2
0

md2_dgst.c 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. /*
  2. * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * MD2 low level APIs are deprecated for public use, but still ok for
  11. * internal use.
  12. */
  13. #include "internal/deprecated.h"
  14. #include <stdio.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <openssl/md2.h>
  18. #include <openssl/opensslv.h>
  19. #include <openssl/crypto.h>
  20. /*
  21. * Implemented from RFC1319 The MD2 Message-Digest Algorithm
  22. */
  23. #define UCHAR unsigned char
  24. static void md2_block(MD2_CTX *c, const unsigned char *d);
  25. /*
  26. * The magic S table - I have converted it to hex since it is basically just
  27. * a random byte string.
  28. */
  29. static const MD2_INT S[256] = {
  30. 0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01,
  31. 0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13,
  32. 0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C,
  33. 0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA,
  34. 0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16,
  35. 0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12,
  36. 0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49,
  37. 0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A,
  38. 0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F,
  39. 0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21,
  40. 0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27,
  41. 0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03,
  42. 0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1,
  43. 0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6,
  44. 0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6,
  45. 0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1,
  46. 0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20,
  47. 0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02,
  48. 0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6,
  49. 0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F,
  50. 0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A,
  51. 0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26,
  52. 0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09,
  53. 0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52,
  54. 0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA,
  55. 0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A,
  56. 0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D,
  57. 0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39,
  58. 0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4,
  59. 0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A,
  60. 0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A,
  61. 0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14,
  62. };
  63. const char *MD2_options(void)
  64. {
  65. if (sizeof(MD2_INT) == 1)
  66. return "md2(char)";
  67. else
  68. return "md2(int)";
  69. }
  70. int MD2_Init(MD2_CTX *c)
  71. {
  72. c->num = 0;
  73. memset(c->state, 0, sizeof(c->state));
  74. memset(c->cksm, 0, sizeof(c->cksm));
  75. memset(c->data, 0, sizeof(c->data));
  76. return 1;
  77. }
  78. int MD2_Update(MD2_CTX *c, const unsigned char *data, size_t len)
  79. {
  80. register UCHAR *p;
  81. if (len == 0)
  82. return 1;
  83. p = c->data;
  84. if (c->num != 0) {
  85. if ((c->num + len) >= MD2_BLOCK) {
  86. memcpy(&(p[c->num]), data, MD2_BLOCK - c->num);
  87. md2_block(c, c->data);
  88. data += (MD2_BLOCK - c->num);
  89. len -= (MD2_BLOCK - c->num);
  90. c->num = 0;
  91. /* drop through and do the rest */
  92. } else {
  93. memcpy(&(p[c->num]), data, len);
  94. /* data+=len; */
  95. c->num += (int)len;
  96. return 1;
  97. }
  98. }
  99. /*
  100. * we now can process the input data in blocks of MD2_BLOCK chars and
  101. * save the leftovers to c->data.
  102. */
  103. while (len >= MD2_BLOCK) {
  104. md2_block(c, data);
  105. data += MD2_BLOCK;
  106. len -= MD2_BLOCK;
  107. }
  108. memcpy(p, data, len);
  109. c->num = (int)len;
  110. return 1;
  111. }
  112. static void md2_block(MD2_CTX *c, const unsigned char *d)
  113. {
  114. register MD2_INT t, *sp1, *sp2;
  115. register int i, j;
  116. MD2_INT state[48];
  117. sp1 = c->state;
  118. sp2 = c->cksm;
  119. j = sp2[MD2_BLOCK - 1];
  120. for (i = 0; i < 16; i++) {
  121. state[i] = sp1[i];
  122. state[i + 16] = t = d[i];
  123. state[i + 32] = (t ^ sp1[i]);
  124. j = sp2[i] ^= S[t ^ j];
  125. }
  126. t = 0;
  127. for (i = 0; i < 18; i++) {
  128. for (j = 0; j < 48; j += 8) {
  129. t = state[j + 0] ^= S[t];
  130. t = state[j + 1] ^= S[t];
  131. t = state[j + 2] ^= S[t];
  132. t = state[j + 3] ^= S[t];
  133. t = state[j + 4] ^= S[t];
  134. t = state[j + 5] ^= S[t];
  135. t = state[j + 6] ^= S[t];
  136. t = state[j + 7] ^= S[t];
  137. }
  138. t = (t + i) & 0xff;
  139. }
  140. memcpy(sp1, state, 16 * sizeof(MD2_INT));
  141. OPENSSL_cleanse(state, 48 * sizeof(MD2_INT));
  142. }
  143. int MD2_Final(unsigned char *md, MD2_CTX *c)
  144. {
  145. int i, v;
  146. register UCHAR *cp;
  147. register MD2_INT *p1, *p2;
  148. cp = c->data;
  149. p1 = c->state;
  150. p2 = c->cksm;
  151. v = MD2_BLOCK - c->num;
  152. for (i = c->num; i < MD2_BLOCK; i++)
  153. cp[i] = (UCHAR) v;
  154. md2_block(c, cp);
  155. for (i = 0; i < MD2_BLOCK; i++)
  156. cp[i] = (UCHAR) p2[i];
  157. md2_block(c, cp);
  158. for (i = 0; i < 16; i++)
  159. md[i] = (UCHAR) (p1[i] & 0xff);
  160. OPENSSL_cleanse(c, sizeof(*c));
  161. return 1;
  162. }