123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- /*
- * Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <string.h>
- #include "internal/sha3.h"
- void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r, int next);
- void ossl_sha3_reset(KECCAK1600_CTX *ctx)
- {
- memset(ctx->A, 0, sizeof(ctx->A));
- ctx->bufsz = 0;
- ctx->xof_state = XOF_STATE_INIT;
- }
- int ossl_sha3_init(KECCAK1600_CTX *ctx, unsigned char pad, size_t bitlen)
- {
- size_t bsz = SHA3_BLOCKSIZE(bitlen);
- if (bsz <= sizeof(ctx->buf)) {
- ossl_sha3_reset(ctx);
- ctx->block_size = bsz;
- ctx->md_size = bitlen / 8;
- ctx->pad = pad;
- return 1;
- }
- return 0;
- }
- int ossl_keccak_kmac_init(KECCAK1600_CTX *ctx, unsigned char pad, size_t bitlen)
- {
- int ret = ossl_sha3_init(ctx, pad, bitlen);
- if (ret)
- ctx->md_size *= 2;
- return ret;
- }
- int ossl_sha3_update(KECCAK1600_CTX *ctx, const void *_inp, size_t len)
- {
- const unsigned char *inp = _inp;
- size_t bsz = ctx->block_size;
- size_t num, rem;
- if (len == 0)
- return 1;
- if (ctx->xof_state == XOF_STATE_SQUEEZE
- || ctx->xof_state == XOF_STATE_FINAL)
- return 0;
- if ((num = ctx->bufsz) != 0) { /* process intermediate buffer? */
- rem = bsz - num;
- if (len < rem) {
- memcpy(ctx->buf + num, inp, len);
- ctx->bufsz += len;
- return 1;
- }
- /*
- * We have enough data to fill or overflow the intermediate
- * buffer. So we append |rem| bytes and process the block,
- * leaving the rest for later processing...
- */
- memcpy(ctx->buf + num, inp, rem);
- inp += rem, len -= rem;
- (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
- ctx->bufsz = 0;
- /* ctx->buf is processed, ctx->num is guaranteed to be zero */
- }
- if (len >= bsz)
- rem = SHA3_absorb(ctx->A, inp, len, bsz);
- else
- rem = len;
- if (rem) {
- memcpy(ctx->buf, inp + len - rem, rem);
- ctx->bufsz = rem;
- }
- return 1;
- }
- /*
- * ossl_sha3_final()is a single shot method
- * (Use ossl_sha3_squeeze for multiple calls).
- * outlen is the variable size output.
- */
- int ossl_sha3_final(KECCAK1600_CTX *ctx, unsigned char *out, size_t outlen)
- {
- size_t bsz = ctx->block_size;
- size_t num = ctx->bufsz;
- if (outlen == 0)
- return 1;
- if (ctx->xof_state == XOF_STATE_SQUEEZE
- || ctx->xof_state == XOF_STATE_FINAL)
- return 0;
- /*
- * Pad the data with 10*1. Note that |num| can be |bsz - 1|
- * in which case both byte operations below are performed on
- * same byte...
- */
- memset(ctx->buf + num, 0, bsz - num);
- ctx->buf[num] = ctx->pad;
- ctx->buf[bsz - 1] |= 0x80;
- (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
- ctx->xof_state = XOF_STATE_FINAL;
- SHA3_squeeze(ctx->A, out, outlen, bsz, 0);
- return 1;
- }
- /*
- * This method can be called multiple times.
- * Rather than heavily modifying assembler for SHA3_squeeze(),
- * we instead just use the limitations of the existing function.
- * i.e. Only request multiples of the ctx->block_size when calling
- * SHA3_squeeze(). For output length requests smaller than the
- * ctx->block_size just request a single ctx->block_size bytes and
- * buffer the results. The next request will use the buffer first
- * to grab output bytes.
- */
- int ossl_sha3_squeeze(KECCAK1600_CTX *ctx, unsigned char *out, size_t outlen)
- {
- size_t bsz = ctx->block_size;
- size_t num = ctx->bufsz;
- size_t len;
- int next = 1;
- if (outlen == 0)
- return 1;
- if (ctx->xof_state == XOF_STATE_FINAL)
- return 0;
- /*
- * On the first squeeze call, finish the absorb process,
- * by adding the trailing padding and then doing
- * a final absorb.
- */
- if (ctx->xof_state != XOF_STATE_SQUEEZE) {
- /*
- * Pad the data with 10*1. Note that |num| can be |bsz - 1|
- * in which case both byte operations below are performed on
- * same byte...
- */
- memset(ctx->buf + num, 0, bsz - num);
- ctx->buf[num] = ctx->pad;
- ctx->buf[bsz - 1] |= 0x80;
- (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
- ctx->xof_state = XOF_STATE_SQUEEZE;
- num = ctx->bufsz = 0;
- next = 0;
- }
- /*
- * Step 1. Consume any bytes left over from a previous squeeze
- * (See Step 4 below).
- */
- if (num != 0) {
- if (outlen > ctx->bufsz)
- len = ctx->bufsz;
- else
- len = outlen;
- memcpy(out, ctx->buf + bsz - ctx->bufsz, len);
- out += len;
- outlen -= len;
- ctx->bufsz -= len;
- }
- if (outlen == 0)
- return 1;
- /* Step 2. Copy full sized squeezed blocks to the output buffer directly */
- if (outlen >= bsz) {
- len = bsz * (outlen / bsz);
- SHA3_squeeze(ctx->A, out, len, bsz, next);
- next = 1;
- out += len;
- outlen -= len;
- }
- if (outlen > 0) {
- /* Step 3. Squeeze one more block into a buffer */
- SHA3_squeeze(ctx->A, ctx->buf, bsz, bsz, next);
- memcpy(out, ctx->buf, outlen);
- /* Step 4. Remember the leftover part of the squeezed block */
- ctx->bufsz = bsz - outlen;
- }
- return 1;
- }
|