123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790 |
- /*
- * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- *
- */
- /*
- * SM2 low level APIs are deprecated for public use, but still ok for
- * internal use.
- */
- #include "internal/deprecated.h"
- #include <string.h>
- #include <openssl/err.h>
- #include "crypto/bn.h"
- #include "ec_local.h"
- #include "internal/common.h"
- #include "internal/constant_time.h"
- #define P256_LIMBS (256 / BN_BITS2)
- #if !defined(OPENSSL_NO_SM2_PRECOMP)
- extern const BN_ULONG ecp_sm2p256_precomputed[8 * 32 * 256];
- #endif
- typedef struct {
- BN_ULONG X[P256_LIMBS];
- BN_ULONG Y[P256_LIMBS];
- BN_ULONG Z[P256_LIMBS];
- } P256_POINT;
- typedef struct {
- BN_ULONG X[P256_LIMBS];
- BN_ULONG Y[P256_LIMBS];
- } P256_POINT_AFFINE;
- #if !defined(OPENSSL_NO_SM2_PRECOMP)
- /* Coordinates of G, for which we have precomputed tables */
- static const BN_ULONG def_xG[P256_LIMBS] ALIGN32 = {
- 0x715a4589334c74c7, 0x8fe30bbff2660be1,
- 0x5f9904466a39c994, 0x32c4ae2c1f198119
- };
- static const BN_ULONG def_yG[P256_LIMBS] ALIGN32 = {
- 0x02df32e52139f0a0, 0xd0a9877cc62a4740,
- 0x59bdcee36b692153, 0xbc3736a2f4f6779c,
- };
- #endif
- /* p and order for SM2 according to GB/T 32918.5-2017 */
- static const BN_ULONG def_p[P256_LIMBS] ALIGN32 = {
- 0xffffffffffffffff, 0xffffffff00000000,
- 0xffffffffffffffff, 0xfffffffeffffffff
- };
- static const BN_ULONG def_ord[P256_LIMBS] ALIGN32 = {
- 0x53bbf40939d54123, 0x7203df6b21c6052b,
- 0xffffffffffffffff, 0xfffffffeffffffff
- };
- static const BN_ULONG ONE[P256_LIMBS] ALIGN32 = {1, 0, 0, 0};
- /* Functions implemented in assembly */
- /*
- * Most of below mentioned functions *preserve* the property of inputs
- * being fully reduced, i.e. being in [0, modulus) range. Simply put if
- * inputs are fully reduced, then output is too.
- */
- /* Right shift: a >> 1 */
- void bn_rshift1(BN_ULONG *a);
- /* Sub: r = a - b */
- void bn_sub(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
- /* Modular div by 2: r = a / 2 mod p */
- void ecp_sm2p256_div_by_2(BN_ULONG *r, const BN_ULONG *a);
- /* Modular div by 2: r = a / 2 mod n, where n = ord(p) */
- void ecp_sm2p256_div_by_2_mod_ord(BN_ULONG *r, const BN_ULONG *a);
- /* Modular add: r = a + b mod p */
- void ecp_sm2p256_add(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
- /* Modular sub: r = a - b mod p */
- void ecp_sm2p256_sub(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
- /* Modular sub: r = a - b mod n, where n = ord(p) */
- void ecp_sm2p256_sub_mod_ord(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
- /* Modular mul by 3: out = 3 * a mod p */
- void ecp_sm2p256_mul_by_3(BN_ULONG *r, const BN_ULONG *a);
- /* Modular mul: r = a * b mod p */
- void ecp_sm2p256_mul(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
- /* Modular sqr: r = a ^ 2 mod p */
- void ecp_sm2p256_sqr(BN_ULONG *r, const BN_ULONG *a);
- static ossl_inline BN_ULONG is_zeros(const BN_ULONG *a)
- {
- BN_ULONG res;
- res = a[0] | a[1] | a[2] | a[3];
- return constant_time_is_zero_64(res);
- }
- static ossl_inline int is_equal(const BN_ULONG *a, const BN_ULONG *b)
- {
- BN_ULONG res;
- res = a[0] ^ b[0];
- res |= a[1] ^ b[1];
- res |= a[2] ^ b[2];
- res |= a[3] ^ b[3];
- return constant_time_is_zero_64(res);
- }
- static ossl_inline int is_greater(const BN_ULONG *a, const BN_ULONG *b)
- {
- int i;
- for (i = P256_LIMBS - 1; i >= 0; --i) {
- if (a[i] > b[i])
- return 1;
- if (a[i] < b[i])
- return -1;
- }
- return 0;
- }
- #define is_one(a) is_equal(a, ONE)
- #define is_even(a) !(a[0] & 1)
- #define is_point_equal(a, b) \
- is_equal(a->X, b->X) && \
- is_equal(a->Y, b->Y) && \
- is_equal(a->Z, b->Z)
- /* Bignum and field elements conversion */
- #define ecp_sm2p256_bignum_field_elem(out, in) \
- bn_copy_words(out, in, P256_LIMBS)
- /* Binary algorithm for inversion in Fp */
- #define BN_MOD_INV(out, in, mod_div, mod_sub, mod) \
- do { \
- BN_ULONG u[4] ALIGN32; \
- BN_ULONG v[4] ALIGN32; \
- BN_ULONG x1[4] ALIGN32 = {1, 0, 0, 0}; \
- BN_ULONG x2[4] ALIGN32 = {0}; \
- \
- if (is_zeros(in)) \
- return; \
- memcpy(u, in, 32); \
- memcpy(v, mod, 32); \
- while (!is_one(u) && !is_one(v)) { \
- while (is_even(u)) { \
- bn_rshift1(u); \
- mod_div(x1, x1); \
- } \
- while (is_even(v)) { \
- bn_rshift1(v); \
- mod_div(x2, x2); \
- } \
- if (is_greater(u, v) == 1) { \
- bn_sub(u, u, v); \
- mod_sub(x1, x1, x2); \
- } else { \
- bn_sub(v, v, u); \
- mod_sub(x2, x2, x1); \
- } \
- } \
- if (is_one(u)) \
- memcpy(out, x1, 32); \
- else \
- memcpy(out, x2, 32); \
- } while (0)
- /* Modular inverse |out| = |in|^(-1) mod |p|. */
- static ossl_inline void ecp_sm2p256_mod_inverse(BN_ULONG* out,
- const BN_ULONG* in) {
- BN_MOD_INV(out, in, ecp_sm2p256_div_by_2, ecp_sm2p256_sub, def_p);
- }
- /* Modular inverse mod order |out| = |in|^(-1) % |ord|. */
- static ossl_inline void ecp_sm2p256_mod_ord_inverse(BN_ULONG* out,
- const BN_ULONG* in) {
- BN_MOD_INV(out, in, ecp_sm2p256_div_by_2_mod_ord, ecp_sm2p256_sub_mod_ord,
- def_ord);
- }
- /* Point double: R <- P + P */
- static void ecp_sm2p256_point_double(P256_POINT *R, const P256_POINT *P)
- {
- unsigned int i;
- BN_ULONG tmp0[P256_LIMBS] ALIGN32;
- BN_ULONG tmp1[P256_LIMBS] ALIGN32;
- BN_ULONG tmp2[P256_LIMBS] ALIGN32;
- /* zero-check P->Z */
- if (is_zeros(P->Z)) {
- for (i = 0; i < P256_LIMBS; ++i)
- R->Z[i] = 0;
- return;
- }
- ecp_sm2p256_sqr(tmp0, P->Z);
- ecp_sm2p256_sub(tmp1, P->X, tmp0);
- ecp_sm2p256_add(tmp0, P->X, tmp0);
- ecp_sm2p256_mul(tmp1, tmp1, tmp0);
- ecp_sm2p256_mul_by_3(tmp1, tmp1);
- ecp_sm2p256_add(R->Y, P->Y, P->Y);
- ecp_sm2p256_mul(R->Z, R->Y, P->Z);
- ecp_sm2p256_sqr(R->Y, R->Y);
- ecp_sm2p256_mul(tmp2, R->Y, P->X);
- ecp_sm2p256_sqr(R->Y, R->Y);
- ecp_sm2p256_div_by_2(R->Y, R->Y);
- ecp_sm2p256_sqr(R->X, tmp1);
- ecp_sm2p256_add(tmp0, tmp2, tmp2);
- ecp_sm2p256_sub(R->X, R->X, tmp0);
- ecp_sm2p256_sub(tmp0, tmp2, R->X);
- ecp_sm2p256_mul(tmp0, tmp0, tmp1);
- ecp_sm2p256_sub(tmp1, tmp0, R->Y);
- memcpy(R->Y, tmp1, 32);
- }
- /* Point add affine: R <- P + Q */
- static void ecp_sm2p256_point_add_affine(P256_POINT *R, const P256_POINT *P,
- const P256_POINT_AFFINE *Q)
- {
- unsigned int i;
- BN_ULONG tmp0[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG tmp1[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG tmp2[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG tmp3[P256_LIMBS] ALIGN32 = {0};
- /* zero-check P->Z */
- if (is_zeros(P->Z)) {
- for (i = 0; i < P256_LIMBS; ++i) {
- R->X[i] = Q->X[i];
- R->Y[i] = Q->Y[i];
- R->Z[i] = 0;
- }
- R->Z[0] = 1;
- return;
- }
- ecp_sm2p256_sqr(tmp0, P->Z);
- ecp_sm2p256_mul(tmp1, tmp0, P->Z);
- ecp_sm2p256_mul(tmp0, tmp0, Q->X);
- ecp_sm2p256_mul(tmp1, tmp1, Q->Y);
- ecp_sm2p256_sub(tmp0, tmp0, P->X);
- ecp_sm2p256_sub(tmp1, tmp1, P->Y);
- /* zero-check tmp0, tmp1 */
- if (is_zeros(tmp0)) {
- if (is_zeros(tmp1)) {
- P256_POINT K;
- for (i = 0; i < P256_LIMBS; ++i) {
- K.X[i] = Q->X[i];
- K.Y[i] = Q->Y[i];
- K.Z[i] = 0;
- }
- K.Z[0] = 1;
- ecp_sm2p256_point_double(R, &K);
- } else {
- for (i = 0; i < P256_LIMBS; ++i)
- R->Z[i] = 0;
- }
- return;
- }
- ecp_sm2p256_mul(R->Z, P->Z, tmp0);
- ecp_sm2p256_sqr(tmp2, tmp0);
- ecp_sm2p256_mul(tmp3, tmp2, tmp0);
- ecp_sm2p256_mul(tmp2, tmp2, P->X);
- ecp_sm2p256_add(tmp0, tmp2, tmp2);
- ecp_sm2p256_sqr(R->X, tmp1);
- ecp_sm2p256_sub(R->X, R->X, tmp0);
- ecp_sm2p256_sub(R->X, R->X, tmp3);
- ecp_sm2p256_sub(tmp2, tmp2, R->X);
- ecp_sm2p256_mul(tmp2, tmp2, tmp1);
- ecp_sm2p256_mul(tmp3, tmp3, P->Y);
- ecp_sm2p256_sub(R->Y, tmp2, tmp3);
- }
- /* Point add: R <- P + Q */
- static void ecp_sm2p256_point_add(P256_POINT *R, const P256_POINT *P,
- const P256_POINT *Q)
- {
- unsigned int i;
- BN_ULONG tmp0[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG tmp1[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG tmp2[P256_LIMBS] ALIGN32 = {0};
- /* zero-check P | Q ->Z */
- if (is_zeros(P->Z)) {
- for (i = 0; i < P256_LIMBS; ++i) {
- R->X[i] = Q->X[i];
- R->Y[i] = Q->Y[i];
- R->Z[i] = Q->Z[i];
- }
- return;
- } else if (is_zeros(Q->Z)) {
- for (i = 0; i < P256_LIMBS; ++i) {
- R->X[i] = P->X[i];
- R->Y[i] = P->Y[i];
- R->Z[i] = P->Z[i];
- }
- return;
- } else if (is_point_equal(P, Q)) {
- ecp_sm2p256_point_double(R, Q);
- return;
- }
- ecp_sm2p256_sqr(tmp0, P->Z);
- ecp_sm2p256_mul(tmp1, tmp0, P->Z);
- ecp_sm2p256_mul(tmp0, tmp0, Q->X);
- ecp_sm2p256_mul(tmp1, tmp1, Q->Y);
- ecp_sm2p256_mul(R->Y, P->Y, Q->Z);
- ecp_sm2p256_mul(R->Z, Q->Z, P->Z);
- ecp_sm2p256_sqr(tmp2, Q->Z);
- ecp_sm2p256_mul(R->Y, tmp2, R->Y);
- ecp_sm2p256_mul(R->X, tmp2, P->X);
- ecp_sm2p256_sub(tmp0, tmp0, R->X);
- ecp_sm2p256_mul(R->Z, tmp0, R->Z);
- ecp_sm2p256_sub(tmp1, tmp1, R->Y);
- ecp_sm2p256_sqr(tmp2, tmp0);
- ecp_sm2p256_mul(tmp0, tmp0, tmp2);
- ecp_sm2p256_mul(tmp2, tmp2, R->X);
- ecp_sm2p256_sqr(R->X, tmp1);
- ecp_sm2p256_sub(R->X, R->X, tmp2);
- ecp_sm2p256_sub(R->X, R->X, tmp2);
- ecp_sm2p256_sub(R->X, R->X, tmp0);
- ecp_sm2p256_sub(tmp2, tmp2, R->X);
- ecp_sm2p256_mul(tmp2, tmp1, tmp2);
- ecp_sm2p256_mul(tmp0, tmp0, R->Y);
- ecp_sm2p256_sub(R->Y, tmp2, tmp0);
- }
- #if !defined(OPENSSL_NO_SM2_PRECOMP)
- /* Base point mul by scalar: k - scalar, G - base point */
- static void ecp_sm2p256_point_G_mul_by_scalar(P256_POINT *R, const BN_ULONG *k)
- {
- unsigned int i, index, mask = 0xff;
- P256_POINT_AFFINE Q;
- memset(R, 0, sizeof(P256_POINT));
- if (is_zeros(k))
- return;
- index = k[0] & mask;
- if (index) {
- index = index * 8;
- memcpy(R->X, ecp_sm2p256_precomputed + index, 32);
- memcpy(R->Y, ecp_sm2p256_precomputed + index + P256_LIMBS, 32);
- R->Z[0] = 1;
- }
- for (i = 1; i < 32; ++i) {
- index = (k[i / 8] >> (8 * (i % 8))) & mask;
- if (index) {
- index = index + i * 256;
- index = index * 8;
- memcpy(Q.X, ecp_sm2p256_precomputed + index, 32);
- memcpy(Q.Y, ecp_sm2p256_precomputed + index + P256_LIMBS, 32);
- ecp_sm2p256_point_add_affine(R, R, &Q);
- }
- }
- }
- #endif
- /*
- * Affine point mul by scalar: k - scalar, P - affine point
- */
- static void ecp_sm2p256_point_P_mul_by_scalar(P256_POINT *R, const BN_ULONG *k,
- P256_POINT_AFFINE P)
- {
- int i, init = 0;
- unsigned int index, mask = 0x0f;
- P256_POINT precomputed[16] ALIGN64;
- memset(R, 0, sizeof(P256_POINT));
- if (is_zeros(k))
- return;
- /* The first value of the precomputed table is P. */
- memcpy(precomputed[1].X, P.X, 32);
- memcpy(precomputed[1].Y, P.Y, 32);
- precomputed[1].Z[0] = 1;
- precomputed[1].Z[1] = 0;
- precomputed[1].Z[2] = 0;
- precomputed[1].Z[3] = 0;
- /* The second value of the precomputed table is 2P. */
- ecp_sm2p256_point_double(&precomputed[2], &precomputed[1]);
- /* The subsequent elements are 3P, 4P, and so on. */
- for (i = 3; i < 16; ++i)
- ecp_sm2p256_point_add_affine(&precomputed[i], &precomputed[i - 1], &P);
- for (i = 64 - 1; i >= 0; --i) {
- index = (k[i / 16] >> (4 * (i % 16))) & mask;
- if (init == 0) {
- if (index) {
- memcpy(R, &precomputed[index], sizeof(P256_POINT));
- init = 1;
- }
- } else {
- ecp_sm2p256_point_double(R, R);
- ecp_sm2p256_point_double(R, R);
- ecp_sm2p256_point_double(R, R);
- ecp_sm2p256_point_double(R, R);
- if (index)
- ecp_sm2p256_point_add(R, R, &precomputed[index]);
- }
- }
- }
- /* Get affine point */
- static void ecp_sm2p256_point_get_affine(P256_POINT_AFFINE *R,
- const P256_POINT *P)
- {
- BN_ULONG z_inv3[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG z_inv2[P256_LIMBS] ALIGN32 = {0};
- if (is_one(P->Z)) {
- memcpy(R->X, P->X, 32);
- memcpy(R->Y, P->Y, 32);
- return;
- }
- ecp_sm2p256_mod_inverse(z_inv3, P->Z);
- ecp_sm2p256_sqr(z_inv2, z_inv3);
- ecp_sm2p256_mul(R->X, P->X, z_inv2);
- ecp_sm2p256_mul(z_inv3, z_inv3, z_inv2);
- ecp_sm2p256_mul(R->Y, P->Y, z_inv3);
- }
- #if !defined(OPENSSL_NO_SM2_PRECOMP)
- static int ecp_sm2p256_is_affine_G(const EC_POINT *generator)
- {
- return (bn_get_top(generator->X) == P256_LIMBS)
- && (bn_get_top(generator->Y) == P256_LIMBS)
- && is_equal(bn_get_words(generator->X), def_xG)
- && is_equal(bn_get_words(generator->Y), def_yG)
- && (generator->Z_is_one == 1);
- }
- #endif
- /*
- * Convert Jacobian coordinate point into affine coordinate (x,y)
- */
- static int ecp_sm2p256_get_affine(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
- {
- BN_ULONG z_inv2[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG z_inv3[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG x_aff[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG y_aff[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG point_x[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG point_y[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG point_z[P256_LIMBS] ALIGN32 = {0};
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (ecp_sm2p256_bignum_field_elem(point_x, point->X) <= 0
- || ecp_sm2p256_bignum_field_elem(point_y, point->Y) <= 0
- || ecp_sm2p256_bignum_field_elem(point_z, point->Z) <= 0) {
- ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- return 0;
- }
- ecp_sm2p256_mod_inverse(z_inv3, point_z);
- ecp_sm2p256_sqr(z_inv2, z_inv3);
- if (x != NULL) {
- ecp_sm2p256_mul(x_aff, point_x, z_inv2);
- if (!bn_set_words(x, x_aff, P256_LIMBS))
- return 0;
- }
- if (y != NULL) {
- ecp_sm2p256_mul(z_inv3, z_inv3, z_inv2);
- ecp_sm2p256_mul(y_aff, point_y, z_inv3);
- if (!bn_set_words(y, y_aff, P256_LIMBS))
- return 0;
- }
- return 1;
- }
- /* r = sum(scalar[i]*point[i]) */
- static int ecp_sm2p256_windowed_mul(const EC_GROUP *group,
- P256_POINT *r,
- const BIGNUM **scalar,
- const EC_POINT **point,
- size_t num, BN_CTX *ctx)
- {
- unsigned int i;
- int ret = 0;
- const BIGNUM **scalars = NULL;
- BN_ULONG k[P256_LIMBS] ALIGN32 = {0};
- P256_POINT kP;
- ALIGN32 union {
- P256_POINT p;
- P256_POINT_AFFINE a;
- } t, p;
- if (num > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
- || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
- ECerr(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- memset(r, 0, sizeof(P256_POINT));
- for (i = 0; i < num; i++) {
- if (EC_POINT_is_at_infinity(group, point[i]))
- continue;
- if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
- BIGNUM *tmp;
- if ((tmp = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_nnmod(tmp, scalar[i], group->order, ctx)) {
- ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
- goto err;
- }
- scalars[i] = tmp;
- } else {
- scalars[i] = scalar[i];
- }
- if (ecp_sm2p256_bignum_field_elem(k, scalars[i]) <= 0
- || ecp_sm2p256_bignum_field_elem(p.p.X, point[i]->X) <= 0
- || ecp_sm2p256_bignum_field_elem(p.p.Y, point[i]->Y) <= 0
- || ecp_sm2p256_bignum_field_elem(p.p.Z, point[i]->Z) <= 0) {
- ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- ecp_sm2p256_point_get_affine(&t.a, &p.p);
- ecp_sm2p256_point_P_mul_by_scalar(&kP, k, t.a);
- ecp_sm2p256_point_add(r, r, &kP);
- }
- ret = 1;
- err:
- OPENSSL_free(scalars);
- return ret;
- }
- /* r = scalar*G + sum(scalars[i]*points[i]) */
- static int ecp_sm2p256_points_mul(const EC_GROUP *group,
- EC_POINT *r,
- const BIGNUM *scalar,
- size_t num,
- const EC_POINT *points[],
- const BIGNUM *scalars[], BN_CTX *ctx)
- {
- int ret = 0, p_is_infinity = 0;
- const EC_POINT *generator = NULL;
- BN_ULONG k[P256_LIMBS] ALIGN32 = {0};
- ALIGN32 union {
- P256_POINT p;
- P256_POINT_AFFINE a;
- } t, p;
- if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
- ECerr(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- BN_CTX_start(ctx);
- if (scalar) {
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ECerr(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
- goto err;
- }
- if (!ecp_sm2p256_bignum_field_elem(k, scalar)) {
- ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- #if !defined(OPENSSL_NO_SM2_PRECOMP)
- if (ecp_sm2p256_is_affine_G(generator)) {
- ecp_sm2p256_point_G_mul_by_scalar(&p.p, k);
- } else
- #endif
- {
- /* if no precomputed table */
- const EC_POINT *new_generator[1];
- const BIGNUM *g_scalars[1];
- new_generator[0] = generator;
- g_scalars[0] = scalar;
- if (!ecp_sm2p256_windowed_mul(group, &p.p, g_scalars, new_generator,
- (new_generator[0] != NULL
- && g_scalars[0] != NULL), ctx))
- goto err;
- }
- } else {
- p_is_infinity = 1;
- }
- if (num) {
- P256_POINT *out = &t.p;
- if (p_is_infinity)
- out = &p.p;
- if (!ecp_sm2p256_windowed_mul(group, out, scalars, points, num, ctx))
- goto err;
- if (!p_is_infinity)
- ecp_sm2p256_point_add(&p.p, &p.p, out);
- }
- /* Not constant-time, but we're only operating on the public output. */
- if (!bn_set_words(r->X, p.p.X, P256_LIMBS)
- || !bn_set_words(r->Y, p.p.Y, P256_LIMBS)
- || !bn_set_words(r->Z, p.p.Z, P256_LIMBS))
- goto err;
- r->Z_is_one = is_equal(bn_get_words(r->Z), ONE) & 1;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- static int ecp_sm2p256_field_mul(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- BN_ULONG a_fe[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG b_fe[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG r_fe[P256_LIMBS] ALIGN32 = {0};
- if (a == NULL || b == NULL || r == NULL)
- return 0;
- if (!ecp_sm2p256_bignum_field_elem(a_fe, a)
- || !ecp_sm2p256_bignum_field_elem(b_fe, b)) {
- ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- return 0;
- }
- ecp_sm2p256_mul(r_fe, a_fe, b_fe);
- if (!bn_set_words(r, r_fe, P256_LIMBS))
- return 0;
- return 1;
- }
- static int ecp_sm2p256_field_sqr(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, BN_CTX *ctx)
- {
- BN_ULONG a_fe[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG r_fe[P256_LIMBS] ALIGN32 = {0};
- if (a == NULL || r == NULL)
- return 0;
- if (!ecp_sm2p256_bignum_field_elem(a_fe, a)) {
- ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- return 0;
- }
- ecp_sm2p256_sqr(r_fe, a_fe);
- if (!bn_set_words(r, r_fe, P256_LIMBS))
- return 0;
- return 1;
- }
- static int ecp_sm2p256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *x, BN_CTX *ctx)
- {
- int ret = 0;
- BN_ULONG t[P256_LIMBS] ALIGN32 = {0};
- BN_ULONG out[P256_LIMBS] ALIGN32 = {0};
- if (bn_wexpand(r, P256_LIMBS) == NULL) {
- ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
- goto err;
- }
- if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
- BIGNUM *tmp;
- if ((tmp = BN_CTX_get(ctx)) == NULL
- || !BN_nnmod(tmp, x, group->order, ctx)) {
- ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
- goto err;
- }
- x = tmp;
- }
- if (!ecp_sm2p256_bignum_field_elem(t, x)) {
- ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- ecp_sm2p256_mod_ord_inverse(out, t);
- if (!bn_set_words(r, out, P256_LIMBS))
- goto err;
- ret = 1;
- err:
- return ret;
- }
- const EC_METHOD *EC_GFp_sm2p256_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_prime_field,
- ossl_ec_GFp_simple_group_init,
- ossl_ec_GFp_simple_group_finish,
- ossl_ec_GFp_simple_group_clear_finish,
- ossl_ec_GFp_simple_group_copy,
- ossl_ec_GFp_simple_group_set_curve,
- ossl_ec_GFp_simple_group_get_curve,
- ossl_ec_GFp_simple_group_get_degree,
- ossl_ec_group_simple_order_bits,
- ossl_ec_GFp_simple_group_check_discriminant,
- ossl_ec_GFp_simple_point_init,
- ossl_ec_GFp_simple_point_finish,
- ossl_ec_GFp_simple_point_clear_finish,
- ossl_ec_GFp_simple_point_copy,
- ossl_ec_GFp_simple_point_set_to_infinity,
- ossl_ec_GFp_simple_point_set_affine_coordinates,
- ecp_sm2p256_get_affine,
- 0, 0, 0,
- ossl_ec_GFp_simple_add,
- ossl_ec_GFp_simple_dbl,
- ossl_ec_GFp_simple_invert,
- ossl_ec_GFp_simple_is_at_infinity,
- ossl_ec_GFp_simple_is_on_curve,
- ossl_ec_GFp_simple_cmp,
- ossl_ec_GFp_simple_make_affine,
- ossl_ec_GFp_simple_points_make_affine,
- ecp_sm2p256_points_mul, /* mul */
- 0 /* precompute_mult */,
- 0 /* have_precompute_mult */,
- ecp_sm2p256_field_mul,
- ecp_sm2p256_field_sqr,
- 0 /* field_div */,
- 0 /* field_inv */,
- 0 /* field_encode */,
- 0 /* field_decode */,
- 0 /* field_set_to_one */,
- ossl_ec_key_simple_priv2oct,
- ossl_ec_key_simple_oct2priv,
- 0, /* set private */
- ossl_ec_key_simple_generate_key,
- ossl_ec_key_simple_check_key,
- ossl_ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ossl_ecdh_simple_compute_key,
- ossl_ecdsa_simple_sign_setup,
- ossl_ecdsa_simple_sign_sig,
- ossl_ecdsa_simple_verify_sig,
- ecp_sm2p256_inv_mod_ord,
- 0, /* blind_coordinates */
- 0, /* ladder_pre */
- 0, /* ladder_step */
- 0 /* ladder_post */
- };
- return &ret;
- }
|