EVP_RAND.pod 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. =pod
  2. =head1 NAME
  3. EVP_RAND, EVP_RAND_fetch, EVP_RAND_free, EVP_RAND_up_ref, EVP_RAND_CTX,
  4. EVP_RAND_CTX_new, EVP_RAND_CTX_free, EVP_RAND_instantiate,
  5. EVP_RAND_uninstantiate, EVP_RAND_generate, EVP_RAND_reseed, EVP_RAND_nonce,
  6. EVP_RAND_enable_locking, EVP_RAND_verify_zeroization, EVP_RAND_get_strength,
  7. EVP_RAND_get_state,
  8. EVP_RAND_get0_provider, EVP_RAND_CTX_get0_rand, EVP_RAND_is_a,
  9. EVP_RAND_get0_name, EVP_RAND_names_do_all,
  10. EVP_RAND_get0_description,
  11. EVP_RAND_CTX_get_params,
  12. EVP_RAND_CTX_set_params, EVP_RAND_do_all_provided, EVP_RAND_get_params,
  13. EVP_RAND_gettable_ctx_params, EVP_RAND_settable_ctx_params,
  14. EVP_RAND_CTX_gettable_params, EVP_RAND_CTX_settable_params,
  15. EVP_RAND_gettable_params, EVP_RAND_STATE_UNINITIALISED, EVP_RAND_STATE_READY,
  16. EVP_RAND_STATE_ERROR - EVP RAND routines
  17. =head1 SYNOPSIS
  18. #include <openssl/evp.h>
  19. typedef struct evp_rand_st EVP_RAND;
  20. typedef struct evp_rand_ctx_st EVP_RAND_CTX;
  21. EVP_RAND *EVP_RAND_fetch(OSSL_LIB_CTX *libctx, const char *algorithm,
  22. const char *properties);
  23. int EVP_RAND_up_ref(EVP_RAND *rand);
  24. void EVP_RAND_free(EVP_RAND *rand);
  25. EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent);
  26. void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx);
  27. EVP_RAND *EVP_RAND_CTX_get0_rand(EVP_RAND_CTX *ctx);
  28. int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[]);
  29. int EVP_RAND_CTX_get_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[]);
  30. int EVP_RAND_CTX_set_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[]);
  31. const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand);
  32. const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand);
  33. const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand);
  34. const OSSL_PARAM *EVP_RAND_CTX_gettable_params(EVP_RAND_CTX *ctx);
  35. const OSSL_PARAM *EVP_RAND_CTX_settable_params(EVP_RAND_CTX *ctx);
  36. const char *EVP_RAND_get0_name(const EVP_RAND *rand);
  37. const char *EVP_RAND_get0_description(const EVP_RAND *rand);
  38. int EVP_RAND_is_a(const EVP_RAND *rand, const char *name);
  39. const OSSL_PROVIDER *EVP_RAND_get0_provider(const EVP_RAND *rand);
  40. void EVP_RAND_do_all_provided(OSSL_LIB_CTX *libctx,
  41. void (*fn)(EVP_RAND *rand, void *arg),
  42. void *arg);
  43. int EVP_RAND_names_do_all(const EVP_RAND *rand,
  44. void (*fn)(const char *name, void *data),
  45. void *data);
  46. int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
  47. int prediction_resistance,
  48. const unsigned char *pstr, size_t pstr_len,
  49. const OSSL_PARAM params[]);
  50. int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx);
  51. int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
  52. unsigned int strength, int prediction_resistance,
  53. const unsigned char *addin, size_t addin_len);
  54. int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
  55. const unsigned char *ent, size_t ent_len,
  56. const unsigned char *addin, size_t addin_len);
  57. int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen);
  58. int EVP_RAND_enable_locking(EVP_RAND_CTX *ctx);
  59. int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx);
  60. unsigned int EVP_RAND_get_strength(EVP_RAND_CTX *ctx);
  61. int EVP_RAND_get_state(EVP_RAND_CTX *ctx);
  62. #define EVP_RAND_STATE_UNINITIALISED 0
  63. #define EVP_RAND_STATE_READY 1
  64. #define EVP_RAND_STATE_ERROR 2
  65. =head1 DESCRIPTION
  66. The EVP RAND routines are a high-level interface to random number generators
  67. both deterministic and not.
  68. If you just want to generate random bytes then you don't need to use
  69. these functions: just call RAND_bytes() or RAND_priv_bytes().
  70. If you want to do more, these calls should be used instead of the older
  71. RAND and RAND_DRBG functions.
  72. After creating a B<EVP_RAND_CTX> for the required algorithm using
  73. EVP_RAND_CTX_new(), inputs to the algorithm are supplied either by
  74. passing them as part of the EVP_RAND_instantiate() call or using calls to
  75. EVP_RAND_CTX_set_params() before calling EVP_RAND_instantiate(). Finally,
  76. call EVP_RAND_generate() to produce cryptographically secure random bytes.
  77. =head2 Types
  78. B<EVP_RAND> is a type that holds the implementation of a RAND.
  79. B<EVP_RAND_CTX> is a context type that holds the algorithm inputs.
  80. B<EVP_RAND_CTX> structures are reference counted.
  81. =head2 Algorithm implementation fetching
  82. EVP_RAND_fetch() fetches an implementation of a RAND I<algorithm>, given
  83. a library context I<libctx> and a set of I<properties>.
  84. See L<crypto(7)/ALGORITHM FETCHING> for further information.
  85. The returned value must eventually be freed with
  86. L<EVP_RAND_free(3)>.
  87. EVP_RAND_up_ref() increments the reference count of an already fetched
  88. RAND.
  89. EVP_RAND_free() frees a fetched algorithm.
  90. NULL is a valid parameter, for which this function is a no-op.
  91. =head2 Context manipulation functions
  92. EVP_RAND_CTX_new() creates a new context for the RAND implementation I<rand>.
  93. If not NULL, I<parent> specifies the seed source for this implementation.
  94. Not all random number generators need to have a seed source specified.
  95. If a parent is required, a NULL I<parent> will utilise the operating
  96. system entropy sources.
  97. It is recommended to minimise the number of random number generators that
  98. rely on the operating system for their randomness because this is often scarce.
  99. EVP_RAND_CTX_free() frees up the context I<ctx>. If I<ctx> is NULL, nothing
  100. is done.
  101. EVP_RAND_CTX_get0_rand() returns the B<EVP_RAND> associated with the context
  102. I<ctx>.
  103. =head2 Random Number Generator Functions
  104. EVP_RAND_instantiate() processes any parameters in I<params> and
  105. then instantiates the RAND I<ctx> with a minimum security strength
  106. of <strength> and personalisation string I<pstr> of length <pstr_len>.
  107. If I<prediction_resistance> is specified, fresh entropy from a live source
  108. will be sought. This call operates as per NIST SP 800-90A and SP 800-90C.
  109. EVP_RAND_uninstantiate() uninstantiates the RAND I<ctx> as per
  110. NIST SP 800-90A and SP 800-90C. Subsequent to this call, the RAND cannot
  111. be used to generate bytes. It can only be freed or instantiated again.
  112. EVP_RAND_generate() produces random bytes from the RAND I<ctx> with the
  113. additional input I<addin> of length I<addin_len>. The bytes
  114. produced will meet the security I<strength>.
  115. If I<prediction_resistance> is specified, fresh entropy from a live source
  116. will be sought. This call operates as per NIST SP 800-90A and SP 800-90C.
  117. EVP_RAND_reseed() reseeds the RAND with new entropy.
  118. Entropy I<ent> of length I<ent_len> bytes can be supplied as can additional
  119. input I<addin> of length I<addin_len> bytes. In the FIPS provider, both are
  120. treated as additional input as per NIST SP-800-90Ar1, Sections 9.1 and 9.2.
  121. Additional seed material is also drawn from the RAND's parent or the
  122. operating system. If I<prediction_resistance> is specified, fresh entropy
  123. from a live source will be sought. This call operates as per NIST SP 800-90A
  124. and SP 800-90C.
  125. EVP_RAND_nonce() creates a nonce in I<out> of maximum length I<outlen>
  126. bytes from the RAND I<ctx>. The function returns the length of the generated
  127. nonce. If I<out> is NULL, the length is still returned but no generation
  128. takes place. This allows a caller to dynamically allocate a buffer of the
  129. appropriate size.
  130. EVP_RAND_enable_locking() enables locking for the RAND I<ctx> and all of
  131. its parents. After this I<ctx> will operate in a thread safe manner, albeit
  132. more slowly. This function is not itself thread safe if called with the same
  133. I<ctx> from multiple threads. Typically locking should be enabled before a
  134. I<ctx> is shared across multiple threads.
  135. EVP_RAND_get_params() retrieves details about the implementation
  136. I<rand>.
  137. The set of parameters given with I<params> determine exactly what
  138. parameters should be retrieved.
  139. Note that a parameter that is unknown in the underlying context is
  140. simply ignored.
  141. EVP_RAND_CTX_get_params() retrieves chosen parameters, given the
  142. context I<ctx> and its underlying context.
  143. The set of parameters given with I<params> determine exactly what
  144. parameters should be retrieved.
  145. Note that a parameter that is unknown in the underlying context is
  146. simply ignored.
  147. EVP_RAND_CTX_set_params() passes chosen parameters to the underlying
  148. context, given a context I<ctx>.
  149. The set of parameters given with I<params> determine exactly what
  150. parameters are passed down.
  151. Note that a parameter that is unknown in the underlying context is
  152. simply ignored.
  153. Also, what happens when a needed parameter isn't passed down is
  154. defined by the implementation.
  155. EVP_RAND_gettable_params() returns an B<OSSL_PARAM> array that describes
  156. the retrievable and settable parameters. EVP_RAND_gettable_params() returns
  157. parameters that can be used with EVP_RAND_get_params(). See L<OSSL_PARAM(3)>
  158. for the use of B<OSSL_PARAM> as a parameter descriptor.
  159. EVP_RAND_gettable_ctx_params() and EVP_RAND_CTX_gettable_params() return
  160. constant B<OSSL_PARAM> arrays that describe the retrievable parameters that
  161. can be used with EVP_RAND_CTX_get_params(). EVP_RAND_gettable_ctx_params()
  162. returns the parameters that can be retrieved from the algorithm, whereas
  163. EVP_RAND_CTX_gettable_params() returns the parameters that can be retrieved
  164. in the context's current state. See L<OSSL_PARAM(3)> for the use of
  165. B<OSSL_PARAM> as a parameter descriptor.
  166. EVP_RAND_settable_ctx_params() and EVP_RAND_CTX_settable_params() return
  167. constant B<OSSL_PARAM> arrays that describe the settable parameters that
  168. can be used with EVP_RAND_CTX_set_params(). EVP_RAND_settable_ctx_params()
  169. returns the parameters that can be retrieved from the algorithm, whereas
  170. EVP_RAND_CTX_settable_params() returns the parameters that can be retrieved
  171. in the context's current state. See L<OSSL_PARAM(3)> for the use of
  172. B<OSSL_PARAM> as a parameter descriptor.
  173. =head2 Information functions
  174. EVP_RAND_get_strength() returns the security strength of the RAND I<ctx>.
  175. EVP_RAND_get_state() returns the current state of the RAND I<ctx>.
  176. States defined by the OpenSSL RNGs are:
  177. =over 4
  178. =item *
  179. EVP_RAND_STATE_UNINITIALISED: this RNG is currently uninitialised.
  180. The instantiate call will change this to the ready state.
  181. =item *
  182. EVP_RAND_STATE_READY: this RNG is currently ready to generate output.
  183. =item *
  184. EVP_RAND_STATE_ERROR: this RNG is in an error state.
  185. =back
  186. EVP_RAND_is_a() returns 1 if I<rand> is an implementation of an
  187. algorithm that's identifiable with I<name>, otherwise 0.
  188. EVP_RAND_get0_provider() returns the provider that holds the implementation
  189. of the given I<rand>.
  190. EVP_RAND_do_all_provided() traverses all RAND implemented by all activated
  191. providers in the given library context I<libctx>, and for each of the
  192. implementations, calls the given function I<fn> with the implementation method
  193. and the given I<arg> as argument.
  194. EVP_RAND_get0_name() returns the canonical name of I<rand>.
  195. EVP_RAND_names_do_all() traverses all names for I<rand>, and calls
  196. I<fn> with each name and I<data>.
  197. EVP_RAND_get0_description() returns a description of the rand, meant for
  198. display and human consumption. The description is at the discretion of
  199. the rand implementation.
  200. EVP_RAND_verify_zeroization() confirms if the internal DRBG state is
  201. currently zeroed. This is used by the FIPS provider to support the mandatory
  202. self tests.
  203. =head1 PARAMETERS
  204. The standard parameter names are:
  205. =over 4
  206. =item "state" (B<OSSL_RAND_PARAM_STATE>) <integer>
  207. Returns the state of the random number generator.
  208. =item "strength" (B<OSSL_RAND_PARAM_STRENGTH>) <unsigned integer>
  209. Returns the bit strength of the random number generator.
  210. =back
  211. For rands that are also deterministic random bit generators (DRBGs), these
  212. additional parameters are recognised. Not all
  213. parameters are relevant to, or are understood by all DRBG rands:
  214. =over 4
  215. =item "reseed_requests" (B<OSSL_DRBG_PARAM_RESEED_REQUESTS>) <unsigned integer>
  216. Reads or set the number of generate requests before reseeding the
  217. associated RAND ctx.
  218. =item "reseed_time_interval" (B<OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL>) <integer>
  219. Reads or set the number of elapsed seconds before reseeding the
  220. associated RAND ctx.
  221. =item "max_request" (B<OSSL_DRBG_PARAM_RESEED_REQUESTS>) <unsigned integer>
  222. Specifies the maximum number of bytes that can be generated in a single
  223. call to OSSL_FUNC_rand_generate.
  224. =item "min_entropylen" (B<OSSL_DRBG_PARAM_MIN_ENTROPYLEN>) <unsigned integer>
  225. =item "max_entropylen" (B<OSSL_DRBG_PARAM_MAX_ENTROPYLEN>) <unsigned integer>
  226. Specify the minimum and maximum number of bytes of random material that
  227. can be used to seed the DRBG.
  228. =item "min_noncelen" (B<OSSL_DRBG_PARAM_MIN_NONCELEN>) <unsigned integer>
  229. =item "max_noncelen" (B<OSSL_DRBG_PARAM_MAX_NONCELEN>) <unsigned integer>
  230. Specify the minimum and maximum number of bytes of nonce that can be used to
  231. seed the DRBG.
  232. =item "max_perslen" (B<OSSL_DRBG_PARAM_MAX_PERSLEN>) <unsigned integer>
  233. =item "max_adinlen" (B<OSSL_DRBG_PARAM_MAX_ADINLEN>) <unsigned integer>
  234. Specify the minimum and maximum number of bytes of personalisation string
  235. that can be used with the DRBG.
  236. =item "reseed_counter" (B<OSSL_DRBG_PARAM_RESEED_COUNTER>) <unsigned integer>
  237. Specifies the number of times the DRBG has been seeded or reseeded.
  238. =item "properties" (B<OSSL_RAND_PARAM_PROPERTIES>) <UTF8 string>
  239. =item "mac" (B<OSSL_RAND_PARAM_MAC>) <UTF8 string>
  240. =item "digest" (B<OSSL_RAND_PARAM_DIGEST>) <UTF8 string>
  241. =item "cipher" (B<OSSL_RAND_PARAM_CIPHER>) <UTF8 string>
  242. For RAND implementations that use an underlying computation MAC, digest or
  243. cipher, these parameters set what the algorithm should be.
  244. The value is always the name of the intended algorithm,
  245. or the properties in the case of B<OSSL_RAND_PARAM_PROPERTIES>.
  246. =back
  247. =head1 NOTES
  248. An B<EVP_RAND_CTX> needs to have locking enabled if it acts as the parent of
  249. more than one child and the children can be accessed concurrently. This must
  250. be done by explicitly calling EVP_RAND_enable_locking().
  251. The RAND life-cycle is described in L<life_cycle-rand(7)>. In the future,
  252. the transitions described there will be enforced. When this is done, it will
  253. not be considered a breaking change to the API.
  254. =head1 RETURN VALUES
  255. EVP_RAND_fetch() returns a pointer to a newly fetched B<EVP_RAND>, or
  256. NULL if allocation failed.
  257. EVP_RAND_get0_provider() returns a pointer to the provider for the RAND, or
  258. NULL on error.
  259. EVP_RAND_CTX_get0_rand() returns a pointer to the B<EVP_RAND> associated
  260. with the context.
  261. EVP_RAND_get0_name() returns the name of the random number generation
  262. algorithm.
  263. EVP_RAND_up_ref() returns 1 on success, 0 on error.
  264. EVP_RAND_names_do_all() returns 1 if the callback was called for all names. A
  265. return value of 0 means that the callback was not called for any names.
  266. EVP_RAND_CTX_new() returns either the newly allocated
  267. B<EVP_RAND_CTX> structure or NULL if an error occurred.
  268. EVP_RAND_CTX_free() does not return a value.
  269. EVP_RAND_nonce() returns the length of the nonce.
  270. EVP_RAND_get_strength() returns the strength of the random number generator
  271. in bits.
  272. EVP_RAND_gettable_params(), EVP_RAND_gettable_ctx_params() and
  273. EVP_RAND_settable_ctx_params() return an array of OSSL_PARAMs.
  274. EVP_RAND_verify_zeroization() returns 1 if the internal DRBG state is
  275. currently zeroed, and 0 if not.
  276. The remaining functions return 1 for success and 0 or a negative value for
  277. failure.
  278. =head1 SEE ALSO
  279. L<RAND_bytes(3)>,
  280. L<EVP_RAND-CTR-DRBG(7)>,
  281. L<EVP_RAND-HASH-DRBG(7)>,
  282. L<EVP_RAND-HMAC-DRBG(7)>,
  283. L<EVP_RAND-TEST-RAND(7)>,
  284. L<provider-rand(7)>,
  285. L<life_cycle-rand(7)>
  286. =head1 HISTORY
  287. This functionality was added to OpenSSL 3.0.
  288. =head1 COPYRIGHT
  289. Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.
  290. Licensed under the Apache License 2.0 (the "License"). You may not use
  291. this file except in compliance with the License. You can obtain a copy
  292. in the file LICENSE in the source distribution or at
  293. L<https://www.openssl.org/source/license.html>.
  294. =cut