123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- /*
- * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
- /*
- * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
- * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
- * proof for the original OAEP scheme, which EME-OAEP is based on. A new
- * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
- * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
- * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
- * for the underlying permutation: "partial-one-wayness" instead of
- * one-wayness. For the RSA function, this is an equivalent notion.
- */
- /*
- * RSA low level APIs are deprecated for public use, but still ok for
- * internal use.
- */
- #include "internal/deprecated.h"
- #include "internal/constant_time.h"
- #include <stdio.h>
- #include "internal/cryptlib.h"
- #include <openssl/bn.h>
- #include <openssl/evp.h>
- #include <openssl/rand.h>
- #include <openssl/sha.h>
- #include "rsa_local.h"
- int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
- const unsigned char *from, int flen,
- const unsigned char *param, int plen)
- {
- return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
- param, plen, NULL, NULL);
- }
- /*
- * Perform the padding as per NIST 800-56B 7.2.2.3
- * from (K) is the key material.
- * param (A) is the additional input.
- * Step numbers are included here but not in the constant time inverse below
- * to avoid complicating an already difficult enough function.
- */
- int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx,
- unsigned char *to, int tlen,
- const unsigned char *from, int flen,
- const unsigned char *param,
- int plen, const EVP_MD *md,
- const EVP_MD *mgf1md)
- {
- int rv = 0;
- int i, emlen = tlen - 1;
- unsigned char *db, *seed;
- unsigned char *dbmask = NULL;
- unsigned char seedmask[EVP_MAX_MD_SIZE];
- int mdlen, dbmask_len = 0;
- if (md == NULL) {
- #ifndef FIPS_MODULE
- md = EVP_sha1();
- #else
- ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- #endif
- }
- if (mgf1md == NULL)
- mgf1md = md;
- mdlen = EVP_MD_get_size(md);
- if (mdlen <= 0) {
- ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
- return 0;
- }
- /* step 2b: check KLen > nLen - 2 HLen - 2 */
- if (flen > emlen - 2 * mdlen - 1) {
- ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
- return 0;
- }
- if (emlen < 2 * mdlen + 1) {
- ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
- return 0;
- }
- /* step 3i: EM = 00000000 || maskedMGF || maskedDB */
- to[0] = 0;
- seed = to + 1;
- db = to + mdlen + 1;
- /* step 3a: hash the additional input */
- if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
- goto err;
- /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */
- memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
- /* step 3c: DB = HA || PS || 00000001 || K */
- db[emlen - flen - mdlen - 1] = 0x01;
- memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
- /* step 3d: generate random byte string */
- if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0)
- goto err;
- dbmask_len = emlen - mdlen;
- dbmask = OPENSSL_malloc(dbmask_len);
- if (dbmask == NULL)
- goto err;
- /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */
- if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
- goto err;
- /* step 3f: maskedDB = DB XOR dbMask */
- for (i = 0; i < dbmask_len; i++)
- db[i] ^= dbmask[i];
- /* step 3g: mgfSeed = MGF(maskedDB, HLen) */
- if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
- goto err;
- /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */
- for (i = 0; i < mdlen; i++)
- seed[i] ^= seedmask[i];
- rv = 1;
- err:
- OPENSSL_cleanse(seedmask, sizeof(seedmask));
- OPENSSL_clear_free(dbmask, dbmask_len);
- return rv;
- }
- int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
- const unsigned char *from, int flen,
- const unsigned char *param, int plen,
- const EVP_MD *md, const EVP_MD *mgf1md)
- {
- return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
- param, plen, md, mgf1md);
- }
- int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
- const unsigned char *from, int flen, int num,
- const unsigned char *param, int plen)
- {
- return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
- param, plen, NULL, NULL);
- }
- int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
- const unsigned char *from, int flen,
- int num, const unsigned char *param,
- int plen, const EVP_MD *md,
- const EVP_MD *mgf1md)
- {
- int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
- unsigned int good = 0, found_one_byte, mask;
- const unsigned char *maskedseed, *maskeddb;
- /*
- * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
- * Y || maskedSeed || maskedDB
- */
- unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
- phash[EVP_MAX_MD_SIZE];
- int mdlen;
- if (md == NULL) {
- #ifndef FIPS_MODULE
- md = EVP_sha1();
- #else
- ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
- return -1;
- #endif
- }
- if (mgf1md == NULL)
- mgf1md = md;
- mdlen = EVP_MD_get_size(md);
- if (tlen <= 0 || flen <= 0)
- return -1;
- /*
- * |num| is the length of the modulus; |flen| is the length of the
- * encoded message. Therefore, for any |from| that was obtained by
- * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
- * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
- * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
- * This does not leak any side-channel information.
- */
- if (num < flen || num < 2 * mdlen + 2) {
- ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
- return -1;
- }
- dblen = num - mdlen - 1;
- db = OPENSSL_malloc(dblen);
- if (db == NULL)
- goto cleanup;
- em = OPENSSL_malloc(num);
- if (em == NULL)
- goto cleanup;
- /*
- * Caller is encouraged to pass zero-padded message created with
- * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
- * bounds, it's impossible to have an invariant memory access pattern
- * in case |from| was not zero-padded in advance.
- */
- for (from += flen, em += num, i = 0; i < num; i++) {
- mask = ~constant_time_is_zero(flen);
- flen -= 1 & mask;
- from -= 1 & mask;
- *--em = *from & mask;
- }
- /*
- * The first byte must be zero, however we must not leak if this is
- * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA
- * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
- */
- good = constant_time_is_zero(em[0]);
- maskedseed = em + 1;
- maskeddb = em + 1 + mdlen;
- if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
- goto cleanup;
- for (i = 0; i < mdlen; i++)
- seed[i] ^= maskedseed[i];
- if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
- goto cleanup;
- for (i = 0; i < dblen; i++)
- db[i] ^= maskeddb[i];
- if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
- goto cleanup;
- good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
- found_one_byte = 0;
- for (i = mdlen; i < dblen; i++) {
- /*
- * Padding consists of a number of 0-bytes, followed by a 1.
- */
- unsigned int equals1 = constant_time_eq(db[i], 1);
- unsigned int equals0 = constant_time_is_zero(db[i]);
- one_index = constant_time_select_int(~found_one_byte & equals1,
- i, one_index);
- found_one_byte |= equals1;
- good &= (found_one_byte | equals0);
- }
- good &= found_one_byte;
- /*
- * At this point |good| is zero unless the plaintext was valid,
- * so plaintext-awareness ensures timing side-channels are no longer a
- * concern.
- */
- msg_index = one_index + 1;
- mlen = dblen - msg_index;
- /*
- * For good measure, do this check in constant time as well.
- */
- good &= constant_time_ge(tlen, mlen);
- /*
- * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
- * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
- * Otherwise leave |to| unchanged.
- * Copy the memory back in a way that does not reveal the size of
- * the data being copied via a timing side channel. This requires copying
- * parts of the buffer multiple times based on the bits set in the real
- * length. Clear bits do a non-copy with identical access pattern.
- * The loop below has overall complexity of O(N*log(N)).
- */
- tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
- dblen - mdlen - 1, tlen);
- for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
- mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
- for (i = mdlen + 1; i < dblen - msg_index; i++)
- db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
- }
- for (i = 0; i < tlen; i++) {
- mask = good & constant_time_lt(i, mlen);
- to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
- }
- #ifndef FIPS_MODULE
- /*
- * To avoid chosen ciphertext attacks, the error message should not
- * reveal which kind of decoding error happened.
- *
- * This trick doesn't work in the FIPS provider because libcrypto manages
- * the error stack. Instead we opt not to put an error on the stack at all
- * in case of padding failure in the FIPS provider.
- */
- ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
- err_clear_last_constant_time(1 & good);
- #endif
- cleanup:
- OPENSSL_cleanse(seed, sizeof(seed));
- OPENSSL_clear_free(db, dblen);
- OPENSSL_clear_free(em, num);
- return constant_time_select_int(good, mlen, -1);
- }
- /*
- * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.
- * The variables are named differently to NIST:
- * mask (T) and len (maskLen)are the returned mask.
- * seed (mgfSeed).
- * The range checking steps inm the process are performed outside.
- */
- int PKCS1_MGF1(unsigned char *mask, long len,
- const unsigned char *seed, long seedlen, const EVP_MD *dgst)
- {
- long i, outlen = 0;
- unsigned char cnt[4];
- EVP_MD_CTX *c = EVP_MD_CTX_new();
- unsigned char md[EVP_MAX_MD_SIZE];
- int mdlen;
- int rv = -1;
- if (c == NULL)
- goto err;
- mdlen = EVP_MD_get_size(dgst);
- if (mdlen < 0)
- goto err;
- /* step 4 */
- for (i = 0; outlen < len; i++) {
- /* step 4a: D = I2BS(counter, 4) */
- cnt[0] = (unsigned char)((i >> 24) & 255);
- cnt[1] = (unsigned char)((i >> 16) & 255);
- cnt[2] = (unsigned char)((i >> 8)) & 255;
- cnt[3] = (unsigned char)(i & 255);
- /* step 4b: T =T || hash(mgfSeed || D) */
- if (!EVP_DigestInit_ex(c, dgst, NULL)
- || !EVP_DigestUpdate(c, seed, seedlen)
- || !EVP_DigestUpdate(c, cnt, 4))
- goto err;
- if (outlen + mdlen <= len) {
- if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
- goto err;
- outlen += mdlen;
- } else {
- if (!EVP_DigestFinal_ex(c, md, NULL))
- goto err;
- memcpy(mask + outlen, md, len - outlen);
- outlen = len;
- }
- }
- rv = 0;
- err:
- OPENSSL_cleanse(md, sizeof(md));
- EVP_MD_CTX_free(c);
- return rv;
- }
|