123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646 |
- /*
- * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /*
- * RSA low level APIs are deprecated for public use, but still ok for
- * internal use.
- */
- #include "internal/deprecated.h"
- #include "internal/constant_time.h"
- #include <stdio.h>
- #include <openssl/bn.h>
- #include <openssl/rsa.h>
- #include <openssl/rand.h>
- /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */
- #include <openssl/prov_ssl.h>
- #include <openssl/evp.h>
- #include <openssl/sha.h>
- #include <openssl/hmac.h>
- #include "internal/cryptlib.h"
- #include "crypto/rsa.h"
- #include "rsa_local.h"
- int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
- const unsigned char *from, int flen)
- {
- int j;
- unsigned char *p;
- if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
- ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
- return 0;
- }
- p = (unsigned char *)to;
- *(p++) = 0;
- *(p++) = 1; /* Private Key BT (Block Type) */
- /* pad out with 0xff data */
- j = tlen - 3 - flen;
- memset(p, 0xff, j);
- p += j;
- *(p++) = '\0';
- memcpy(p, from, (unsigned int)flen);
- return 1;
- }
- int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
- const unsigned char *from, int flen,
- int num)
- {
- int i, j;
- const unsigned char *p;
- p = from;
- /*
- * The format is
- * 00 || 01 || PS || 00 || D
- * PS - padding string, at least 8 bytes of FF
- * D - data.
- */
- if (num < RSA_PKCS1_PADDING_SIZE)
- return -1;
- /* Accept inputs with and without the leading 0-byte. */
- if (num == flen) {
- if ((*p++) != 0x00) {
- ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING);
- return -1;
- }
- flen--;
- }
- if ((num != (flen + 1)) || (*(p++) != 0x01)) {
- ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01);
- return -1;
- }
- /* scan over padding data */
- j = flen - 1; /* one for type. */
- for (i = 0; i < j; i++) {
- if (*p != 0xff) { /* should decrypt to 0xff */
- if (*p == 0) {
- p++;
- break;
- } else {
- ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT);
- return -1;
- }
- }
- p++;
- }
- if (i == j) {
- ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING);
- return -1;
- }
- if (i < 8) {
- ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT);
- return -1;
- }
- i++; /* Skip over the '\0' */
- j -= i;
- if (j > tlen) {
- ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE);
- return -1;
- }
- memcpy(to, p, (unsigned int)j);
- return j;
- }
- int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to,
- int tlen, const unsigned char *from,
- int flen)
- {
- int i, j;
- unsigned char *p;
- if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
- ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
- return 0;
- } else if (flen < 0) {
- ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
- return 0;
- }
- p = (unsigned char *)to;
- *(p++) = 0;
- *(p++) = 2; /* Public Key BT (Block Type) */
- /* pad out with non-zero random data */
- j = tlen - 3 - flen;
- if (RAND_bytes_ex(libctx, p, j, 0) <= 0)
- return 0;
- for (i = 0; i < j; i++) {
- if (*p == '\0')
- do {
- if (RAND_bytes_ex(libctx, p, 1, 0) <= 0)
- return 0;
- } while (*p == '\0');
- p++;
- }
- *(p++) = '\0';
- memcpy(p, from, (unsigned int)flen);
- return 1;
- }
- int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
- const unsigned char *from, int flen)
- {
- return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen);
- }
- int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
- const unsigned char *from, int flen,
- int num)
- {
- int i;
- /* |em| is the encoded message, zero-padded to exactly |num| bytes */
- unsigned char *em = NULL;
- unsigned int good, found_zero_byte, mask;
- int zero_index = 0, msg_index, mlen = -1;
- if (tlen <= 0 || flen <= 0)
- return -1;
- /*
- * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",
- * section 7.2.2.
- */
- if (flen > num || num < RSA_PKCS1_PADDING_SIZE) {
- ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
- return -1;
- }
- em = OPENSSL_malloc(num);
- if (em == NULL)
- return -1;
- /*
- * Caller is encouraged to pass zero-padded message created with
- * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
- * bounds, it's impossible to have an invariant memory access pattern
- * in case |from| was not zero-padded in advance.
- */
- for (from += flen, em += num, i = 0; i < num; i++) {
- mask = ~constant_time_is_zero(flen);
- flen -= 1 & mask;
- from -= 1 & mask;
- *--em = *from & mask;
- }
- good = constant_time_is_zero(em[0]);
- good &= constant_time_eq(em[1], 2);
- /* scan over padding data */
- found_zero_byte = 0;
- for (i = 2; i < num; i++) {
- unsigned int equals0 = constant_time_is_zero(em[i]);
- zero_index = constant_time_select_int(~found_zero_byte & equals0,
- i, zero_index);
- found_zero_byte |= equals0;
- }
- /*
- * PS must be at least 8 bytes long, and it starts two bytes into |em|.
- * If we never found a 0-byte, then |zero_index| is 0 and the check
- * also fails.
- */
- good &= constant_time_ge(zero_index, 2 + 8);
- /*
- * Skip the zero byte. This is incorrect if we never found a zero-byte
- * but in this case we also do not copy the message out.
- */
- msg_index = zero_index + 1;
- mlen = num - msg_index;
- /*
- * For good measure, do this check in constant time as well.
- */
- good &= constant_time_ge(tlen, mlen);
- /*
- * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.
- * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.
- * Otherwise leave |to| unchanged.
- * Copy the memory back in a way that does not reveal the size of
- * the data being copied via a timing side channel. This requires copying
- * parts of the buffer multiple times based on the bits set in the real
- * length. Clear bits do a non-copy with identical access pattern.
- * The loop below has overall complexity of O(N*log(N)).
- */
- tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),
- num - RSA_PKCS1_PADDING_SIZE, tlen);
- for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) {
- mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);
- for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)
- em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);
- }
- for (i = 0; i < tlen; i++) {
- mask = good & constant_time_lt(i, mlen);
- to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);
- }
- OPENSSL_clear_free(em, num);
- #ifndef FIPS_MODULE
- /*
- * This trick doesn't work in the FIPS provider because libcrypto manages
- * the error stack. Instead we opt not to put an error on the stack at all
- * in case of padding failure in the FIPS provider.
- */
- ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
- err_clear_last_constant_time(1 & good);
- #endif
- return constant_time_select_int(good, mlen, -1);
- }
- static int ossl_rsa_prf(OSSL_LIB_CTX *ctx,
- unsigned char *to, int tlen,
- const char *label, int llen,
- const unsigned char *kdk,
- uint16_t bitlen)
- {
- int pos;
- int ret = -1;
- uint16_t iter = 0;
- unsigned char be_iter[sizeof(iter)];
- unsigned char be_bitlen[sizeof(bitlen)];
- HMAC_CTX *hmac = NULL;
- EVP_MD *md = NULL;
- unsigned char hmac_out[SHA256_DIGEST_LENGTH];
- unsigned int md_len;
- if (tlen * 8 != bitlen) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- return ret;
- }
- be_bitlen[0] = (bitlen >> 8) & 0xff;
- be_bitlen[1] = bitlen & 0xff;
- hmac = HMAC_CTX_new();
- if (hmac == NULL) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- /*
- * we use hardcoded hash so that migrating between versions that use
- * different hash doesn't provide a Bleichenbacher oracle:
- * if the attacker can see that different versions return different
- * messages for the same ciphertext, they'll know that the message is
- * synthetically generated, which means that the padding check failed
- */
- md = EVP_MD_fetch(ctx, "sha256", NULL);
- if (md == NULL) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if (HMAC_Init_ex(hmac, kdk, SHA256_DIGEST_LENGTH, md, NULL) <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- for (pos = 0; pos < tlen; pos += SHA256_DIGEST_LENGTH, iter++) {
- if (HMAC_Init_ex(hmac, NULL, 0, NULL, NULL) <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- be_iter[0] = (iter >> 8) & 0xff;
- be_iter[1] = iter & 0xff;
- if (HMAC_Update(hmac, be_iter, sizeof(be_iter)) <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if (HMAC_Update(hmac, (unsigned char *)label, llen) <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if (HMAC_Update(hmac, be_bitlen, sizeof(be_bitlen)) <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- /*
- * HMAC_Final requires the output buffer to fit the whole MAC
- * value, so we need to use the intermediate buffer for the last
- * unaligned block
- */
- md_len = SHA256_DIGEST_LENGTH;
- if (pos + SHA256_DIGEST_LENGTH > tlen) {
- if (HMAC_Final(hmac, hmac_out, &md_len) <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- memcpy(to + pos, hmac_out, tlen - pos);
- } else {
- if (HMAC_Final(hmac, to + pos, &md_len) <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- }
- }
- ret = 0;
- err:
- HMAC_CTX_free(hmac);
- EVP_MD_free(md);
- return ret;
- }
- /*
- * ossl_rsa_padding_check_PKCS1_type_2() checks and removes the PKCS#1 type 2
- * padding from a decrypted RSA message. Unlike the
- * RSA_padding_check_PKCS1_type_2() it will not return an error in case it
- * detects a padding error, rather it will return a deterministically generated
- * random message. In other words it will perform an implicit rejection
- * of an invalid padding. This means that the returned value does not indicate
- * if the padding of the encrypted message was correct or not, making
- * side channel attacks like the ones described by Bleichenbacher impossible
- * without access to the full decrypted value and a brute-force search of
- * remaining padding bytes
- */
- int ossl_rsa_padding_check_PKCS1_type_2(OSSL_LIB_CTX *ctx,
- unsigned char *to, int tlen,
- const unsigned char *from, int flen,
- int num, unsigned char *kdk)
- {
- /*
- * We need to generate a random length for the synthetic message, to avoid
- * bias towards zero and avoid non-constant timeness of DIV, we prepare
- * 128 values to check if they are not too large for the used key size,
- * and use 0 in case none of them are small enough, as 2^-128 is a good enough
- * safety margin
- */
- #define MAX_LEN_GEN_TRIES 128
- unsigned char *synthetic = NULL;
- int synthetic_length;
- uint16_t len_candidate;
- unsigned char candidate_lengths[MAX_LEN_GEN_TRIES * sizeof(len_candidate)];
- uint16_t len_mask;
- uint16_t max_sep_offset;
- int synth_msg_index = 0;
- int ret = -1;
- int i, j;
- unsigned int good, found_zero_byte;
- int zero_index = 0, msg_index;
- /*
- * If these checks fail then either the message in publicly invalid, or
- * we've been called incorrectly. We can fail immediately.
- * Since this code is called only internally by openssl, those are just
- * sanity checks
- */
- if (num != flen || tlen <= 0 || flen <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- return -1;
- }
- /* Generate a random message to return in case the padding checks fail */
- synthetic = OPENSSL_malloc(flen);
- if (synthetic == NULL) {
- ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
- return -1;
- }
- if (ossl_rsa_prf(ctx, synthetic, flen, "message", 7, kdk, flen * 8) < 0)
- goto err;
- /* decide how long the random message should be */
- if (ossl_rsa_prf(ctx, candidate_lengths, sizeof(candidate_lengths),
- "length", 6, kdk,
- MAX_LEN_GEN_TRIES * sizeof(len_candidate) * 8) < 0)
- goto err;
- /*
- * max message size is the size of the modulus size less 2 bytes for
- * version and padding type and a minimum of 8 bytes padding
- */
- len_mask = max_sep_offset = flen - 2 - 8;
- /*
- * we want a mask so lets propagate the high bit to all positions less
- * significant than it
- */
- len_mask |= len_mask >> 1;
- len_mask |= len_mask >> 2;
- len_mask |= len_mask >> 4;
- len_mask |= len_mask >> 8;
- synthetic_length = 0;
- for (i = 0; i < MAX_LEN_GEN_TRIES * (int)sizeof(len_candidate);
- i += sizeof(len_candidate)) {
- len_candidate = (candidate_lengths[i] << 8) | candidate_lengths[i + 1];
- len_candidate &= len_mask;
- synthetic_length = constant_time_select_int(
- constant_time_lt(len_candidate, max_sep_offset),
- len_candidate, synthetic_length);
- }
- synth_msg_index = flen - synthetic_length;
- /* we have alternative message ready, check the real one */
- good = constant_time_is_zero(from[0]);
- good &= constant_time_eq(from[1], 2);
- /* then look for the padding|message separator (the first zero byte) */
- found_zero_byte = 0;
- for (i = 2; i < flen; i++) {
- unsigned int equals0 = constant_time_is_zero(from[i]);
- zero_index = constant_time_select_int(~found_zero_byte & equals0,
- i, zero_index);
- found_zero_byte |= equals0;
- }
- /*
- * padding must be at least 8 bytes long, and it starts two bytes into
- * |from|. If we never found a 0-byte, then |zero_index| is 0 and the check
- * also fails.
- */
- good &= constant_time_ge(zero_index, 2 + 8);
- /*
- * Skip the zero byte. This is incorrect if we never found a zero-byte
- * but in this case we also do not copy the message out.
- */
- msg_index = zero_index + 1;
- /*
- * old code returned an error in case the decrypted message wouldn't fit
- * into the |to|, since that would leak information, return the synthetic
- * message instead
- */
- good &= constant_time_ge(tlen, num - msg_index);
- msg_index = constant_time_select_int(good, msg_index, synth_msg_index);
- /*
- * since at this point the |msg_index| does not provide the signal
- * indicating if the padding check failed or not, we don't have to worry
- * about leaking the length of returned message, we still need to ensure
- * that we read contents of both buffers so that cache accesses don't leak
- * the value of |good|
- */
- for (i = msg_index, j = 0; i < flen && j < tlen; i++, j++)
- to[j] = constant_time_select_8(good, from[i], synthetic[i]);
- ret = j;
- err:
- /*
- * the only time ret < 0 is when the ciphertext is publicly invalid
- * or we were called with invalid parameters, so we don't have to perform
- * a side-channel secure raising of the error
- */
- if (ret < 0)
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- OPENSSL_free(synthetic);
- return ret;
- }
- /*
- * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2
- * padding from a decrypted RSA message in a TLS signature. The result is stored
- * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen|
- * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message
- * should be stored in |from| which must be |flen| bytes in length and padded
- * such that |flen == RSA_size()|. The TLS protocol version that the client
- * originally requested should be passed in |client_version|. Some buggy clients
- * can exist which use the negotiated version instead of the originally
- * requested protocol version. If it is necessary to work around this bug then
- * the negotiated protocol version can be passed in |alt_version|, otherwise 0
- * should be passed.
- *
- * If the passed message is publicly invalid or some other error that can be
- * treated in non-constant time occurs then -1 is returned. On success the
- * length of the decrypted data is returned. This will always be
- * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in
- * constant time then this function will appear to return successfully, but the
- * decrypted data will be randomly generated (as per
- * https://tools.ietf.org/html/rfc5246#section-7.4.7.1).
- */
- int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx,
- unsigned char *to, size_t tlen,
- const unsigned char *from,
- size_t flen, int client_version,
- int alt_version)
- {
- unsigned int i, good, version_good;
- unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH];
- /*
- * If these checks fail then either the message in publicly invalid, or
- * we've been called incorrectly. We can fail immediately.
- */
- if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH
- || tlen < SSL_MAX_MASTER_KEY_LENGTH) {
- ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
- return -1;
- }
- /*
- * Generate a random premaster secret to use in the event that we fail
- * to decrypt.
- */
- if (RAND_priv_bytes_ex(libctx, rand_premaster_secret,
- sizeof(rand_premaster_secret), 0) <= 0) {
- ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
- return -1;
- }
- good = constant_time_is_zero(from[0]);
- good &= constant_time_eq(from[1], 2);
- /* Check we have the expected padding data */
- for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++)
- good &= ~constant_time_is_zero_8(from[i]);
- good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]);
- /*
- * If the version in the decrypted pre-master secret is correct then
- * version_good will be 0xff, otherwise it'll be zero. The
- * Klima-Pokorny-Rosa extension of Bleichenbacher's attack
- * (http://eprint.iacr.org/2003/052/) exploits the version number
- * check as a "bad version oracle". Thus version checks are done in
- * constant time and are treated like any other decryption error.
- */
- version_good =
- constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],
- (client_version >> 8) & 0xff);
- version_good &=
- constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],
- client_version & 0xff);
- /*
- * The premaster secret must contain the same version number as the
- * ClientHello to detect version rollback attacks (strangely, the
- * protocol does not offer such protection for DH ciphersuites).
- * However, buggy clients exist that send the negotiated protocol
- * version instead if the server does not support the requested
- * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate
- * such clients. In that case alt_version will be non-zero and set to
- * the negotiated version.
- */
- if (alt_version > 0) {
- unsigned int workaround_good;
- workaround_good =
- constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],
- (alt_version >> 8) & 0xff);
- workaround_good &=
- constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],
- alt_version & 0xff);
- version_good |= workaround_good;
- }
- good &= version_good;
- /*
- * Now copy the result over to the to buffer if good, or random data if
- * not good.
- */
- for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) {
- to[i] =
- constant_time_select_8(good,
- from[flen - SSL_MAX_MASTER_KEY_LENGTH + i],
- rand_premaster_secret[i]);
- }
- /*
- * We must not leak whether a decryption failure occurs because of
- * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246,
- * section 7.4.7.1). The code follows that advice of the TLS RFC and
- * generates a random premaster secret for the case that the decrypt
- * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1
- * So, whether we actually succeeded or not, return success.
- */
- return SSL_MAX_MASTER_KEY_LENGTH;
- }
|