15
- pop %r14
- pop %r13
- pop %r12
- pop %rbp
- pop %rbx
- pop %rdi
- pop %rsi
- ret
- .size rsaz_def_handler,.-rsaz_def_handler
- .section .pdata
- .align 4
- .rva .LSEH_begin_ossl_rsaz_amm52x20_x1_ifma256
- .rva .LSEH_end_ossl_rsaz_amm52x20_x1_ifma256
- .rva .LSEH_info_ossl_rsaz_amm52x20_x1_ifma256
- .rva .LSEH_begin_ossl_rsaz_amm52x20_x2_ifma256
- .rva .LSEH_end_ossl_rsaz_amm52x20_x2_ifma256
- .rva .LSEH_info_ossl_rsaz_amm52x20_x2_ifma256
- .section .xdata
- .align 8
- .LSEH_info_ossl_rsaz_amm52x20_x1_ifma256:
- .byte 9,0,0,0
- .rva rsaz_def_handler
- .rva .Lossl_rsaz_amm52x20_x1_ifma256_body,.Lossl_rsaz_amm52x20_x1_ifma256_epilogue
- .LSEH_info_ossl_rsaz_amm52x20_x2_ifma256:
- .byte 9,0,0,0
- .rva rsaz_def_handler
- .rva .Lossl_rsaz_amm52x20_x2_ifma256_body,.Lossl_rsaz_amm52x20_x2_ifma256_epilogue
- ___
- }
- }}} else {{{ # fallback for old assembler
- $code.=<<___;
- .text
- .globl ossl_rsaz_avx512ifma_eligible
- .type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
- ossl_rsaz_avx512ifma_eligible:
- xor %eax,%eax
- ret
- .size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
- .globl ossl_rsaz_amm52x20_x1_ifma256
- .globl ossl_rsaz_amm52x20_x2_ifma256
- .globl ossl_extract_multiplier_2x20_win5
- .type ossl_rsaz_amm52x20_x1_ifma256,\@abi-omnipotent
- ossl_rsaz_amm52x20_x1_ifma256:
- ossl_rsaz_amm52x20_x2_ifma256:
- ossl_extract_multiplier_2x20_win5:
- .byte 0x0f,0x0b # ud2
- ret
- .size ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
- ___
- }}}
- $code =~ s/\`([^\`]*)\`/eval $1/gem;
- print $code;
- close STDOUT or die "error closing STDOUT: $!";
|