sha512.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869
  1. /*
  2. * Copyright 2004-2022 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * SHA512 low level APIs are deprecated for public use, but still ok for
  11. * internal use.
  12. */
  13. #include "internal/deprecated.h"
  14. #include <stdio.h>
  15. #include <openssl/opensslconf.h>
  16. /*-
  17. * IMPLEMENTATION NOTES.
  18. *
  19. * As you might have noticed 32-bit hash algorithms:
  20. *
  21. * - permit SHA_LONG to be wider than 32-bit
  22. * - optimized versions implement two transform functions: one operating
  23. * on [aligned] data in host byte order and one - on data in input
  24. * stream byte order;
  25. * - share common byte-order neutral collector and padding function
  26. * implementations, crypto/md32_common.h;
  27. *
  28. * Neither of the above applies to this SHA-512 implementations. Reasons
  29. * [in reverse order] are:
  30. *
  31. * - it's the only 64-bit hash algorithm for the moment of this writing,
  32. * there is no need for common collector/padding implementation [yet];
  33. * - by supporting only one transform function [which operates on
  34. * *aligned* data in input stream byte order, big-endian in this case]
  35. * we minimize burden of maintenance in two ways: a) collector/padding
  36. * function is simpler; b) only one transform function to stare at;
  37. * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  38. * apply a number of optimizations to mitigate potential performance
  39. * penalties caused by previous design decision;
  40. *
  41. * Caveat lector.
  42. *
  43. * Implementation relies on the fact that "long long" is 64-bit on
  44. * both 32- and 64-bit platforms. If some compiler vendor comes up
  45. * with 128-bit long long, adjustment to sha.h would be required.
  46. * As this implementation relies on 64-bit integer type, it's totally
  47. * inappropriate for platforms which don't support it, most notably
  48. * 16-bit platforms.
  49. */
  50. #include <stdlib.h>
  51. #include <string.h>
  52. #include <openssl/crypto.h>
  53. #include <openssl/sha.h>
  54. #include <openssl/opensslv.h>
  55. #include "internal/cryptlib.h"
  56. #include "crypto/sha.h"
  57. #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
  58. defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
  59. defined(__s390__) || defined(__s390x__) || \
  60. defined(__aarch64__) || \
  61. defined(SHA512_ASM)
  62. # define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  63. #endif
  64. #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
  65. # define U64(C) C##UI64
  66. #elif defined(__arch64__)
  67. # define U64(C) C##UL
  68. #else
  69. # define U64(C) C##ULL
  70. #endif
  71. int sha512_224_init(SHA512_CTX *c)
  72. {
  73. c->h[0] = U64(0x8c3d37c819544da2);
  74. c->h[1] = U64(0x73e1996689dcd4d6);
  75. c->h[2] = U64(0x1dfab7ae32ff9c82);
  76. c->h[3] = U64(0x679dd514582f9fcf);
  77. c->h[4] = U64(0x0f6d2b697bd44da8);
  78. c->h[5] = U64(0x77e36f7304c48942);
  79. c->h[6] = U64(0x3f9d85a86a1d36c8);
  80. c->h[7] = U64(0x1112e6ad91d692a1);
  81. c->Nl = 0;
  82. c->Nh = 0;
  83. c->num = 0;
  84. c->md_len = SHA224_DIGEST_LENGTH;
  85. return 1;
  86. }
  87. int sha512_256_init(SHA512_CTX *c)
  88. {
  89. c->h[0] = U64(0x22312194fc2bf72c);
  90. c->h[1] = U64(0x9f555fa3c84c64c2);
  91. c->h[2] = U64(0x2393b86b6f53b151);
  92. c->h[3] = U64(0x963877195940eabd);
  93. c->h[4] = U64(0x96283ee2a88effe3);
  94. c->h[5] = U64(0xbe5e1e2553863992);
  95. c->h[6] = U64(0x2b0199fc2c85b8aa);
  96. c->h[7] = U64(0x0eb72ddc81c52ca2);
  97. c->Nl = 0;
  98. c->Nh = 0;
  99. c->num = 0;
  100. c->md_len = SHA256_DIGEST_LENGTH;
  101. return 1;
  102. }
  103. int SHA384_Init(SHA512_CTX *c)
  104. {
  105. c->h[0] = U64(0xcbbb9d5dc1059ed8);
  106. c->h[1] = U64(0x629a292a367cd507);
  107. c->h[2] = U64(0x9159015a3070dd17);
  108. c->h[3] = U64(0x152fecd8f70e5939);
  109. c->h[4] = U64(0x67332667ffc00b31);
  110. c->h[5] = U64(0x8eb44a8768581511);
  111. c->h[6] = U64(0xdb0c2e0d64f98fa7);
  112. c->h[7] = U64(0x47b5481dbefa4fa4);
  113. c->Nl = 0;
  114. c->Nh = 0;
  115. c->num = 0;
  116. c->md_len = SHA384_DIGEST_LENGTH;
  117. return 1;
  118. }
  119. int SHA512_Init(SHA512_CTX *c)
  120. {
  121. c->h[0] = U64(0x6a09e667f3bcc908);
  122. c->h[1] = U64(0xbb67ae8584caa73b);
  123. c->h[2] = U64(0x3c6ef372fe94f82b);
  124. c->h[3] = U64(0xa54ff53a5f1d36f1);
  125. c->h[4] = U64(0x510e527fade682d1);
  126. c->h[5] = U64(0x9b05688c2b3e6c1f);
  127. c->h[6] = U64(0x1f83d9abfb41bd6b);
  128. c->h[7] = U64(0x5be0cd19137e2179);
  129. c->Nl = 0;
  130. c->Nh = 0;
  131. c->num = 0;
  132. c->md_len = SHA512_DIGEST_LENGTH;
  133. return 1;
  134. }
  135. #ifndef SHA512_ASM
  136. static
  137. #else
  138. # ifdef INCLUDE_C_SHA512
  139. void sha512_block_data_order_c(SHA512_CTX *ctx, const void *in, size_t num);
  140. # endif
  141. #endif
  142. void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
  143. int SHA512_Final(unsigned char *md, SHA512_CTX *c)
  144. {
  145. unsigned char *p = (unsigned char *)c->u.p;
  146. size_t n = c->num;
  147. p[n] = 0x80; /* There always is a room for one */
  148. n++;
  149. if (n > (sizeof(c->u) - 16)) {
  150. memset(p + n, 0, sizeof(c->u) - n);
  151. n = 0;
  152. sha512_block_data_order(c, p, 1);
  153. }
  154. memset(p + n, 0, sizeof(c->u) - 16 - n);
  155. #ifdef B_ENDIAN
  156. c->u.d[SHA_LBLOCK - 2] = c->Nh;
  157. c->u.d[SHA_LBLOCK - 1] = c->Nl;
  158. #else
  159. p[sizeof(c->u) - 1] = (unsigned char)(c->Nl);
  160. p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8);
  161. p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16);
  162. p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24);
  163. p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32);
  164. p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40);
  165. p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48);
  166. p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56);
  167. p[sizeof(c->u) - 9] = (unsigned char)(c->Nh);
  168. p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8);
  169. p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16);
  170. p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24);
  171. p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32);
  172. p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40);
  173. p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48);
  174. p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56);
  175. #endif
  176. sha512_block_data_order(c, p, 1);
  177. if (md == 0)
  178. return 0;
  179. switch (c->md_len) {
  180. /* Let compiler decide if it's appropriate to unroll... */
  181. case SHA224_DIGEST_LENGTH:
  182. for (n = 0; n < SHA224_DIGEST_LENGTH / 8; n++) {
  183. SHA_LONG64 t = c->h[n];
  184. *(md++) = (unsigned char)(t >> 56);
  185. *(md++) = (unsigned char)(t >> 48);
  186. *(md++) = (unsigned char)(t >> 40);
  187. *(md++) = (unsigned char)(t >> 32);
  188. *(md++) = (unsigned char)(t >> 24);
  189. *(md++) = (unsigned char)(t >> 16);
  190. *(md++) = (unsigned char)(t >> 8);
  191. *(md++) = (unsigned char)(t);
  192. }
  193. /*
  194. * For 224 bits, there are four bytes left over that have to be
  195. * processed separately.
  196. */
  197. {
  198. SHA_LONG64 t = c->h[SHA224_DIGEST_LENGTH / 8];
  199. *(md++) = (unsigned char)(t >> 56);
  200. *(md++) = (unsigned char)(t >> 48);
  201. *(md++) = (unsigned char)(t >> 40);
  202. *(md++) = (unsigned char)(t >> 32);
  203. }
  204. break;
  205. case SHA256_DIGEST_LENGTH:
  206. for (n = 0; n < SHA256_DIGEST_LENGTH / 8; n++) {
  207. SHA_LONG64 t = c->h[n];
  208. *(md++) = (unsigned char)(t >> 56);
  209. *(md++) = (unsigned char)(t >> 48);
  210. *(md++) = (unsigned char)(t >> 40);
  211. *(md++) = (unsigned char)(t >> 32);
  212. *(md++) = (unsigned char)(t >> 24);
  213. *(md++) = (unsigned char)(t >> 16);
  214. *(md++) = (unsigned char)(t >> 8);
  215. *(md++) = (unsigned char)(t);
  216. }
  217. break;
  218. case SHA384_DIGEST_LENGTH:
  219. for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
  220. SHA_LONG64 t = c->h[n];
  221. *(md++) = (unsigned char)(t >> 56);
  222. *(md++) = (unsigned char)(t >> 48);
  223. *(md++) = (unsigned char)(t >> 40);
  224. *(md++) = (unsigned char)(t >> 32);
  225. *(md++) = (unsigned char)(t >> 24);
  226. *(md++) = (unsigned char)(t >> 16);
  227. *(md++) = (unsigned char)(t >> 8);
  228. *(md++) = (unsigned char)(t);
  229. }
  230. break;
  231. case SHA512_DIGEST_LENGTH:
  232. for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
  233. SHA_LONG64 t = c->h[n];
  234. *(md++) = (unsigned char)(t >> 56);
  235. *(md++) = (unsigned char)(t >> 48);
  236. *(md++) = (unsigned char)(t >> 40);
  237. *(md++) = (unsigned char)(t >> 32);
  238. *(md++) = (unsigned char)(t >> 24);
  239. *(md++) = (unsigned char)(t >> 16);
  240. *(md++) = (unsigned char)(t >> 8);
  241. *(md++) = (unsigned char)(t);
  242. }
  243. break;
  244. /* ... as well as make sure md_len is not abused. */
  245. default:
  246. return 0;
  247. }
  248. return 1;
  249. }
  250. int SHA384_Final(unsigned char *md, SHA512_CTX *c)
  251. {
  252. return SHA512_Final(md, c);
  253. }
  254. int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
  255. {
  256. SHA_LONG64 l;
  257. unsigned char *p = c->u.p;
  258. const unsigned char *data = (const unsigned char *)_data;
  259. if (len == 0)
  260. return 1;
  261. l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff);
  262. if (l < c->Nl)
  263. c->Nh++;
  264. if (sizeof(len) >= 8)
  265. c->Nh += (((SHA_LONG64) len) >> 61);
  266. c->Nl = l;
  267. if (c->num != 0) {
  268. size_t n = sizeof(c->u) - c->num;
  269. if (len < n) {
  270. memcpy(p + c->num, data, len), c->num += (unsigned int)len;
  271. return 1;
  272. } else {
  273. memcpy(p + c->num, data, n), c->num = 0;
  274. len -= n, data += n;
  275. sha512_block_data_order(c, p, 1);
  276. }
  277. }
  278. if (len >= sizeof(c->u)) {
  279. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  280. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  281. while (len >= sizeof(c->u))
  282. memcpy(p, data, sizeof(c->u)),
  283. sha512_block_data_order(c, p, 1),
  284. len -= sizeof(c->u), data += sizeof(c->u);
  285. else
  286. #endif
  287. sha512_block_data_order(c, data, len / sizeof(c->u)),
  288. data += len, len %= sizeof(c->u), data -= len;
  289. }
  290. if (len != 0)
  291. memcpy(p, data, len), c->num = (int)len;
  292. return 1;
  293. }
  294. int SHA384_Update(SHA512_CTX *c, const void *data, size_t len)
  295. {
  296. return SHA512_Update(c, data, len);
  297. }
  298. void SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
  299. {
  300. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  301. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  302. memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p;
  303. #endif
  304. sha512_block_data_order(c, data, 1);
  305. }
  306. #if !defined(SHA512_ASM) || defined(INCLUDE_C_SHA512)
  307. static const SHA_LONG64 K512[80] = {
  308. U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
  309. U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
  310. U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
  311. U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
  312. U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
  313. U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
  314. U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
  315. U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
  316. U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
  317. U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
  318. U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
  319. U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
  320. U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
  321. U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
  322. U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
  323. U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
  324. U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
  325. U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
  326. U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
  327. U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
  328. U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
  329. U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
  330. U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
  331. U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
  332. U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
  333. U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
  334. U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
  335. U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
  336. U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
  337. U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
  338. U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
  339. U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
  340. U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
  341. U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
  342. U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
  343. U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
  344. U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
  345. U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
  346. U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
  347. U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
  348. };
  349. # ifndef PEDANTIC
  350. # if defined(__GNUC__) && __GNUC__>=2 && \
  351. !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  352. # if defined(__x86_64) || defined(__x86_64__)
  353. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  354. asm ("rorq %1,%0" \
  355. : "=r"(ret) \
  356. : "J"(n),"0"(a) \
  357. : "cc"); ret; })
  358. # if !defined(B_ENDIAN)
  359. # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
  360. asm ("bswapq %0" \
  361. : "=r"(ret) \
  362. : "0"(ret)); ret; })
  363. # endif
  364. # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
  365. # if defined(I386_ONLY)
  366. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  367. unsigned int hi=p[0],lo=p[1]; \
  368. asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  369. "roll $16,%%eax; roll $16,%%edx; "\
  370. "xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  371. : "=a"(lo),"=d"(hi) \
  372. : "0"(lo),"1"(hi) : "cc"); \
  373. ((SHA_LONG64)hi)<<32|lo; })
  374. # else
  375. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  376. unsigned int hi=p[0],lo=p[1]; \
  377. asm ("bswapl %0; bswapl %1;" \
  378. : "=r"(lo),"=r"(hi) \
  379. : "0"(lo),"1"(hi)); \
  380. ((SHA_LONG64)hi)<<32|lo; })
  381. # endif
  382. # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  383. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  384. asm ("rotrdi %0,%1,%2" \
  385. : "=r"(ret) \
  386. : "r"(a),"K"(n)); ret; })
  387. # elif defined(__aarch64__)
  388. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  389. asm ("ror %0,%1,%2" \
  390. : "=r"(ret) \
  391. : "r"(a),"I"(n)); ret; })
  392. # if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
  393. __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
  394. # define PULL64(x) ({ SHA_LONG64 ret; \
  395. asm ("rev %0,%1" \
  396. : "=r"(ret) \
  397. : "r"(*((const SHA_LONG64 *)(&(x))))); ret; })
  398. # endif
  399. # elif (defined(__riscv_zbkb) || defined(__riscv_zbb)) && __riscv_xlen == 32
  400. # define PULL64(x) ({ SHA_LONG64 ret; \
  401. unsigned int *r = (unsigned int *)(&(ret)); \
  402. const unsigned int *p = (const unsigned int *)(&(x)); \
  403. asm ("rev8 %0, %1" \
  404. : "=r"(r[0]) \
  405. : "r" (p[1])); \
  406. asm ("rev8 %0, %1" \
  407. : "=r"(r[1]) \
  408. : "r" (p[0])); ret; })
  409. # elif (defined(__riscv_zbkb) || defined(__riscv_zbb)) && __riscv_xlen == 64
  410. # define PULL64(x) ({ SHA_LONG64 ret; \
  411. asm ("rev8 %0, %1" \
  412. : "=r"(ret) \
  413. : "r"(x)); ret; })
  414. # endif
  415. # if defined(__riscv_zknh) && __riscv_xlen == 32
  416. # define Sigma0(x) ({ SHA_LONG64 ret; unsigned int *r = (unsigned int *)(&(ret)); \
  417. const unsigned int *p = (const unsigned int *)(&(x)); \
  418. asm ("sha512sum0r %0, %1, %2" \
  419. : "=r"(r[0]) \
  420. : "r" (p[0]), "r" (p[1])); \
  421. asm ("sha512sum0r %0, %2, %1" \
  422. : "=r"(r[1]) \
  423. : "r" (p[0]), "r" (p[1])); ret; })
  424. # define Sigma1(x) ({ SHA_LONG64 ret; unsigned int *r = (unsigned int *)(&(ret)); \
  425. const unsigned int *p = (const unsigned int *)(&(x)); \
  426. asm ("sha512sum1r %0, %1, %2" \
  427. : "=r"(r[0]) \
  428. : "r" (p[0]), "r" (p[1])); \
  429. asm ("sha512sum1r %0, %2, %1" \
  430. : "=r"(r[1]) \
  431. : "r" (p[0]), "r" (p[1])); ret; })
  432. # define sigma0(x) ({ SHA_LONG64 ret; unsigned int *r = (unsigned int *)(&(ret)); \
  433. const unsigned int *p = (const unsigned int *)(&(x)); \
  434. asm ("sha512sig0l %0, %1, %2" \
  435. : "=r"(r[0]) \
  436. : "r" (p[0]), "r" (p[1])); \
  437. asm ("sha512sig0h %0, %2, %1" \
  438. : "=r"(r[1]) \
  439. : "r" (p[0]), "r" (p[1])); ret; })
  440. # define sigma1(x) ({ SHA_LONG64 ret; unsigned int *r = (unsigned int *)(&(ret)); \
  441. const unsigned int *p = (const unsigned int *)(&(x)); \
  442. asm ("sha512sig1l %0, %1, %2" \
  443. : "=r"(r[0]) \
  444. : "r" (p[0]), "r" (p[1])); \
  445. asm ("sha512sig1h %0, %2, %1" \
  446. : "=r"(r[1]) \
  447. : "r" (p[0]), "r" (p[1])); ret; })
  448. # elif defined(__riscv_zknh) && __riscv_xlen == 64
  449. # define Sigma0(x) ({ SHA_LONG64 ret; \
  450. asm ("sha512sum0 %0, %1" \
  451. : "=r"(ret) \
  452. : "r"(x)); ret; })
  453. # define Sigma1(x) ({ SHA_LONG64 ret; \
  454. asm ("sha512sum1 %0, %1" \
  455. : "=r"(ret) \
  456. : "r"(x)); ret; })
  457. # define sigma0(x) ({ SHA_LONG64 ret; \
  458. asm ("sha512sig0 %0, %1" \
  459. : "=r"(ret) \
  460. : "r"(x)); ret; })
  461. # define sigma1(x) ({ SHA_LONG64 ret; \
  462. asm ("sha512sig1 %0, %1" \
  463. : "=r"(ret) \
  464. : "r"(x)); ret; })
  465. # endif
  466. # if (defined(__riscv_zbt) || defined(__riscv_zpn)) && __riscv_xlen == 32
  467. # define Ch(x,y,z) ({ SHA_LONG64 ret; unsigned int *r = (unsigned int *)(&(ret)); \
  468. const unsigned int *xp = (const unsigned int *)(&(x)); \
  469. const unsigned int *yp = (const unsigned int *)(&(y)); \
  470. const unsigned int *zp = (const unsigned int *)(&(z)); \
  471. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3\n\t" \
  472. : "=r"(r[0]) \
  473. : "r"(xp[0]), "r"(yp[0]), "r"(zp[0])); \
  474. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3\n\t" \
  475. : "=r"(r[1]) \
  476. : "r"(xp[1]), "r"(yp[1]), "r"(zp[1])); ret; })
  477. # define Maj(x,y,z) ({ SHA_LONG64 ret; unsigned int *r = (unsigned int *)(&(ret)); \
  478. const unsigned int *xp = (const unsigned int *)(&(x)); \
  479. const unsigned int *yp = (const unsigned int *)(&(y)); \
  480. const unsigned int *zp = (const unsigned int *)(&(z)); \
  481. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3\n\t" \
  482. : "=r"(r[0]) \
  483. : "r"(xp[0]^zp[0]), "r"(yp[0]), "r"(zp[0])); \
  484. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3\n\t" \
  485. : "=r"(r[1]) \
  486. : "r"(xp[1]^zp[1]), "r"(yp[1]), "r"(zp[1])); ret; })
  487. # elif (defined(__riscv_zbt) || defined(__riscv_zpn)) && __riscv_xlen == 64
  488. # define Ch(x,y,z) ({ SHA_LONG64 ret; \
  489. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
  490. : "=r"(ret) \
  491. : "r"(x), "r"(y), "r"(z)); ret; })
  492. # define Maj(x,y,z) ({ SHA_LONG64 ret; \
  493. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
  494. : "=r"(ret) \
  495. : "r"(x^z), "r"(y), "r"(x)); ret; })
  496. # endif
  497. # elif defined(_MSC_VER)
  498. # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  499. # pragma intrinsic(_rotr64)
  500. # define ROTR(a,n) _rotr64((a),n)
  501. # endif
  502. # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && \
  503. !defined(OPENSSL_NO_INLINE_ASM)
  504. # if defined(I386_ONLY)
  505. static SHA_LONG64 __fastcall __pull64be(const void *x)
  506. {
  507. _asm mov edx,[ecx + 0]
  508. _asm mov eax,[ecx + 4]
  509. _asm xchg dh, dl
  510. _asm xchg ah, al
  511. _asm rol edx, 16
  512. _asm rol eax, 16
  513. _asm xchg dh, dl
  514. _asm xchg ah, al
  515. }
  516. # else
  517. static SHA_LONG64 __fastcall __pull64be(const void *x)
  518. {
  519. _asm mov edx,[ecx + 0]
  520. _asm mov eax,[ecx + 4]
  521. _asm bswap edx
  522. _asm bswap eax
  523. }
  524. # endif
  525. # define PULL64(x) __pull64be(&(x))
  526. # endif
  527. # endif
  528. # endif
  529. # ifndef PULL64
  530. # define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
  531. # define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
  532. # endif
  533. # ifndef ROTR
  534. # define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
  535. # endif
  536. # ifndef Sigma0
  537. # define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
  538. # endif
  539. # ifndef Sigma1
  540. # define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
  541. # endif
  542. # ifndef sigma0
  543. # define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
  544. # endif
  545. # ifndef sigma1
  546. # define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
  547. # endif
  548. # ifndef Ch
  549. # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  550. # endif
  551. # ifndef Maj
  552. # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  553. # endif
  554. # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  555. /*
  556. * This code should give better results on 32-bit CPU with less than
  557. * ~24 registers, both size and performance wise...
  558. */
  559. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  560. size_t num)
  561. {
  562. const SHA_LONG64 *W = in;
  563. SHA_LONG64 A, E, T;
  564. SHA_LONG64 X[9 + 80], *F;
  565. int i;
  566. while (num--) {
  567. F = X + 80;
  568. A = ctx->h[0];
  569. F[1] = ctx->h[1];
  570. F[2] = ctx->h[2];
  571. F[3] = ctx->h[3];
  572. E = ctx->h[4];
  573. F[5] = ctx->h[5];
  574. F[6] = ctx->h[6];
  575. F[7] = ctx->h[7];
  576. for (i = 0; i < 16; i++, F--) {
  577. # ifdef B_ENDIAN
  578. T = W[i];
  579. # else
  580. T = PULL64(W[i]);
  581. # endif
  582. F[0] = A;
  583. F[4] = E;
  584. F[8] = T;
  585. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  586. E = F[3] + T;
  587. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  588. }
  589. for (; i < 80; i++, F--) {
  590. T = sigma0(F[8 + 16 - 1]);
  591. T += sigma1(F[8 + 16 - 14]);
  592. T += F[8 + 16] + F[8 + 16 - 9];
  593. F[0] = A;
  594. F[4] = E;
  595. F[8] = T;
  596. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  597. E = F[3] + T;
  598. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  599. }
  600. ctx->h[0] += A;
  601. ctx->h[1] += F[1];
  602. ctx->h[2] += F[2];
  603. ctx->h[3] += F[3];
  604. ctx->h[4] += E;
  605. ctx->h[5] += F[5];
  606. ctx->h[6] += F[6];
  607. ctx->h[7] += F[7];
  608. W += SHA_LBLOCK;
  609. }
  610. }
  611. # elif defined(OPENSSL_SMALL_FOOTPRINT)
  612. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  613. size_t num)
  614. {
  615. const SHA_LONG64 *W = in;
  616. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2;
  617. SHA_LONG64 X[16];
  618. int i;
  619. while (num--) {
  620. a = ctx->h[0];
  621. b = ctx->h[1];
  622. c = ctx->h[2];
  623. d = ctx->h[3];
  624. e = ctx->h[4];
  625. f = ctx->h[5];
  626. g = ctx->h[6];
  627. h = ctx->h[7];
  628. for (i = 0; i < 16; i++) {
  629. # ifdef B_ENDIAN
  630. T1 = X[i] = W[i];
  631. # else
  632. T1 = X[i] = PULL64(W[i]);
  633. # endif
  634. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  635. T2 = Sigma0(a) + Maj(a, b, c);
  636. h = g;
  637. g = f;
  638. f = e;
  639. e = d + T1;
  640. d = c;
  641. c = b;
  642. b = a;
  643. a = T1 + T2;
  644. }
  645. for (; i < 80; i++) {
  646. s0 = X[(i + 1) & 0x0f];
  647. s0 = sigma0(s0);
  648. s1 = X[(i + 14) & 0x0f];
  649. s1 = sigma1(s1);
  650. T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
  651. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  652. T2 = Sigma0(a) + Maj(a, b, c);
  653. h = g;
  654. g = f;
  655. f = e;
  656. e = d + T1;
  657. d = c;
  658. c = b;
  659. b = a;
  660. a = T1 + T2;
  661. }
  662. ctx->h[0] += a;
  663. ctx->h[1] += b;
  664. ctx->h[2] += c;
  665. ctx->h[3] += d;
  666. ctx->h[4] += e;
  667. ctx->h[5] += f;
  668. ctx->h[6] += g;
  669. ctx->h[7] += h;
  670. W += SHA_LBLOCK;
  671. }
  672. }
  673. # else
  674. # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  675. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
  676. h = Sigma0(a) + Maj(a,b,c); \
  677. d += T1; h += T1; } while (0)
  678. # define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
  679. s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
  680. s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
  681. T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
  682. ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
  683. #ifdef INCLUDE_C_SHA512
  684. void sha512_block_data_order_c(SHA512_CTX *ctx, const void *in, size_t num)
  685. #else
  686. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  687. size_t num)
  688. #endif
  689. {
  690. const SHA_LONG64 *W = in;
  691. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1;
  692. SHA_LONG64 X[16];
  693. int i;
  694. while (num--) {
  695. a = ctx->h[0];
  696. b = ctx->h[1];
  697. c = ctx->h[2];
  698. d = ctx->h[3];
  699. e = ctx->h[4];
  700. f = ctx->h[5];
  701. g = ctx->h[6];
  702. h = ctx->h[7];
  703. # ifdef B_ENDIAN
  704. T1 = X[0] = W[0];
  705. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  706. T1 = X[1] = W[1];
  707. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  708. T1 = X[2] = W[2];
  709. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  710. T1 = X[3] = W[3];
  711. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  712. T1 = X[4] = W[4];
  713. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  714. T1 = X[5] = W[5];
  715. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  716. T1 = X[6] = W[6];
  717. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  718. T1 = X[7] = W[7];
  719. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  720. T1 = X[8] = W[8];
  721. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  722. T1 = X[9] = W[9];
  723. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  724. T1 = X[10] = W[10];
  725. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  726. T1 = X[11] = W[11];
  727. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  728. T1 = X[12] = W[12];
  729. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  730. T1 = X[13] = W[13];
  731. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  732. T1 = X[14] = W[14];
  733. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  734. T1 = X[15] = W[15];
  735. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  736. # else
  737. T1 = X[0] = PULL64(W[0]);
  738. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  739. T1 = X[1] = PULL64(W[1]);
  740. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  741. T1 = X[2] = PULL64(W[2]);
  742. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  743. T1 = X[3] = PULL64(W[3]);
  744. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  745. T1 = X[4] = PULL64(W[4]);
  746. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  747. T1 = X[5] = PULL64(W[5]);
  748. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  749. T1 = X[6] = PULL64(W[6]);
  750. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  751. T1 = X[7] = PULL64(W[7]);
  752. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  753. T1 = X[8] = PULL64(W[8]);
  754. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  755. T1 = X[9] = PULL64(W[9]);
  756. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  757. T1 = X[10] = PULL64(W[10]);
  758. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  759. T1 = X[11] = PULL64(W[11]);
  760. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  761. T1 = X[12] = PULL64(W[12]);
  762. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  763. T1 = X[13] = PULL64(W[13]);
  764. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  765. T1 = X[14] = PULL64(W[14]);
  766. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  767. T1 = X[15] = PULL64(W[15]);
  768. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  769. # endif
  770. for (i = 16; i < 80; i += 16) {
  771. ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
  772. ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
  773. ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
  774. ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
  775. ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
  776. ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
  777. ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
  778. ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
  779. ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
  780. ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
  781. ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
  782. ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
  783. ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
  784. ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
  785. ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
  786. ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
  787. }
  788. ctx->h[0] += a;
  789. ctx->h[1] += b;
  790. ctx->h[2] += c;
  791. ctx->h[3] += d;
  792. ctx->h[4] += e;
  793. ctx->h[5] += f;
  794. ctx->h[6] += g;
  795. ctx->h[7] += h;
  796. W += SHA_LBLOCK;
  797. }
  798. }
  799. # endif
  800. #endif /* SHA512_ASM */