123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734 |
- /*
- * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
- * Copyright (c) 2015, CloudFlare, Inc.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- *
- * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
- * (1) Intel Corporation, Israel Development Center, Haifa, Israel
- * (2) University of Haifa, Israel
- * (3) CloudFlare, Inc.
- *
- * Reference:
- * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
- * 256 Bit Primes"
- */
- #include <string.h>
- #include "internal/cryptlib.h"
- #include "crypto/bn.h"
- #include "ec_local.h"
- #include "internal/refcount.h"
- #if BN_BITS2 != 64
- # define TOBN(hi,lo) lo,hi
- #else
- # define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo)
- #endif
- #if defined(__GNUC__)
- # define ALIGN32 __attribute((aligned(32)))
- #elif defined(_MSC_VER)
- # define ALIGN32 __declspec(align(32))
- #else
- # define ALIGN32
- #endif
- #define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N)
- #define P256_LIMBS (256/BN_BITS2)
- typedef unsigned short u16;
- typedef struct {
- BN_ULONG X[P256_LIMBS];
- BN_ULONG Y[P256_LIMBS];
- BN_ULONG Z[P256_LIMBS];
- } P256_POINT;
- typedef struct {
- BN_ULONG X[P256_LIMBS];
- BN_ULONG Y[P256_LIMBS];
- } P256_POINT_AFFINE;
- typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
- /* structure for precomputed multiples of the generator */
- struct nistz256_pre_comp_st {
- const EC_GROUP *group; /* Parent EC_GROUP object */
- size_t w; /* Window size */
- /*
- * Constant time access to the X and Y coordinates of the pre-computed,
- * generator multiplies, in the Montgomery domain. Pre-calculated
- * multiplies are stored in affine form.
- */
- PRECOMP256_ROW *precomp;
- void *precomp_storage;
- CRYPTO_REF_COUNT references;
- CRYPTO_RWLOCK *lock;
- };
- /* Functions implemented in assembly */
- /*
- * Most of below mentioned functions *preserve* the property of inputs
- * being fully reduced, i.e. being in [0, modulus) range. Simply put if
- * inputs are fully reduced, then output is too. Note that reverse is
- * not true, in sense that given partially reduced inputs output can be
- * either, not unlikely reduced. And "most" in first sentence refers to
- * the fact that given the calculations flow one can tolerate that
- * addition, 1st function below, produces partially reduced result *if*
- * multiplications by 2 and 3, which customarily use addition, fully
- * reduce it. This effectively gives two options: a) addition produces
- * fully reduced result [as long as inputs are, just like remaining
- * functions]; b) addition is allowed to produce partially reduced
- * result, but multiplications by 2 and 3 perform additional reduction
- * step. Choice between the two can be platform-specific, but it was a)
- * in all cases so far...
- */
- /* Modular add: res = a+b mod P */
- void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS]);
- /* Modular mul by 2: res = 2*a mod P */
- void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS]);
- /* Modular mul by 3: res = 3*a mod P */
- void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS]);
- /* Modular div by 2: res = a/2 mod P */
- void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS]);
- /* Modular sub: res = a-b mod P */
- void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS]);
- /* Modular neg: res = -a mod P */
- void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
- /* Montgomery mul: res = a*b*2^-256 mod P */
- void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS]);
- /* Montgomery sqr: res = a*a*2^-256 mod P */
- void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS]);
- /* Convert a number from Montgomery domain, by multiplying with 1 */
- void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG in[P256_LIMBS]);
- /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
- void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG in[P256_LIMBS]);
- /* Functions that perform constant time access to the precomputed tables */
- void ecp_nistz256_scatter_w5(P256_POINT *val,
- const P256_POINT *in_t, int idx);
- void ecp_nistz256_gather_w5(P256_POINT *val,
- const P256_POINT *in_t, int idx);
- void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
- const P256_POINT_AFFINE *in_t, int idx);
- void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
- const P256_POINT_AFFINE *in_t, int idx);
- /* One converted into the Montgomery domain */
- static const BN_ULONG ONE[P256_LIMBS] = {
- TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
- TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
- };
- static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
- /* Precomputed tables for the default generator */
- extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
- /* Recode window to a signed digit, see ecp_nistputil.c for details */
- static unsigned int _booth_recode_w5(unsigned int in)
- {
- unsigned int s, d;
- s = ~((in >> 5) - 1);
- d = (1 << 6) - in - 1;
- d = (d & s) | (in & ~s);
- d = (d >> 1) + (d & 1);
- return (d << 1) + (s & 1);
- }
- static unsigned int _booth_recode_w7(unsigned int in)
- {
- unsigned int s, d;
- s = ~((in >> 7) - 1);
- d = (1 << 8) - in - 1;
- d = (d & s) | (in & ~s);
- d = (d >> 1) + (d & 1);
- return (d << 1) + (s & 1);
- }
- static void copy_conditional(BN_ULONG dst[P256_LIMBS],
- const BN_ULONG src[P256_LIMBS], BN_ULONG move)
- {
- BN_ULONG mask1 = 0-move;
- BN_ULONG mask2 = ~mask1;
- dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
- dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
- dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
- dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
- if (P256_LIMBS == 8) {
- dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
- dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
- dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
- dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
- }
- }
- static BN_ULONG is_zero(BN_ULONG in)
- {
- in |= (0 - in);
- in = ~in;
- in >>= BN_BITS2 - 1;
- return in;
- }
- static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS])
- {
- BN_ULONG res;
- res = a[0] ^ b[0];
- res |= a[1] ^ b[1];
- res |= a[2] ^ b[2];
- res |= a[3] ^ b[3];
- if (P256_LIMBS == 8) {
- res |= a[4] ^ b[4];
- res |= a[5] ^ b[5];
- res |= a[6] ^ b[6];
- res |= a[7] ^ b[7];
- }
- return is_zero(res);
- }
- static BN_ULONG is_one(const BIGNUM *z)
- {
- BN_ULONG res = 0;
- BN_ULONG *a = bn_get_words(z);
- if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
- res = a[0] ^ ONE[0];
- res |= a[1] ^ ONE[1];
- res |= a[2] ^ ONE[2];
- res |= a[3] ^ ONE[3];
- if (P256_LIMBS == 8) {
- res |= a[4] ^ ONE[4];
- res |= a[5] ^ ONE[5];
- res |= a[6] ^ ONE[6];
- /*
- * no check for a[7] (being zero) on 32-bit platforms,
- * because value of "one" takes only 7 limbs.
- */
- }
- res = is_zero(res);
- }
- return res;
- }
- /*
- * For reference, this macro is used only when new ecp_nistz256 assembly
- * module is being developed. For example, configure with
- * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
- * performing simplest arithmetic operations on 256-bit vectors. Then
- * work on implementation of higher-level functions performing point
- * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
- * and never define it again. (The correct macro denoting presence of
- * ecp_nistz256 module is ECP_NISTZ256_ASM.)
- */
- #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
- void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
- void ecp_nistz256_point_add(P256_POINT *r,
- const P256_POINT *a, const P256_POINT *b);
- void ecp_nistz256_point_add_affine(P256_POINT *r,
- const P256_POINT *a,
- const P256_POINT_AFFINE *b);
- #else
- /* Point double: r = 2*a */
- static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
- {
- BN_ULONG S[P256_LIMBS];
- BN_ULONG M[P256_LIMBS];
- BN_ULONG Zsqr[P256_LIMBS];
- BN_ULONG tmp0[P256_LIMBS];
- const BN_ULONG *in_x = a->X;
- const BN_ULONG *in_y = a->Y;
- const BN_ULONG *in_z = a->Z;
- BN_ULONG *res_x = r->X;
- BN_ULONG *res_y = r->Y;
- BN_ULONG *res_z = r->Z;
- ecp_nistz256_mul_by_2(S, in_y);
- ecp_nistz256_sqr_mont(Zsqr, in_z);
- ecp_nistz256_sqr_mont(S, S);
- ecp_nistz256_mul_mont(res_z, in_z, in_y);
- ecp_nistz256_mul_by_2(res_z, res_z);
- ecp_nistz256_add(M, in_x, Zsqr);
- ecp_nistz256_sub(Zsqr, in_x, Zsqr);
- ecp_nistz256_sqr_mont(res_y, S);
- ecp_nistz256_div_by_2(res_y, res_y);
- ecp_nistz256_mul_mont(M, M, Zsqr);
- ecp_nistz256_mul_by_3(M, M);
- ecp_nistz256_mul_mont(S, S, in_x);
- ecp_nistz256_mul_by_2(tmp0, S);
- ecp_nistz256_sqr_mont(res_x, M);
- ecp_nistz256_sub(res_x, res_x, tmp0);
- ecp_nistz256_sub(S, S, res_x);
- ecp_nistz256_mul_mont(S, S, M);
- ecp_nistz256_sub(res_y, S, res_y);
- }
- /* Point addition: r = a+b */
- static void ecp_nistz256_point_add(P256_POINT *r,
- const P256_POINT *a, const P256_POINT *b)
- {
- BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
- BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
- BN_ULONG Z1sqr[P256_LIMBS];
- BN_ULONG Z2sqr[P256_LIMBS];
- BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
- BN_ULONG Hsqr[P256_LIMBS];
- BN_ULONG Rsqr[P256_LIMBS];
- BN_ULONG Hcub[P256_LIMBS];
- BN_ULONG res_x[P256_LIMBS];
- BN_ULONG res_y[P256_LIMBS];
- BN_ULONG res_z[P256_LIMBS];
- BN_ULONG in1infty, in2infty;
- const BN_ULONG *in1_x = a->X;
- const BN_ULONG *in1_y = a->Y;
- const BN_ULONG *in1_z = a->Z;
- const BN_ULONG *in2_x = b->X;
- const BN_ULONG *in2_y = b->Y;
- const BN_ULONG *in2_z = b->Z;
- /*
- * Infinity in encoded as (,,0)
- */
- in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
- if (P256_LIMBS == 8)
- in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
- in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
- if (P256_LIMBS == 8)
- in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
- in1infty = is_zero(in1infty);
- in2infty = is_zero(in2infty);
- ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
- ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
- ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
- ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
- ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
- ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
- ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
- ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
- ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
- ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
- /*
- * The formulae are incorrect if the points are equal so we check for
- * this and do doubling if this happens.
- *
- * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
- * that are bound to the affine coordinates (xi, yi) by the following
- * equations:
- * - xi = Xi / (Zi)^2
- * - y1 = Yi / (Zi)^3
- *
- * For the sake of optimization, the algorithm operates over
- * intermediate variables U1, U2 and S1, S2 that are derived from
- * the projective coordinates:
- * - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
- * - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
- *
- * It is easy to prove that is_equal(U1, U2) implies that the affine
- * x-coordinates are equal, or either point is at infinity.
- * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
- * equal, or either point is at infinity.
- *
- * The special case of either point being the point at infinity (Z1 or Z2
- * is zero), is handled separately later on in this function, so we avoid
- * jumping to point_double here in those special cases.
- *
- * When both points are inverse of each other, we know that the affine
- * x-coordinates are equal, and the y-coordinates have different sign.
- * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
- * will equal 0, thus the result is infinity, if we simply let this
- * function continue normally.
- *
- * We use bitwise operations to avoid potential side-channels introduced by
- * the short-circuiting behaviour of boolean operators.
- */
- if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
- /*
- * This is obviously not constant-time but it should never happen during
- * single point multiplication, so there is no timing leak for ECDH or
- * ECDSA signing.
- */
- ecp_nistz256_point_double(r, a);
- return;
- }
- ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
- ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
- ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
- ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
- ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
- ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
- ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
- ecp_nistz256_sub(res_x, Rsqr, Hsqr);
- ecp_nistz256_sub(res_x, res_x, Hcub);
- ecp_nistz256_sub(res_y, U2, res_x);
- ecp_nistz256_mul_mont(S2, S1, Hcub);
- ecp_nistz256_mul_mont(res_y, R, res_y);
- ecp_nistz256_sub(res_y, res_y, S2);
- copy_conditional(res_x, in2_x, in1infty);
- copy_conditional(res_y, in2_y, in1infty);
- copy_conditional(res_z, in2_z, in1infty);
- copy_conditional(res_x, in1_x, in2infty);
- copy_conditional(res_y, in1_y, in2infty);
- copy_conditional(res_z, in1_z, in2infty);
- memcpy(r->X, res_x, sizeof(res_x));
- memcpy(r->Y, res_y, sizeof(res_y));
- memcpy(r->Z, res_z, sizeof(res_z));
- }
- /* Point addition when b is known to be affine: r = a+b */
- static void ecp_nistz256_point_add_affine(P256_POINT *r,
- const P256_POINT *a,
- const P256_POINT_AFFINE *b)
- {
- BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
- BN_ULONG Z1sqr[P256_LIMBS];
- BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
- BN_ULONG Hsqr[P256_LIMBS];
- BN_ULONG Rsqr[P256_LIMBS];
- BN_ULONG Hcub[P256_LIMBS];
- BN_ULONG res_x[P256_LIMBS];
- BN_ULONG res_y[P256_LIMBS];
- BN_ULONG res_z[P256_LIMBS];
- BN_ULONG in1infty, in2infty;
- const BN_ULONG *in1_x = a->X;
- const BN_ULONG *in1_y = a->Y;
- const BN_ULONG *in1_z = a->Z;
- const BN_ULONG *in2_x = b->X;
- const BN_ULONG *in2_y = b->Y;
- /*
- * Infinity in encoded as (,,0)
- */
- in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
- if (P256_LIMBS == 8)
- in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
- /*
- * In affine representation we encode infinity as (0,0), which is
- * not on the curve, so it is OK
- */
- in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
- in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
- if (P256_LIMBS == 8)
- in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
- in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
- in1infty = is_zero(in1infty);
- in2infty = is_zero(in2infty);
- ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
- ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
- ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
- ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
- ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
- ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
- ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
- ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
- ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
- ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
- ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
- ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
- ecp_nistz256_sub(res_x, Rsqr, Hsqr);
- ecp_nistz256_sub(res_x, res_x, Hcub);
- ecp_nistz256_sub(H, U2, res_x);
- ecp_nistz256_mul_mont(S2, in1_y, Hcub);
- ecp_nistz256_mul_mont(H, H, R);
- ecp_nistz256_sub(res_y, H, S2);
- copy_conditional(res_x, in2_x, in1infty);
- copy_conditional(res_x, in1_x, in2infty);
- copy_conditional(res_y, in2_y, in1infty);
- copy_conditional(res_y, in1_y, in2infty);
- copy_conditional(res_z, ONE, in1infty);
- copy_conditional(res_z, in1_z, in2infty);
- memcpy(r->X, res_x, sizeof(res_x));
- memcpy(r->Y, res_y, sizeof(res_y));
- memcpy(r->Z, res_z, sizeof(res_z));
- }
- #endif
- /* r = in^-1 mod p */
- static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
- const BN_ULONG in[P256_LIMBS])
- {
- /*
- * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
- * ffffffff ffffffff We use FLT and used poly-2 as exponent
- */
- BN_ULONG p2[P256_LIMBS];
- BN_ULONG p4[P256_LIMBS];
- BN_ULONG p8[P256_LIMBS];
- BN_ULONG p16[P256_LIMBS];
- BN_ULONG p32[P256_LIMBS];
- BN_ULONG res[P256_LIMBS];
- int i;
- ecp_nistz256_sqr_mont(res, in);
- ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
- ecp_nistz256_sqr_mont(res, p2);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
- ecp_nistz256_sqr_mont(res, p4);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
- ecp_nistz256_sqr_mont(res, p8);
- for (i = 0; i < 7; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
- ecp_nistz256_sqr_mont(res, p16);
- for (i = 0; i < 15; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
- ecp_nistz256_sqr_mont(res, p32);
- for (i = 0; i < 31; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, in);
- for (i = 0; i < 32 * 4; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p32);
- for (i = 0; i < 32; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p32);
- for (i = 0; i < 16; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p16);
- for (i = 0; i < 8; i++)
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p8);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p4);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p2);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, in);
- memcpy(r, res, sizeof(res));
- }
- /*
- * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
- * returns one if it fits. Otherwise it returns zero.
- */
- __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
- const BIGNUM *in)
- {
- return bn_copy_words(out, in, P256_LIMBS);
- }
- /* r = sum(scalar[i]*point[i]) */
- __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
- P256_POINT *r,
- const BIGNUM **scalar,
- const EC_POINT **point,
- size_t num, BN_CTX *ctx)
- {
- size_t i;
- int j, ret = 0;
- unsigned int idx;
- unsigned char (*p_str)[33] = NULL;
- const unsigned int window_size = 5;
- const unsigned int mask = (1 << (window_size + 1)) - 1;
- unsigned int wvalue;
- P256_POINT *temp; /* place for 5 temporary points */
- const BIGNUM **scalars = NULL;
- P256_POINT (*table)[16] = NULL;
- void *table_storage = NULL;
- if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
- || (table_storage =
- OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
- || (p_str =
- OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
- || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
- ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- table = (void *)ALIGNPTR(table_storage, 64);
- temp = (P256_POINT *)(table + num);
- for (i = 0; i < num; i++) {
- P256_POINT *row = table[i];
- /* This is an unusual input, we don't guarantee constant-timeness. */
- if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
- BIGNUM *mod;
- if ((mod = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
- ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
- goto err;
- }
- scalars[i] = mod;
- } else
- scalars[i] = scalar[i];
- for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
- BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
- p_str[i][j + 0] = (unsigned char)d;
- p_str[i][j + 1] = (unsigned char)(d >> 8);
- p_str[i][j + 2] = (unsigned char)(d >> 16);
- p_str[i][j + 3] = (unsigned char)(d >>= 24);
- if (BN_BYTES == 8) {
- d >>= 8;
- p_str[i][j + 4] = (unsigned char)d;
- p_str[i][j + 5] = (unsigned char)(d >> 8);
- p_str[i][j + 6] = (unsigned char)(d >> 16);
- p_str[i][j + 7] = (unsigned char)(d >> 24);
- }
- }
- for (; j < 33; j++)
- p_str[i][j] = 0;
- if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
- || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
- || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
- ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
- EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- /*
- * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
- * is not stored. All other values are actually stored with an offset
- * of -1 in table.
- */
- ecp_nistz256_scatter_w5 (row, &temp[0], 1);
- ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */
- ecp_nistz256_scatter_w5 (row, &temp[1], 2);
- ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */
- ecp_nistz256_scatter_w5 (row, &temp[2], 3);
- ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */
- ecp_nistz256_scatter_w5 (row, &temp[1], 4);
- ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */
- ecp_nistz256_scatter_w5 (row, &temp[2], 6);
- ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */
- ecp_nistz256_scatter_w5 (row, &temp[3], 5);
- ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */
- ecp_nistz256_scatter_w5 (row, &temp[4], 7);
- ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */
- ecp_nistz256_scatter_w5 (row, &temp[1], 8);
- ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
- ecp_nistz256_scatter_w5 (row, &temp[2], 12);
- ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
- ecp_nistz256_scatter_w5 (row, &temp[3], 10);
- ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
- ecp_nistz256_scatter_w5 (row, &temp[4], 14);
- ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/
- ecp_nistz256_scatter_w5 (row, &temp[2], 13);
- ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/
- ecp_nistz256_scatter_w5 (row, &temp[3], 11);
- ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/
- ecp_nistz256_scatter_w5 (row, &temp[4], 15);
- ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */
- ecp_nistz256_scatter_w5 (row, &temp[2], 9);
- ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
- ecp_nistz256_scatter_w5 (row, &temp[1], 16);
- }
- idx = 255;
- wvalue = p_str[0][(idx - 1) / 8];
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- /*
- * We gather to temp[0], because we know it's position relative
- * to table
- */
- ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
- memcpy(r, &temp[0], sizeof(temp[0]));
- while (idx >= 5) {
- for (i = (idx == 255 ? 1 : 0); i < num; i++) {
- unsigned int off = (idx - 1) / 8;
- wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- wvalue = _booth_recode_w5(wvalue);
- ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
- ecp_nistz256_neg(temp[1].Y, temp[0].Y);
- copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
- ecp_nistz256_point_add(r, r, &temp[0]);
- }
- idx -= window_size;
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- }
- /* Final window */
- for (i = 0; i < num; i++) {
- wvalue = p_str[i][0];
- wvalue = (wvalue << 1) & mask;
- wvalue = _booth_recode_w5(wvalue);
- ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
- ecp_nistz256_neg(temp[1].Y, temp[0].Y);
- copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
- ecp_nistz256_point_add(r, r, &temp[0]);
- }
- ret = 1;
- err:
- OPENSSL_free(table_storage);
- OPENSSL_free(p_str);
- OPENSSL_free(scalars);
- return ret;
- }
- /* Coordinates of G, for which we have precomputed tables */
- static const BN_ULONG def_xG[P256_LIMBS] = {
- TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
- TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
- };
- static const BN_ULONG def_yG[P256_LIMBS] = {
- TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
- TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
- };
- /*
- * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
- * generator.
- */
- static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
- {
- return (bn_get_top(generator->X) == P256_LIMBS) &&
- (bn_get_top(generator->Y) == P256_LIMBS) &&
- is_equal(bn_get_words(generator->X), def_xG) &&
- is_equal(bn_get_words(generator->Y), def_yG) &&
- is_one(generator->Z);
- }
- __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
- {
- /*
- * We precompute a table for a Booth encoded exponent (wNAF) based
- * computation. Each table holds 64 values for safe access, with an
- * implicit value of infinity at index zero. We use window of size 7, and
- * therefore require ceil(256/7) = 37 tables.
- */
- const BIGNUM *order;
- EC_POINT *P = NULL, *T = NULL;
- const EC_POINT *generator;
- NISTZ256_PRE_COMP *pre_comp;
- BN_CTX *new_ctx = NULL;
- int i, j, k, ret = 0;
- size_t w;
- PRECOMP256_ROW *preComputedTable = NULL;
- unsigned char *precomp_storage = NULL;
- /* if there is an old NISTZ256_PRE_COMP object, throw it away */
- EC_pre_comp_free(group);
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
- return 0;
- }
- if (ecp_nistz256_is_affine_G(generator)) {
- /*
- * No need to calculate tables for the standard generator because we
- * have them statically.
- */
- return 1;
- }
- if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
- return 0;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- goto err;
- }
- BN_CTX_start(ctx);
- order = EC_GROUP_get0_order(group);
- if (order == NULL)
- goto err;
- if (BN_is_zero(order)) {
- ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
- goto err;
- }
- w = 7;
- if ((precomp_storage =
- OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
- ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
- P = EC_POINT_new(group);
- T = EC_POINT_new(group);
- if (P == NULL || T == NULL)
- goto err;
- /*
- * The zero entry is implicitly infinity, and we skip it, storing other
- * values with -1 offset.
- */
- if (!EC_POINT_copy(T, generator))
- goto err;
- for (k = 0; k < 64; k++) {
- if (!EC_POINT_copy(P, T))
- goto err;
- for (j = 0; j < 37; j++) {
- P256_POINT_AFFINE temp;
- /*
- * It would be faster to use EC_POINTs_make_affine and
- * make multiple points affine at the same time.
- */
- if (!EC_POINT_make_affine(group, P, ctx))
- goto err;
- if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
- !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
- ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
- EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
- for (i = 0; i < 7; i++) {
- if (!EC_POINT_dbl(group, P, P, ctx))
- goto err;
- }
- }
- if (!EC_POINT_add(group, T, T, generator, ctx))
- goto err;
- }
- pre_comp->group = group;
- pre_comp->w = w;
- pre_comp->precomp = preComputedTable;
- pre_comp->precomp_storage = precomp_storage;
- precomp_storage = NULL;
- SETPRECOMP(group, nistz256, pre_comp);
- pre_comp = NULL;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- EC_nistz256_pre_comp_free(pre_comp);
- OPENSSL_free(precomp_storage);
- EC_POINT_free(P);
- EC_POINT_free(T);
- return ret;
- }
- /*
- * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
- * code processing 4 points in parallel, corresponding serial operation
- * is several times slower, because it uses 29x29=58-bit multiplication
- * as opposite to 64x64=128-bit in integer-only scalar case. As result
- * it doesn't provide *significant* performance improvement. Note that
- * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
- * you'd need to compile even asm/ecp_nistz256-avx.pl module.
- */
- #if defined(ECP_NISTZ256_AVX2)
- # if !(defined(__x86_64) || defined(__x86_64__) || \
- defined(_M_AMD64) || defined(_M_X64)) || \
- !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
- # undef ECP_NISTZ256_AVX2
- # else
- /* Constant time access, loading four values, from four consecutive tables */
- void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
- int index0, int index1, int index2,
- int index3);
- void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
- void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
- void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
- const void *Bx4);
- void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
- const void *Bx4);
- void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
- void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
- void ecp_nistz256_avx2_set1(void *RESULTx4);
- int ecp_nistz_avx2_eligible(void);
- static void booth_recode_w7(unsigned char *sign,
- unsigned char *digit, unsigned char in)
- {
- unsigned char s, d;
- s = ~((in >> 7) - 1);
- d = (1 << 8) - in - 1;
- d = (d & s) | (in & ~s);
- d = (d >> 1) + (d & 1);
- *sign = s & 1;
- *digit = d;
- }
- /*
- * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
- * precomputed table. It does 4 affine point additions in parallel,
- * significantly speeding up point multiplication for a fixed value.
- */
- static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
- unsigned char p_str[33],
- const P256_POINT_AFFINE(*preComputedTable)[64])
- {
- const unsigned int window_size = 7;
- const unsigned int mask = (1 << (window_size + 1)) - 1;
- unsigned int wvalue;
- /* Using 4 windows at a time */
- unsigned char sign0, digit0;
- unsigned char sign1, digit1;
- unsigned char sign2, digit2;
- unsigned char sign3, digit3;
- unsigned int idx = 0;
- BN_ULONG tmp[P256_LIMBS];
- int i;
- ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
- ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
- ALIGN32 P256_POINT_AFFINE point_arr[4];
- ALIGN32 P256_POINT res_point_arr[4];
- /* Initial four windows */
- wvalue = *((u16 *) & p_str[0]);
- wvalue = (wvalue << 1) & mask;
- idx += window_size;
- booth_recode_w7(&sign0, &digit0, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign1, &digit1, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign2, &digit2, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign3, &digit3, wvalue);
- ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
- digit0, digit1, digit2, digit3);
- ecp_nistz256_neg(tmp, point_arr[0].Y);
- copy_conditional(point_arr[0].Y, tmp, sign0);
- ecp_nistz256_neg(tmp, point_arr[1].Y);
- copy_conditional(point_arr[1].Y, tmp, sign1);
- ecp_nistz256_neg(tmp, point_arr[2].Y);
- copy_conditional(point_arr[2].Y, tmp, sign2);
- ecp_nistz256_neg(tmp, point_arr[3].Y);
- copy_conditional(point_arr[3].Y, tmp, sign3);
- ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
- ecp_nistz256_avx2_to_mont(aX4, aX4);
- ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
- ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign0, &digit0, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign1, &digit1, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign2, &digit2, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign3, &digit3, wvalue);
- ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
- digit0, digit1, digit2, digit3);
- ecp_nistz256_neg(tmp, point_arr[0].Y);
- copy_conditional(point_arr[0].Y, tmp, sign0);
- ecp_nistz256_neg(tmp, point_arr[1].Y);
- copy_conditional(point_arr[1].Y, tmp, sign1);
- ecp_nistz256_neg(tmp, point_arr[2].Y);
- copy_conditional(point_arr[2].Y, tmp, sign2);
- ecp_nistz256_neg(tmp, point_arr[3].Y);
- copy_conditional(point_arr[3].Y, tmp, sign3);
- ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
- ecp_nistz256_avx2_to_mont(bX4, bX4);
- ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
- /* Optimized when both inputs are affine */
- ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
- for (i = 2; i < 9; i++) {
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign0, &digit0, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign1, &digit1, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign2, &digit2, wvalue);
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- booth_recode_w7(&sign3, &digit3, wvalue);
- ecp_nistz256_avx2_multi_gather_w7(point_arr,
- preComputedTable[4 * i],
- digit0, digit1, digit2, digit3);
- ecp_nistz256_neg(tmp, point_arr[0].Y);
- copy_conditional(point_arr[0].Y, tmp, sign0);
- ecp_nistz256_neg(tmp, point_arr[1].Y);
- copy_conditional(point_arr[1].Y, tmp, sign1);
- ecp_nistz256_neg(tmp, point_arr[2].Y);
- copy_conditional(point_arr[2].Y, tmp, sign2);
- ecp_nistz256_neg(tmp, point_arr[3].Y);
- copy_conditional(point_arr[3].Y, tmp, sign3);
- ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
- ecp_nistz256_avx2_to_mont(bX4, bX4);
- ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
- ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
- }
- ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
- ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
- ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
- ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
- /* Last window is performed serially */
- wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- booth_recode_w7(&sign0, &digit0, wvalue);
- ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
- preComputedTable[36], digit0);
- ecp_nistz256_neg(tmp, r->Y);
- copy_conditional(r->Y, tmp, sign0);
- memcpy(r->Z, ONE, sizeof(ONE));
- /* Sum the four windows */
- ecp_nistz256_point_add(r, r, &res_point_arr[0]);
- ecp_nistz256_point_add(r, r, &res_point_arr[1]);
- ecp_nistz256_point_add(r, r, &res_point_arr[2]);
- ecp_nistz256_point_add(r, r, &res_point_arr[3]);
- }
- # endif
- #endif
- __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
- const P256_POINT_AFFINE *in,
- BN_CTX *ctx)
- {
- int ret = 0;
- if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
- && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
- && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
- out->Z_is_one = 1;
- return ret;
- }
- /* r = scalar*G + sum(scalars[i]*points[i]) */
- __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
- EC_POINT *r,
- const BIGNUM *scalar,
- size_t num,
- const EC_POINT *points[],
- const BIGNUM *scalars[], BN_CTX *ctx)
- {
- int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
- unsigned char p_str[33] = { 0 };
- const PRECOMP256_ROW *preComputedTable = NULL;
- const NISTZ256_PRE_COMP *pre_comp = NULL;
- const EC_POINT *generator = NULL;
- const BIGNUM **new_scalars = NULL;
- const EC_POINT **new_points = NULL;
- unsigned int idx = 0;
- const unsigned int window_size = 7;
- const unsigned int mask = (1 << (window_size + 1)) - 1;
- unsigned int wvalue;
- ALIGN32 union {
- P256_POINT p;
- P256_POINT_AFFINE a;
- } t, p;
- BIGNUM *tmp_scalar;
- if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
- ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- BN_CTX_start(ctx);
- if (scalar) {
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
- goto err;
- }
- /* look if we can use precomputed multiples of generator */
- pre_comp = group->pre_comp.nistz256;
- if (pre_comp) {
- /*
- * If there is a precomputed table for the generator, check that
- * it was generated with the same generator.
- */
- EC_POINT *pre_comp_generator = EC_POINT_new(group);
- if (pre_comp_generator == NULL)
- goto err;
- ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
- if (!ecp_nistz256_set_from_affine(pre_comp_generator,
- group, &p.a, ctx)) {
- EC_POINT_free(pre_comp_generator);
- goto err;
- }
- if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
- preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
- EC_POINT_free(pre_comp_generator);
- }
- if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
- /*
- * If there is no precomputed data, but the generator is the
- * default, a hardcoded table of precomputed data is used. This
- * is because applications, such as Apache, do not use
- * EC_KEY_precompute_mult.
- */
- preComputedTable = ecp_nistz256_precomputed;
- }
- if (preComputedTable) {
- if ((BN_num_bits(scalar) > 256)
- || BN_is_negative(scalar)) {
- if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
- ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- scalar = tmp_scalar;
- }
- for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
- BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
- p_str[i + 0] = (unsigned char)d;
- p_str[i + 1] = (unsigned char)(d >> 8);
- p_str[i + 2] = (unsigned char)(d >> 16);
- p_str[i + 3] = (unsigned char)(d >>= 24);
- if (BN_BYTES == 8) {
- d >>= 8;
- p_str[i + 4] = (unsigned char)d;
- p_str[i + 5] = (unsigned char)(d >> 8);
- p_str[i + 6] = (unsigned char)(d >> 16);
- p_str[i + 7] = (unsigned char)(d >> 24);
- }
- }
- for (; i < 33; i++)
- p_str[i] = 0;
- #if defined(ECP_NISTZ256_AVX2)
- if (ecp_nistz_avx2_eligible()) {
- ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
- } else
- #endif
- {
- BN_ULONG infty;
- /* First window */
- wvalue = (p_str[0] << 1) & mask;
- idx += window_size;
- wvalue = _booth_recode_w7(wvalue);
- ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
- wvalue >> 1);
- ecp_nistz256_neg(p.p.Z, p.p.Y);
- copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
- /*
- * Since affine infinity is encoded as (0,0) and
- * Jacobian ias (,,0), we need to harmonize them
- * by assigning "one" or zero to Z.
- */
- infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
- p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
- if (P256_LIMBS == 8)
- infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
- p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
- infty = 0 - is_zero(infty);
- infty = ~infty;
- p.p.Z[0] = ONE[0] & infty;
- p.p.Z[1] = ONE[1] & infty;
- p.p.Z[2] = ONE[2] & infty;
- p.p.Z[3] = ONE[3] & infty;
- if (P256_LIMBS == 8) {
- p.p.Z[4] = ONE[4] & infty;
- p.p.Z[5] = ONE[5] & infty;
- p.p.Z[6] = ONE[6] & infty;
- p.p.Z[7] = ONE[7] & infty;
- }
- for (i = 1; i < 37; i++) {
- unsigned int off = (idx - 1) / 8;
- wvalue = p_str[off] | p_str[off + 1] << 8;
- wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
- idx += window_size;
- wvalue = _booth_recode_w7(wvalue);
- ecp_nistz256_gather_w7(&t.a,
- preComputedTable[i], wvalue >> 1);
- ecp_nistz256_neg(t.p.Z, t.a.Y);
- copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
- ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
- }
- }
- } else {
- p_is_infinity = 1;
- no_precomp_for_generator = 1;
- }
- } else
- p_is_infinity = 1;
- if (no_precomp_for_generator) {
- /*
- * Without a precomputed table for the generator, it has to be
- * handled like a normal point.
- */
- new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
- if (new_scalars == NULL) {
- ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
- if (new_points == NULL) {
- ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
- new_scalars[num] = scalar;
- memcpy(new_points, points, num * sizeof(EC_POINT *));
- new_points[num] = generator;
- scalars = new_scalars;
- points = new_points;
- num++;
- }
- if (num) {
- P256_POINT *out = &t.p;
- if (p_is_infinity)
- out = &p.p;
- if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
- goto err;
- if (!p_is_infinity)
- ecp_nistz256_point_add(&p.p, &p.p, out);
- }
- /* Not constant-time, but we're only operating on the public output. */
- if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
- !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
- !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
- goto err;
- }
- r->Z_is_one = is_one(r->Z) & 1;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- OPENSSL_free(new_points);
- OPENSSL_free(new_scalars);
- return ret;
- }
- __owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
- {
- BN_ULONG z_inv2[P256_LIMBS];
- BN_ULONG z_inv3[P256_LIMBS];
- BN_ULONG x_aff[P256_LIMBS];
- BN_ULONG y_aff[P256_LIMBS];
- BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
- BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
- !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
- !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
- ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
- return 0;
- }
- ecp_nistz256_mod_inverse(z_inv3, point_z);
- ecp_nistz256_sqr_mont(z_inv2, z_inv3);
- ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
- if (x != NULL) {
- ecp_nistz256_from_mont(x_ret, x_aff);
- if (!bn_set_words(x, x_ret, P256_LIMBS))
- return 0;
- }
- if (y != NULL) {
- ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
- ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
- ecp_nistz256_from_mont(y_ret, y_aff);
- if (!bn_set_words(y, y_ret, P256_LIMBS))
- return 0;
- }
- return 1;
- }
- static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
- {
- NISTZ256_PRE_COMP *ret = NULL;
- if (!group)
- return NULL;
- ret = OPENSSL_zalloc(sizeof(*ret));
- if (ret == NULL) {
- ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- return ret;
- }
- ret->group = group;
- ret->w = 6; /* default */
- ret->references = 1;
- ret->lock = CRYPTO_THREAD_lock_new();
- if (ret->lock == NULL) {
- ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(ret);
- return NULL;
- }
- return ret;
- }
- NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
- {
- int i;
- if (p != NULL)
- CRYPTO_UP_REF(&p->references, &i, p->lock);
- return p;
- }
- void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
- {
- int i;
- if (pre == NULL)
- return;
- CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
- REF_PRINT_COUNT("EC_nistz256", pre);
- if (i > 0)
- return;
- REF_ASSERT_ISNT(i < 0);
- OPENSSL_free(pre->precomp_storage);
- CRYPTO_THREAD_lock_free(pre->lock);
- OPENSSL_free(pre);
- }
- static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
- {
- /* There is a hard-coded table for the default generator. */
- const EC_POINT *generator = EC_GROUP_get0_generator(group);
- if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
- /* There is a hard-coded table for the default generator. */
- return 1;
- }
- return HAVEPRECOMP(group, nistz256);
- }
- #if defined(__x86_64) || defined(__x86_64__) || \
- defined(_M_AMD64) || defined(_M_X64) || \
- defined(__powerpc64__) || defined(_ARCH_PP64) || \
- defined(__aarch64__)
- /*
- * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
- */
- void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- const BN_ULONG b[P256_LIMBS]);
- void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
- const BN_ULONG a[P256_LIMBS],
- BN_ULONG rep);
- static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *x, BN_CTX *ctx)
- {
- /* RR = 2^512 mod ord(p256) */
- static const BN_ULONG RR[P256_LIMBS] = {
- TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
- TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
- };
- /* The constant 1 (unlike ONE that is one in Montgomery representation) */
- static const BN_ULONG one[P256_LIMBS] = {
- TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
- };
- /*
- * We don't use entry 0 in the table, so we omit it and address
- * with -1 offset.
- */
- BN_ULONG table[15][P256_LIMBS];
- BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
- int i, ret = 0;
- enum {
- i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111,
- i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32
- };
- /*
- * Catch allocation failure early.
- */
- if (bn_wexpand(r, P256_LIMBS) == NULL) {
- ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
- goto err;
- }
- if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
- BIGNUM *tmp;
- if ((tmp = BN_CTX_get(ctx)) == NULL
- || !BN_nnmod(tmp, x, group->order, ctx)) {
- ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
- goto err;
- }
- x = tmp;
- }
- if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
- ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
- goto err;
- }
- ecp_nistz256_ord_mul_mont(table[0], t, RR);
- #if 0
- /*
- * Original sparse-then-fixed-window algorithm, retained for reference.
- */
- for (i = 2; i < 16; i += 2) {
- ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
- ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
- }
- /*
- * The top 128bit of the exponent are highly redudndant, so we
- * perform an optimized flow
- */
- ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */
- ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */
- ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */
- ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */
- ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */
- ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */
- ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */
- ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */
- ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */
- ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */
- /*
- * The bottom 128 bit of the exponent are processed with fixed 4-bit window
- */
- for(i = 0; i < 32; i++) {
- /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
- * split into nibbles */
- static const unsigned char expLo[32] = {
- 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
- 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
- };
- ecp_nistz256_ord_sqr_mont(out, out, 4);
- /* The exponent is public, no need in constant-time access */
- ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
- }
- #else
- /*
- * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
- *
- * Even though this code path spares 12 squarings, 4.5%, and 13
- * multiplications, 25%, on grand scale sign operation is not that
- * much faster, not more that 2%...
- */
- /* pre-calculate powers */
- ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
- ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
- ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
- ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
- ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
- ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
- ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
- ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
- ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
- ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
- ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
- ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
- ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
- ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
- ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
- ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
- ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
- /* calculations */
- ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
- ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
- for (i = 0; i < 27; i++) {
- static const struct { unsigned char p, i; } chain[27] = {
- { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
- { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
- { 4, i_101 }, { 3, i_101 }, { 3, i_101 },
- { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
- { 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
- { 5, i_111 }, { 4, i_111 }, { 5, i_111 },
- { 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
- { 2, i_11 }, { 5, i_11 }, { 5, i_11 },
- { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
- };
- ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
- ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
- }
- #endif
- ecp_nistz256_ord_mul_mont(out, out, one);
- /*
- * Can't fail, but check return code to be consistent anyway.
- */
- if (!bn_set_words(r, out, P256_LIMBS))
- goto err;
- ret = 1;
- err:
- return ret;
- }
- #else
- # define ecp_nistz256_inv_mod_ord NULL
- #endif
- const EC_METHOD *EC_GFp_nistz256_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_prime_field,
- ec_GFp_mont_group_init,
- ec_GFp_mont_group_finish,
- ec_GFp_mont_group_clear_finish,
- ec_GFp_mont_group_copy,
- ec_GFp_mont_group_set_curve,
- ec_GFp_simple_group_get_curve,
- ec_GFp_simple_group_get_degree,
- ec_group_simple_order_bits,
- ec_GFp_simple_group_check_discriminant,
- ec_GFp_simple_point_init,
- ec_GFp_simple_point_finish,
- ec_GFp_simple_point_clear_finish,
- ec_GFp_simple_point_copy,
- ec_GFp_simple_point_set_to_infinity,
- ec_GFp_simple_set_Jprojective_coordinates_GFp,
- ec_GFp_simple_get_Jprojective_coordinates_GFp,
- ec_GFp_simple_point_set_affine_coordinates,
- ecp_nistz256_get_affine,
- 0, 0, 0,
- ec_GFp_simple_add,
- ec_GFp_simple_dbl,
- ec_GFp_simple_invert,
- ec_GFp_simple_is_at_infinity,
- ec_GFp_simple_is_on_curve,
- ec_GFp_simple_cmp,
- ec_GFp_simple_make_affine,
- ec_GFp_simple_points_make_affine,
- ecp_nistz256_points_mul, /* mul */
- ecp_nistz256_mult_precompute, /* precompute_mult */
- ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
- ec_GFp_mont_field_mul,
- ec_GFp_mont_field_sqr,
- 0, /* field_div */
- ec_GFp_mont_field_inv,
- ec_GFp_mont_field_encode,
- ec_GFp_mont_field_decode,
- ec_GFp_mont_field_set_to_one,
- ec_key_simple_priv2oct,
- ec_key_simple_oct2priv,
- 0, /* set private */
- ec_key_simple_generate_key,
- ec_key_simple_check_key,
- ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ecdh_simple_compute_key,
- ecdsa_simple_sign_setup,
- ecdsa_simple_sign_sig,
- ecdsa_simple_verify_sig,
- ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
- 0, /* blind_coordinates */
- 0, /* ladder_pre */
- 0, /* ladder_step */
- 0 /* ladder_post */
- };
- return &ret;
- }
|