12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508 |
- /*
- * Copyright 2014-2023 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
- * Copyright (c) 2015, CloudFlare, Inc.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- *
- * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
- * (1) Intel Corporation, Israel Development Center, Haifa, Israel
- * (2) University of Haifa, Israel
- * (3) CloudFlare, Inc.
- *
- * Reference:
- * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
- * 256 Bit Primes"
- */
- /*
- * ECDSA low level APIs are deprecated for public use, but still ok for
- * internal use.
- */
- #include "internal/deprecated.h"
- #include <string.h>
- #include "internal/cryptlib.h"
- #include "crypto/bn.h"
- #include "ec_local.h"
- #include "internal/refcount.h"
- #if BN_BITS2 != 64
- # define TOBN(hi,lo) lo,hi
- #else
- # define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo)
- #endif
- #define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N)
- #define P256_LIMBS (256/BN_BITS2)
- typedef unsigned short u16;
- typedef struct {
- BN_ULONG X[P256_LIMBS];
- BN_ULONG Y[P256_LIMBS];
- BN_ULONG Z[P256_LIMBS];
- } P256_POINT;
- typedef struct {
- BN_ULONG X[P256_LIMBS];
- BN_ULONG Y[P256_LIMBS];
- } P256_POINT_AFFINE;
- typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
- /* structure for precomputed multiples of the generator */
- struct nistz256_pre_comp_st {
- const EC_GROUP *group; /* Parent EC_GROUP object */
- size_t w; /* Window size */
- /*
- * Constant time access to the X and Y coordinates of the pre-computed,
- * generator multiplies, in the Montgomery domain. Pre-calculated
- * multiplies are stored in affine form.
- */
- PRECOMP256_ROW *precomp;
- void *precomp_storage;
- CRYPTO_REF_COUNT references;
- };
- /* Functions implemented in assembly */
- /*
- * Most of below mentioned functions *preserve* the property of inputs
- * being fully reduced, i.e. being in [0, modulus) range. Simply put if
- * inputs are fully reduced, then output is too. Note that reverse is
- * not true, in sense that given partially reduced inputs output can be
- * either, not unlikely reduced. And "most" in first sentence refers to
- * the fact that given the calculations flow one can tolerate that
- * addition, 1st function below, produces partially reduced result *if*
- * multiplications by 2 and 3, which customarily use addition, fully
- * reduce it. This effectively gives two options: a) addition produces
- * fully reduced result [as long as inputs are, just like remaining
- * functions]; b) addition is allowed to produce partially reduced
- * result, but multiplications by 2 and 3 perform additional reduction
- * step. Choice between the two can be platform-specific, but it was a)
- * in all cases so far...
- */
- /* Modular add: res = a+b mod P */
- void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS]);
- /* Modular mul by 2: res = 2*a mod P */
- void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS]);
- /* Modular mul by 3: res = 3*a mod P */
- void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS]);
- /* Modular div by 2: res = a/2 mod P */
- void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS]);
- /* Modular sub: res = a-b mod P */
- void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS]);
- /* Modular neg: res = -a mod P */
- void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
- /* Montgomery mul: res = a*b*2^-256 mod P */
- void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS]);
- /* Montgomery sqr: res = a*a*2^-256 mod P */
- void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS]);
- /* Convert a number from Montgomery domain, by multiplying with 1 */
- void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG in[P256_LIMBS]);
- /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
- void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG in[P256_LIMBS]);
- /* Functions that perform constant time access to the precomputed tables */
- void ecp_nistz256_scatter_w5(P256_POINT *val,
- const P256_POINT *in_t, int idx);
- void ecp_nistz256_gather_w5(P256_POINT *val,
- const P256_POINT *in_t, int idx);
- void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
- const P256_POINT_AFFINE *in_t, int idx);
- void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
- const P256_POINT_AFFINE *in_t, int idx);
- /* One converted into the Montgomery domain */
- static const BN_ULONG ONE[P256_LIMBS] = {
- TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
- TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
- };
- static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
- /* Precomputed tables for the default generator */
- extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
- /* Recode window to a signed digit, see ecp_nistputil.c for details */
- static unsigned int _booth_recode_w5(unsigned int in)
- {
- unsigned int s, d;
- s = ~((in >> 5) - 1);
- d = (1 << 6) - in - 1;
- d = (d & s) | (in & ~s);
- d = (d >> 1) + (d & 1);
- return (d << 1) + (s & 1);
- }
- static unsigned int _booth_recode_w7(unsigned int in)
- {
- unsigned int s, d;
- s = ~((in >> 7) - 1);
- d = (1 << 8) - in - 1;
- d = (d & s) | (in & ~s);
- d = (d >> 1) + (d & 1);
- return (d << 1) + (s & 1);
- }
- static void copy_conditional(BN_ULONG dst[P256_LIMBS],
- const BN_ULONG src[P256_LIMBS], BN_ULONG move)
- {
- BN_ULONG mask1 = 0-move;
- BN_ULONG mask2 = ~mask1;
- dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
- dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
- dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
- dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
- if (P256_LIMBS == 8) {
- dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
- dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
- dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
- dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
- }
- }
- static BN_ULONG is_zero(BN_ULONG in)
- {
- in |= (0 - in);
- in = ~in;
- in >>= BN_BITS2 - 1;
- return in;
- }
- static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS])
- {
- BN_ULONG res;
- res = a[0] ^ b[0];
- res |= a[1] ^ b[1];
- res |= a[2] ^ b[2];
- res |= a[3] ^ b[3];
- if (P256_LIMBS == 8) {
- res |= a[4] ^ b[4];
- res |= a[5] ^ b[5];
- res |= a[6] ^ b[6];
- res |= a[7] ^ b[7];
- }
- return is_zero(res);
- }
- static BN_ULONG is_one(const BIGNUM *z)
- {
- BN_ULONG res = 0;
- BN_ULONG *a = bn_get_words(z);
- if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
- res = a[0] ^ ONE[0];
- res |= a[1] ^ ONE[1];
- res |= a[2] ^ ONE[2];
- res |= a[3] ^ ONE[3];
- if (P256_LIMBS == 8) {
- res |= a[4] ^ ONE[4];
- res |= a[5] ^ ONE[5];
- res |= a[6] ^ ONE[6];
- /*
- * no check for a[7] (being zero) on 32-bit platforms,
- * because value of "one" takes only 7 limbs.
- */
- }
- res = is_zero(res);
- }
- return res;
- }
- /*
- * For reference, this macro is used only when new ecp_nistz256 assembly
- * module is being developed. For example, configure with
- * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
- * performing simplest arithmetic operations on 256-bit vectors. Then
- * work on implementation of higher-level functions performing point
- * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
- * and never define it again. (The correct macro denoting presence of
- * ecp_nistz256 module is ECP_NISTZ256_ASM.)
- */
- #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
- void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
- void ecp_nistz256_point_add(P256_POINT *r,
- const P256_POINT *a, const P256_POINT *b);
- void ecp_nistz256_point_add_affine(P256_POINT *r,
- const P256_POINT *a,
- const P256_POINT_AFFINE *b);
- #else
- /* Point double: r = 2*a */
- static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
- {
- BN_ULONG S[P256_LIMBS];
- BN_ULONG M[P256_LIMBS];
- BN_ULONG Zsqr[P256_LIMBS];
- BN_ULONG tmp0[P256_LIMBS];
- const BN_ULONG *in_x = a->X;
- const BN_ULONG *in_y = a->Y;
- const BN_ULONG *in_z = a->Z;
- BN_ULONG *res_x = r->X;
- BN_ULONG *res_y = r->Y;
- BN_ULONG *res_z = r->Z;
- ecp_nistz256_mul_by_2(S, in_y);
- ecp_nistz256_sqr_mont(Zsqr, in_z);
- ecp_nistz256_sqr_mont(S, S);
- ecp_nistz256_mul_mont(res_z, in_z, in_y);
- ecp_nistz256_mul_by_2(res_z, res_z);
- ecp_nistz256_add(M, in_x, Zsqr);
- ecp_nistz256_sub(Zsqr, in_x, Zsqr);
- ecp_nistz256_sqr_mont(res_y, S);
- ecp_nistz256_div_by_2(res_y, res_y);
- ecp_nistz256_mul_mont(M, M, Zsqr);
- ecp_nistz256_mul_by_3(M, M);
- ecp_nistz256_mul_mont(S, S, in_x);
- ecp_nistz256_mul_by_2(tmp0, S);
- ecp_nistz256_sqr_mont(res_x, M);
- ecp_nistz256_sub(res_x, res_x, tmp0);
- ecp_nistz256_sub(S, S, res_x);
- ecp_nistz256_mul_mont(S, S, M);
- ecp_nistz256_sub(res_y, S, res_y);
- }
- /* Point addition: r = a+b */
- static void ecp_nistz256_point_add(P256_POINT *r,
- const P256_POINT *a, const P256_POINT *b)
- {
- BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
- BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
- BN_ULONG Z1sqr[P256_LIMBS];
- BN_ULONG Z2sqr[P256_LIMBS];
- BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
- BN_ULONG Hsqr[P256_LIMBS];
- BN_ULONG Rsqr[P256_LIMBS];
- BN_ULONG Hcub[P256_LIMBS];
- BN_ULONG res_x[P256_LIMBS];
- BN_ULONG res_y[P256_LIMBS];
- BN_ULONG res_z[P256_LIMBS];
- BN_ULONG in1infty, in2infty;
- const BN_ULONG *in1_x = a->X;
- const BN_ULONG *in1_y = a->Y;
- const BN_ULONG *in1_z = a->Z;
- const BN_ULONG *in2_x = b->X;
- const BN_ULONG *in2_y = b->Y;
- const BN_ULONG *in2_z = b->Z;
- /*
- * Infinity in encoded as (,,0)
- */
- in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
- if (P256_LIMBS == 8)
- in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
- in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
- if (P256_LIMBS == 8)
- in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
- in1infty = is_zero(in1infty);
- in2infty = is_zero(in2infty);
- ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
- ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
- ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
- ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
- ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
- ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
- ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
- ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
- ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
- ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
- /*
- * The formulae are incorrect if the points are equal so we check for
- * this and do doubling if this happens.
- *
- * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
- * that are bound to the affine coordinates (xi, yi) by the following
- * equations:
- * - xi = Xi / (Zi)^2
- * - y1 = Yi / (Zi)^3
- *
- * For the sake of optimization, the algorithm operates over
- * intermediate variables U1, U2 and S1, S2 that are derived from
- * the projective coordinates:
- * - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
- * - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
- *
- * It is easy to prove that is_equal(U1, U2) implies that the affine
- * x-coordinates are equal, or either point is at infinity.
- * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
- * equal, or either point is at infinity.
- *
- * The special case of either point being the point at infinity (Z1 or Z2
- * is zero), is handled separately later on in this function, so we avoid
- * jumping to point_double here in those special cases.
- *
- * When both points are inverse of each other, we know that the affine
- * x-coordinates are equal, and the y-coordinates have different sign.
- * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
- * will equal 0, thus the result is infinity, if we simply let this
- * function continue normally.
- *
- * We use bitwise operations to avoid potential side-channels introduced by
- * the short-circuiting behaviour of boolean operators.
- */
- if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
- /*
- * This is obviously not constant-time but it should never happen during
- * single point multiplication, so there is no timing leak for ECDH or
- * ECDSA signing.
- */
- ecp_nistz256_point_double(r, a);
- return;
- }
- ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
- ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
- ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
- ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
- ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
- ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
- ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
- ecp_nistz256_sub(res_x, Rsqr, Hsqr);
- ecp_nistz256_sub(res_x, res_x, Hcub);
- ecp_nistz256_sub(res_y, U2, res_x);
- ecp_nistz256_mul_mont(S2, S1, Hcub);
- ecp_nistz256_mul_mont(res_y, R, res_y);
- ecp_nistz256_sub(res_y, res_y, S2);
- copy_conditional(res_x, in2_x, in1infty);
- copy_conditional(res_y, in2_y, in1infty);
- copy_conditional(res_z, in2_z, in1infty);
- copy_conditional(res_x, in1_x, in2infty);
- copy_conditional(res_y, in1_y, in2infty);
- copy_conditional(res_z, in1_z, in2infty);
- memcpy(r->X, res_x, sizeof(res_x));
- memcpy(r->Y, res_y, sizeof(res_y));
- memcpy(r->Z, res_z, sizeof(res_z));
- }
- /* Point addition when b is known to be affine: r = a+b */
- static void ecp_nistz256_point_add_affine(P256_POINT *r,
- const P256_POINT *a,
- const P256_POINT_AFFINE *b)
- {
- BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
- BN_ULONG Z1sqr[P256_LIMBS];
- BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
- BN_ULONG Hsqr[P256_LIMBS];
- BN_ULONG Rsqr[P256_LIMBS];
- BN_ULONG Hcub[P256_LIMBS];
- BN_ULONG res_x[P256_LIMBS];
- BN_ULONG res_y[P256_LIMBS];
- BN_ULONG res_z[P256_LIMBS];
- BN_ULONG in1infty, in2infty;
- const BN_ULONG *in1_x = a->X;
- const BN_ULONG *in1_y = a->Y;
- const BN_ULONG *in1_z = a->Z;
- const BN_ULONG *in2_x = b->X;
- const BN_ULONG *in2_y = b->Y;
- /*
- * Infinity in encoded as (,,0)
- */
- in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
- if (P256_LIMBS == 8)
- in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
- /*
- * In affine representation we encode infinity as (0,0), which is
- * not on the curve, so it is OK
- */
- in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
- in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
- if (P256_LIMBS == 8)
- in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
- in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
- in1infty = is_zero(in1infty);
- in2infty = is_zero(in2infty);
- ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
- ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
- ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
- ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
- ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
- ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
- ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
- ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
- ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
- ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
- ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
- ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
- ecp_nistz256_sub(res_x, Rsqr, Hsqr);
- ecp_nistz256_sub(res_x, res_x, Hcub);
- ecp_nistz256_sub(H, U2, res_x);
- ecp_nistz256_mul_mont(S2, in1_y, Hcub);
- ecp_nistz256_mul_mont(H, H, R);
- ecp_nistz256_sub(res_y, H, S2);
- copy_conditional(res_x, in2_x, in1infty);
- copy_conditional(res_x, in1_x, in2infty);
- copy_conditional(res_y, in2_y, in1infty);
- copy_conditional(res_y, in1_y, in2infty);
- copy_conditional(res_z, ONE, in1infty);
- copy_conditional(res_z, in1_z, in2infty);
- memcpy(r->X, res_x, sizeof(res_x));
- memcpy(r->Y, res_y, sizeof(res_y));
- memcpy(r->Z, res_z, sizeof(res_z));
- }
- #endif
- /* r = in^-1 mod p */
- static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
- const BN_ULONG in[P256_LIMBS])
- {
- /*
- * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
- * ffffffff ffffffff We use FLT and used poly-2 as exponent
- */
- BN_ULONG p2[P256_LIMBS];
- BN_ULONG p4[P256_LIMBS];
- BN_ULONG p8[P256_LIMBS];
- BN_ULONG p16[P256_LIMBS];
- BN_ULONG p32[P256_LIMBS];
- BN_ULONG res[P256_LIMBS];
- int i;
- ecp_nistz256_sqr_mont(res, in);
- ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
- ecp_nistz256_sqr_mont(res, p2);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
- ecp_nistz256_sqr_mont(res, p4);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
- ecp_nistz256_sqr_mont(res, p8);
- for (i = 0; i < 7; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
- ecp_nistz256_sqr_mont(res, p16);
- for (i = 0; i < 15; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
- ecp_nistz256_sqr_mont(res, p32);
- for (i = 0; i < 31; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, in);
- for (i = 0; i < 32 * 4; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p32);
- for (i = 0; i < 32; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p32);
- for (i = 0; i < 16; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p16);
- for (i = 0; i < 8; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p8);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p4);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p2);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, in);
- memcpy(r, res, sizeof(res));
- }
- /*
- * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
- * returns one if it fits. Otherwise it returns zero.
- */
- __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
- const BIGNUM *in)
- {
- return bn_copy_words(out, in, P256_LIMBS);
- }
- /* r = sum(scalar[i]*point[i]) */
- __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
- P256_POINT *r,
- const BIGNUM **scalar,
- const EC_POINT **point,
- size_t num, BN_CTX *ctx)
- {
- size_t i;
- int j, ret = 0;
- unsigned int idx;
- unsigned char (*p_str)[33] = NULL;
- const unsigned int window_size = 5;
- const unsigned int mask = (1 << (window_size + 1)) - 1;
- unsigned int wvalue;
- P256_POINT *temp; /* place for 5 temporary points */
- const BIGNUM **scalars = NULL;
- P256_POINT (*table)[16] = NULL;
- void *table_storage = NULL;
- if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
- || (table_storage =
- OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
- || (p_str =
- OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
- || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL)
- goto err;
- table = (void *)ALIGNPTR(table_storage, 64);
- temp = (P256_POINT *)(table + num);
- for (i = 0; i < num; i++) {
- P256_POINT *row = table[i];
- /* This is an unusual input, we don't guarantee constant-timeness. */
- if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
- BIGNUM *mod;
- if ((mod = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
- ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
- goto err;
- }
- scalars[i] = mod;
- } else
- scalars[i] = scalar[i];
- for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
- BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
- p_str[i][j + 0] = (unsigned char)d;
- p_str[i][j + 1] = (unsigned char)(d >> 8);
- p_str[i][j + 2] = (unsigned char)(d >> 16);
- p_str[i][j + 3] = (unsigned char)(d >>= 24);
- if (BN_BYTES == 8) {
- d >>= 8;
- p_str[i][j + 4] = (unsigned char)d;
- p_str[i][j + 5] = (unsigned char)(d >> 8);
- p_str[i][j + 6] = (unsigned char)(d >> 16);
- p_str[i][j + 7] = (unsigned char)(d >> 24);
- }
- }
- for (; j < 33; j++)
- p_str[i][j] = 0;
- if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
- || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
- || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
- ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- /*
- * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
- * is not stored. All other values are actually stored with an offset
- * of -1 in table.
- */
- ecp_nistz256_scatter_w5 (row, &temp[0], 1);
- ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */
- ecp_nistz256_scatter_w5 (row, &temp[1], 2);
- ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */
- ecp_nistz256_scatter_w5 (row, &temp[2], 3);
- ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */
- ecp_nistz256_scatter_w5 (row, &temp[1], 4);
- ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */
- ecp_nistz256_scatter_w5 (row, &temp[2], 6);
- ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */
- ecp_nistz256_scatter_w5 (row, &temp[3], 5);
- ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */
- ecp_nistz256_scatter_w5 (row, &temp[4], 7);
- ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */
- ecp_nistz256_scatter_w5 (row, &temp[1], 8);
- ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
- ecp_nistz256_scatter_w5 (row, &temp[2], 12);
- ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
- ecp_nistz256_scatter_w5 (row, &temp[3], 10);
- ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
- ecp_nistz256_scatter_w5 (row, &temp[4], 14);
- ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/
- ecp_nistz256_scatter_w5 (row, &temp[2], 13);
- ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/
- ecp_nistz256_scatter_w5 (row, &temp[3], 11);
- ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/
- ecp_nistz256_scatter_w5 (row, &temp[4], 15);
- ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */
- ecp_nistz256_scatter_w5 (row, &temp[2], 9);
- ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
- ecp_nistz256_scatter_w5 (row, &temp[1], 16);
- }
- idx = 255;
- wvalue = p_str[0][(idx - 1) / 8];
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- /*
- * We gather to temp[0], because we know it's position relative
- * to table
- */
- ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
- memcpy(r, &temp[0], sizeof(temp[0]));
- while (idx >= 5) {
- for (i = (idx == 255 ? 1 : 0); i < num; i++) {
- unsigned int off = (idx - 1) / 8;
- wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- wvalue = _booth_recode_w5(wvalue);
- ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
- ecp_nistz256_neg(temp[1].Y, temp[0].Y);
- copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
- ecp_nistz256_point_add(r, r, &temp[0]);
- }
- idx -= window_size;
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- }
- /* Final window */
- for (i = 0; i < num; i++) {
- wvalue = p_str[i][0];
- wvalue = (wvalue << 1) & mask;
- wvalue = _booth_recode_w5(wvalue);
- ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
- ecp_nistz256_neg(temp[1].Y, temp[0].Y);
- copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
- ecp_nistz256_point_add(r, r, &temp[0]);
- }
- ret = 1;
- err:
- OPENSSL_free(table_storage);
- OPENSSL_free(p_str);
- OPENSSL_free(scalars);
- return ret;
- }
- /* Coordinates of G, for which we have precomputed tables */
- static const BN_ULONG def_xG[P256_LIMBS] = {
- TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
- TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
- };
- static const BN_ULONG def_yG[P256_LIMBS] = {
- TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
- TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
- };
- /*
- * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
- * generator.
- */
- static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
- {
- return (bn_get_top(generator->X) == P256_LIMBS) &&
- (bn_get_top(generator->Y) == P256_LIMBS) &&
- is_equal(bn_get_words(generator->X), def_xG) &&
- is_equal(bn_get_words(generator->Y), def_yG) &&
- is_one(generator->Z);
- }
- __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
- {
- /*
- * We precompute a table for a Booth encoded exponent (wNAF) based
- * computation. Each table holds 64 values for safe access, with an
- * implicit value of infinity at index zero. We use window of size 7, and
- * therefore require ceil(256/7) = 37 tables.
- */
- const BIGNUM *order;
- EC_POINT *P = NULL, *T = NULL;
- const EC_POINT *generator;
- NISTZ256_PRE_COMP *pre_comp;
- BN_CTX *new_ctx = NULL;
- int i, j, k, ret = 0;
- size_t w;
- PRECOMP256_ROW *preComputedTable = NULL;
- unsigned char *precomp_storage = NULL;
- /* if there is an old NISTZ256_PRE_COMP object, throw it away */
- EC_pre_comp_free(group);
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
- return 0;
- }
- if (ecp_nistz256_is_affine_G(generator)) {
- /*
- * No need to calculate tables for the standard generator because we
- * have them statically.
- */
- return 1;
- }
- if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
- return 0;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- goto err;
- }
- BN_CTX_start(ctx);
- order = EC_GROUP_get0_order(group);
- if (order == NULL)
- goto err;
- if (BN_is_zero(order)) {
- ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
- goto err;
- }
- w = 7;
- if ((precomp_storage =
- OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL)
- goto err;
- preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
- P = EC_POINT_new(group);
- T = EC_POINT_new(group);
- if (P == NULL || T == NULL)
- goto err;
- /*
- * The zero entry is implicitly infinity, and we skip it, storing other
- * values with -1 offset.
- */
- if (!EC_POINT_copy(T, generator))
- goto err;
- for (k = 0; k < 64; k++) {
- if (!EC_POINT_copy(P, T))
- goto err;
- for (j = 0; j < 37; j++) {
- P256_POINT_AFFINE temp;
- /*
- * It would be faster to use EC_POINTs_make_affine and
- * make multiple points affine at the same time.
- */
- if (group->meth->make_affine == NULL
- || !group->meth->make_affine(group, P, ctx))
- goto err;
- if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
- !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
- ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
- for (i = 0; i < 7; i++) {
- if (!EC_POINT_dbl(group, P, P, ctx))
- goto err;
- }
- }
- if (!EC_POINT_add(group, T, T, generator, ctx))
- goto err;
- }
- pre_comp->group = group;
- pre_comp->w = w;
- pre_comp->precomp = preComputedTable;
- pre_comp->precomp_storage = precomp_storage;
- precomp_storage = NULL;
- SETPRECOMP(group, nistz256, pre_comp);
- pre_comp = NULL;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- EC_nistz256_pre_comp_free(pre_comp);
- OPENSSL_free(precomp_storage);
- EC_POINT_free(P);
- EC_POINT_free(T);
- return ret;
- }
- __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
- const P256_POINT_AFFINE *in,
- BN_CTX *ctx)
- {
- int ret = 0;
- if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
- && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
- && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
- out->Z_is_one = 1;
- return ret;
- }
- /* r = scalar*G + sum(scalars[i]*points[i]) */
- __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
- EC_POINT *r,
- const BIGNUM *scalar,
- size_t num,
- const EC_POINT *points[],
- const BIGNUM *scalars[], BN_CTX *ctx)
- {
- int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
- unsigned char p_str[33] = { 0 };
- const PRECOMP256_ROW *preComputedTable = NULL;
- const NISTZ256_PRE_COMP *pre_comp = NULL;
- const EC_POINT *generator = NULL;
- const BIGNUM **new_scalars = NULL;
- const EC_POINT **new_points = NULL;
- unsigned int idx = 0;
- const unsigned int window_size = 7;
- const unsigned int mask = (1 << (window_size + 1)) - 1;
- unsigned int wvalue;
- ALIGN32 union {
- P256_POINT p;
- P256_POINT_AFFINE a;
- } t, p;
- BIGNUM *tmp_scalar;
- if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
- ERR_raise(ERR_LIB_EC, ERR_R_PASSED_INVALID_ARGUMENT);
- return 0;
- }
- memset(&p, 0, sizeof(p));
- BN_CTX_start(ctx);
- if (scalar) {
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
- goto err;
- }
- /* look if we can use precomputed multiples of generator */
- pre_comp = group->pre_comp.nistz256;
- if (pre_comp) {
- /*
- * If there is a precomputed table for the generator, check that
- * it was generated with the same generator.
- */
- EC_POINT *pre_comp_generator = EC_POINT_new(group);
- if (pre_comp_generator == NULL)
- goto err;
- ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
- if (!ecp_nistz256_set_from_affine(pre_comp_generator,
- group, &p.a, ctx)) {
- EC_POINT_free(pre_comp_generator);
- goto err;
- }
- if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
- preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
- EC_POINT_free(pre_comp_generator);
- }
- if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
- /*
- * If there is no precomputed data, but the generator is the
- * default, a hardcoded table of precomputed data is used. This
- * is because applications, such as Apache, do not use
- * EC_KEY_precompute_mult.
- */
- preComputedTable = ecp_nistz256_precomputed;
- }
- if (preComputedTable) {
- BN_ULONG infty;
- if ((BN_num_bits(scalar) > 256)
- || BN_is_negative(scalar)) {
- if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
- ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
- goto err;
- }
- scalar = tmp_scalar;
- }
- for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
- BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
- p_str[i + 0] = (unsigned char)d;
- p_str[i + 1] = (unsigned char)(d >> 8);
- p_str[i + 2] = (unsigned char)(d >> 16);
- p_str[i + 3] = (unsigned char)(d >>= 24);
- if (BN_BYTES == 8) {
- d >>= 8;
- p_str[i + 4] = (unsigned char)d;
- p_str[i + 5] = (unsigned char)(d >> 8);
- p_str[i + 6] = (unsigned char)(d >> 16);
- p_str[i + 7] = (unsigned char)(d >> 24);
- }
- }
- for (; i < 33; i++)
- p_str[i] = 0;
- /* First window */
- wvalue = (p_str[0] << 1) & mask;
- idx += window_size;
- wvalue = _booth_recode_w7(wvalue);
- ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
- wvalue >> 1);
- ecp_nistz256_neg(p.p.Z, p.p.Y);
- copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
- /*
- * Since affine infinity is encoded as (0,0) and
- * Jacobian is (,,0), we need to harmonize them
- * by assigning "one" or zero to Z.
- */
- infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
- p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
- if (P256_LIMBS == 8)
- infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
- p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
- infty = 0 - is_zero(infty);
- infty = ~infty;
- p.p.Z[0] = ONE[0] & infty;
- p.p.Z[1] = ONE[1] & infty;
- p.p.Z[2] = ONE[2] & infty;
- p.p.Z[3] = ONE[3] & infty;
- if (P256_LIMBS == 8) {
- p.p.Z[4] = ONE[4] & infty;
- p.p.Z[5] = ONE[5] & infty;
- p.p.Z[6] = ONE[6] & infty;
- p.p.Z[7] = ONE[7] & infty;
- }
- for (i = 1; i < 37; i++) {
- unsigned int off = (idx - 1) / 8;
- wvalue = p_str[off] | p_str[off + 1] << 8;
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- wvalue = _booth_recode_w7(wvalue);
- ecp_nistz256_gather_w7(&t.a,
- preComputedTable[i], wvalue >> 1);
- ecp_nistz256_neg(t.p.Z, t.a.Y);
- copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
- ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
- }
- } else {
- p_is_infinity = 1;
- no_precomp_for_generator = 1;
- }
- } else
- p_is_infinity = 1;
- if (no_precomp_for_generator) {
- /*
- * Without a precomputed table for the generator, it has to be
- * handled like a normal point.
- */
- new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
- if (new_scalars == NULL)
- goto err;
- new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
- if (new_points == NULL)
- goto err;
- memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
- new_scalars[num] = scalar;
- memcpy(new_points, points, num * sizeof(EC_POINT *));
- new_points[num] = generator;
- scalars = new_scalars;
- points = new_points;
- num++;
- }
- if (num) {
- P256_POINT *out = &t.p;
- if (p_is_infinity)
- out = &p.p;
- if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
- goto err;
- if (!p_is_infinity)
- ecp_nistz256_point_add(&p.p, &p.p, out);
- }
- /* Not constant-time, but we're only operating on the public output. */
- if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
- !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
- !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
- goto err;
- }
- r->Z_is_one = is_one(r->Z) & 1;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- OPENSSL_free(new_points);
- OPENSSL_free(new_scalars);
- return ret;
- }
- __owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
- {
- BN_ULONG z_inv2[P256_LIMBS];
- BN_ULONG z_inv3[P256_LIMBS];
- BN_ULONG x_aff[P256_LIMBS];
- BN_ULONG y_aff[P256_LIMBS];
- BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
- BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
- if (EC_POINT_is_at_infinity(group, point)) {
- ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
- !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
- !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
- ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- return 0;
- }
- ecp_nistz256_mod_inverse(z_inv3, point_z);
- ecp_nistz256_sqr_mont(z_inv2, z_inv3);
- ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
- if (x != NULL) {
- ecp_nistz256_from_mont(x_ret, x_aff);
- if (!bn_set_words(x, x_ret, P256_LIMBS))
- return 0;
- }
- if (y != NULL) {
- ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
- ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
- ecp_nistz256_from_mont(y_ret, y_aff);
- if (!bn_set_words(y, y_ret, P256_LIMBS))
- return 0;
- }
- return 1;
- }
- static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
- {
- NISTZ256_PRE_COMP *ret = NULL;
- if (!group)
- return NULL;
- ret = OPENSSL_zalloc(sizeof(*ret));
- if (ret == NULL)
- return ret;
- ret->group = group;
- ret->w = 6; /* default */
- if (!CRYPTO_NEW_REF(&ret->references, 1)) {
- OPENSSL_free(ret);
- return NULL;
- }
- return ret;
- }
- NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
- {
- int i;
- if (p != NULL)
- CRYPTO_UP_REF(&p->references, &i);
- return p;
- }
- void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
- {
- int i;
- if (pre == NULL)
- return;
- CRYPTO_DOWN_REF(&pre->references, &i);
- REF_PRINT_COUNT("EC_nistz256", pre);
- if (i > 0)
- return;
- REF_ASSERT_ISNT(i < 0);
- OPENSSL_free(pre->precomp_storage);
- CRYPTO_FREE_REF(&pre->references);
- OPENSSL_free(pre);
- }
- static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
- {
- /* There is a hard-coded table for the default generator. */
- const EC_POINT *generator = EC_GROUP_get0_generator(group);
- if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
- /* There is a hard-coded table for the default generator. */
- return 1;
- }
- return HAVEPRECOMP(group, nistz256);
- }
- #if defined(__x86_64) || defined(__x86_64__) || \
- defined(_M_AMD64) || defined(_M_X64) || \
- defined(__powerpc64__) || defined(_ARCH_PP64) || \
- defined(__aarch64__)
- /*
- * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
- */
- void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS]);
- void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- BN_ULONG rep);
- static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *x, BN_CTX *ctx)
- {
- /* RR = 2^512 mod ord(p256) */
- static const BN_ULONG RR[P256_LIMBS] = {
- TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
- TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
- };
- /* The constant 1 (unlike ONE that is one in Montgomery representation) */
- static const BN_ULONG one[P256_LIMBS] = {
- TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
- };
- /*
- * We don't use entry 0 in the table, so we omit it and address
- * with -1 offset.
- */
- BN_ULONG table[15][P256_LIMBS];
- BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
- int i, ret = 0;
- enum {
- i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111,
- i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32
- };
- /*
- * Catch allocation failure early.
- */
- if (bn_wexpand(r, P256_LIMBS) == NULL) {
- ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
- goto err;
- }
- if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
- BIGNUM *tmp;
- if ((tmp = BN_CTX_get(ctx)) == NULL
- || !BN_nnmod(tmp, x, group->order, ctx)) {
- ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
- goto err;
- }
- x = tmp;
- }
- if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
- ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- ecp_nistz256_ord_mul_mont(table[0], t, RR);
- #if 0
- /*
- * Original sparse-then-fixed-window algorithm, retained for reference.
- */
- for (i = 2; i < 16; i += 2) {
- ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
- ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
- }
- /*
- * The top 128bit of the exponent are highly redudndant, so we
- * perform an optimized flow
- */
- ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */
- ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */
- ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */
- ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */
- ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */
- ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */
- ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */
- ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */
- ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */
- ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */
- /*
- * The bottom 128 bit of the exponent are processed with fixed 4-bit window
- */
- for (i = 0; i < 32; i++) {
- /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
- * split into nibbles */
- static const unsigned char expLo[32] = {
- 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
- 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
- };
- ecp_nistz256_ord_sqr_mont(out, out, 4);
- /* The exponent is public, no need in constant-time access */
- ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
- }
- #else
- /*
- * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
- *
- * Even though this code path spares 12 squarings, 4.5%, and 13
- * multiplications, 25%, on grand scale sign operation is not that
- * much faster, not more that 2%...
- */
- /* pre-calculate powers */
- ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
- ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
- ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
- ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
- ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
- ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
- ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
- ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
- ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
- ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
- ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
- ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
- ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
- ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
- ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
- ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
- ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
- /* calculations */
- ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
- ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
- for (i = 0; i < 27; i++) {
- static const struct { unsigned char p, i; } chain[27] = {
- { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
- { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
- { 4, i_101 }, { 3, i_101 }, { 3, i_101 },
- { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
- { 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
- { 5, i_111 }, { 4, i_111 }, { 5, i_111 },
- { 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
- { 2, i_11 }, { 5, i_11 }, { 5, i_11 },
- { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
- };
- ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
- ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
- }
- #endif
- ecp_nistz256_ord_mul_mont(out, out, one);
- /*
- * Can't fail, but check return code to be consistent anyway.
- */
- if (!bn_set_words(r, out, P256_LIMBS))
- goto err;
- ret = 1;
- err:
- return ret;
- }
- #else
- # define ecp_nistz256_inv_mod_ord NULL
- #endif
- const EC_METHOD *EC_GFp_nistz256_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_prime_field,
- ossl_ec_GFp_mont_group_init,
- ossl_ec_GFp_mont_group_finish,
- ossl_ec_GFp_mont_group_clear_finish,
- ossl_ec_GFp_mont_group_copy,
- ossl_ec_GFp_mont_group_set_curve,
- ossl_ec_GFp_simple_group_get_curve,
- ossl_ec_GFp_simple_group_get_degree,
- ossl_ec_group_simple_order_bits,
- ossl_ec_GFp_simple_group_check_discriminant,
- ossl_ec_GFp_simple_point_init,
- ossl_ec_GFp_simple_point_finish,
- ossl_ec_GFp_simple_point_clear_finish,
- ossl_ec_GFp_simple_point_copy,
- ossl_ec_GFp_simple_point_set_to_infinity,
- ossl_ec_GFp_simple_point_set_affine_coordinates,
- ecp_nistz256_get_affine,
- 0, 0, 0,
- ossl_ec_GFp_simple_add,
- ossl_ec_GFp_simple_dbl,
- ossl_ec_GFp_simple_invert,
- ossl_ec_GFp_simple_is_at_infinity,
- ossl_ec_GFp_simple_is_on_curve,
- ossl_ec_GFp_simple_cmp,
- ossl_ec_GFp_simple_make_affine,
- ossl_ec_GFp_simple_points_make_affine,
- ecp_nistz256_points_mul, /* mul */
- ecp_nistz256_mult_precompute, /* precompute_mult */
- ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
- ossl_ec_GFp_mont_field_mul,
- ossl_ec_GFp_mont_field_sqr,
- 0, /* field_div */
- ossl_ec_GFp_mont_field_inv,
- ossl_ec_GFp_mont_field_encode,
- ossl_ec_GFp_mont_field_decode,
- ossl_ec_GFp_mont_field_set_to_one,
- ossl_ec_key_simple_priv2oct,
- ossl_ec_key_simple_oct2priv,
- 0, /* set private */
- ossl_ec_key_simple_generate_key,
- ossl_ec_key_simple_check_key,
- ossl_ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ossl_ecdh_simple_compute_key,
- ossl_ecdsa_simple_sign_setup,
- ossl_ecdsa_simple_sign_sig,
- ossl_ecdsa_simple_verify_sig,
- ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
- 0, /* blind_coordinates */
- 0, /* ladder_pre */
- 0, /* ladder_step */
- 0 /* ladder_post */
- };
- return &ret;
- }
|