sha_local.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. /*
  2. * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <stdlib.h>
  10. #include <string.h>
  11. #include <openssl/opensslconf.h>
  12. #include <openssl/sha.h>
  13. #include "internal/endian.h"
  14. #define DATA_ORDER_IS_BIG_ENDIAN
  15. #define HASH_LONG SHA_LONG
  16. #define HASH_CTX SHA_CTX
  17. #define HASH_CBLOCK SHA_CBLOCK
  18. #define HASH_MAKE_STRING(c,s) do { \
  19. unsigned long ll; \
  20. ll=(c)->h0; (void)HOST_l2c(ll,(s)); \
  21. ll=(c)->h1; (void)HOST_l2c(ll,(s)); \
  22. ll=(c)->h2; (void)HOST_l2c(ll,(s)); \
  23. ll=(c)->h3; (void)HOST_l2c(ll,(s)); \
  24. ll=(c)->h4; (void)HOST_l2c(ll,(s)); \
  25. } while (0)
  26. #define HASH_UPDATE SHA1_Update
  27. #define HASH_TRANSFORM SHA1_Transform
  28. #define HASH_FINAL SHA1_Final
  29. #define HASH_INIT SHA1_Init
  30. #define HASH_BLOCK_DATA_ORDER sha1_block_data_order
  31. #define Xupdate(a,ix,ia,ib,ic,id) ( (a)=(ia^ib^ic^id), \
  32. ix=(a)=ROTATE((a),1) \
  33. )
  34. #ifndef SHA1_ASM
  35. static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
  36. #else
  37. void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
  38. #endif
  39. #include "crypto/md32_common.h"
  40. #define INIT_DATA_h0 0x67452301UL
  41. #define INIT_DATA_h1 0xefcdab89UL
  42. #define INIT_DATA_h2 0x98badcfeUL
  43. #define INIT_DATA_h3 0x10325476UL
  44. #define INIT_DATA_h4 0xc3d2e1f0UL
  45. int HASH_INIT(SHA_CTX *c)
  46. {
  47. memset(c, 0, sizeof(*c));
  48. c->h0 = INIT_DATA_h0;
  49. c->h1 = INIT_DATA_h1;
  50. c->h2 = INIT_DATA_h2;
  51. c->h3 = INIT_DATA_h3;
  52. c->h4 = INIT_DATA_h4;
  53. return 1;
  54. }
  55. #define K_00_19 0x5a827999UL
  56. #define K_20_39 0x6ed9eba1UL
  57. #define K_40_59 0x8f1bbcdcUL
  58. #define K_60_79 0xca62c1d6UL
  59. /*
  60. * As pointed out by Wei Dai, F() below can be simplified to the code in
  61. * F_00_19. Wei attributes these optimizations to Peter Gutmann's SHS code,
  62. * and he attributes it to Rich Schroeppel.
  63. * #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
  64. * I've just become aware of another tweak to be made, again from Wei Dai,
  65. * in F_40_59, (x&a)|(y&a) -> (x|y)&a
  66. */
  67. #define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
  68. #define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
  69. #define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d)))
  70. #define F_60_79(b,c,d) F_20_39(b,c,d)
  71. #ifndef OPENSSL_SMALL_FOOTPRINT
  72. # define BODY_00_15(i,a,b,c,d,e,f,xi) \
  73. (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
  74. (b)=ROTATE((b),30);
  75. # define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
  76. Xupdate(f,xi,xa,xb,xc,xd); \
  77. (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
  78. (b)=ROTATE((b),30);
  79. # define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
  80. Xupdate(f,xi,xa,xb,xc,xd); \
  81. (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
  82. (b)=ROTATE((b),30);
  83. # define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
  84. Xupdate(f,xa,xa,xb,xc,xd); \
  85. (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
  86. (b)=ROTATE((b),30);
  87. # define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
  88. Xupdate(f,xa,xa,xb,xc,xd); \
  89. (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
  90. (b)=ROTATE((b),30);
  91. # define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
  92. Xupdate(f,xa,xa,xb,xc,xd); \
  93. (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
  94. (b)=ROTATE((b),30);
  95. # ifdef X
  96. # undef X
  97. # endif
  98. # ifndef MD32_XARRAY
  99. /*
  100. * Originally X was an array. As it's automatic it's natural
  101. * to expect RISC compiler to accommodate at least part of it in
  102. * the register bank, isn't it? Unfortunately not all compilers
  103. * "find" this expectation reasonable:-( On order to make such
  104. * compilers generate better code I replace X[] with a bunch of
  105. * X0, X1, etc. See the function body below...
  106. */
  107. # define X(i) XX##i
  108. # else
  109. /*
  110. * However! Some compilers (most notably HP C) get overwhelmed by
  111. * that many local variables so that we have to have the way to
  112. * fall down to the original behavior.
  113. */
  114. # define X(i) XX[i]
  115. # endif
  116. # if !defined(SHA1_ASM)
  117. static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
  118. {
  119. const unsigned char *data = p;
  120. register unsigned MD32_REG_T A, B, C, D, E, T, l;
  121. # ifndef MD32_XARRAY
  122. unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
  123. XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15;
  124. # else
  125. SHA_LONG XX[16];
  126. # endif
  127. A = c->h0;
  128. B = c->h1;
  129. C = c->h2;
  130. D = c->h3;
  131. E = c->h4;
  132. for (;;) {
  133. DECLARE_IS_ENDIAN;
  134. if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4
  135. && ((size_t)p % 4) == 0) {
  136. const SHA_LONG *W = (const SHA_LONG *)data;
  137. X(0) = W[0];
  138. X(1) = W[1];
  139. BODY_00_15(0, A, B, C, D, E, T, X(0));
  140. X(2) = W[2];
  141. BODY_00_15(1, T, A, B, C, D, E, X(1));
  142. X(3) = W[3];
  143. BODY_00_15(2, E, T, A, B, C, D, X(2));
  144. X(4) = W[4];
  145. BODY_00_15(3, D, E, T, A, B, C, X(3));
  146. X(5) = W[5];
  147. BODY_00_15(4, C, D, E, T, A, B, X(4));
  148. X(6) = W[6];
  149. BODY_00_15(5, B, C, D, E, T, A, X(5));
  150. X(7) = W[7];
  151. BODY_00_15(6, A, B, C, D, E, T, X(6));
  152. X(8) = W[8];
  153. BODY_00_15(7, T, A, B, C, D, E, X(7));
  154. X(9) = W[9];
  155. BODY_00_15(8, E, T, A, B, C, D, X(8));
  156. X(10) = W[10];
  157. BODY_00_15(9, D, E, T, A, B, C, X(9));
  158. X(11) = W[11];
  159. BODY_00_15(10, C, D, E, T, A, B, X(10));
  160. X(12) = W[12];
  161. BODY_00_15(11, B, C, D, E, T, A, X(11));
  162. X(13) = W[13];
  163. BODY_00_15(12, A, B, C, D, E, T, X(12));
  164. X(14) = W[14];
  165. BODY_00_15(13, T, A, B, C, D, E, X(13));
  166. X(15) = W[15];
  167. BODY_00_15(14, E, T, A, B, C, D, X(14));
  168. BODY_00_15(15, D, E, T, A, B, C, X(15));
  169. data += SHA_CBLOCK;
  170. } else {
  171. (void)HOST_c2l(data, l);
  172. X(0) = l;
  173. (void)HOST_c2l(data, l);
  174. X(1) = l;
  175. BODY_00_15(0, A, B, C, D, E, T, X(0));
  176. (void)HOST_c2l(data, l);
  177. X(2) = l;
  178. BODY_00_15(1, T, A, B, C, D, E, X(1));
  179. (void)HOST_c2l(data, l);
  180. X(3) = l;
  181. BODY_00_15(2, E, T, A, B, C, D, X(2));
  182. (void)HOST_c2l(data, l);
  183. X(4) = l;
  184. BODY_00_15(3, D, E, T, A, B, C, X(3));
  185. (void)HOST_c2l(data, l);
  186. X(5) = l;
  187. BODY_00_15(4, C, D, E, T, A, B, X(4));
  188. (void)HOST_c2l(data, l);
  189. X(6) = l;
  190. BODY_00_15(5, B, C, D, E, T, A, X(5));
  191. (void)HOST_c2l(data, l);
  192. X(7) = l;
  193. BODY_00_15(6, A, B, C, D, E, T, X(6));
  194. (void)HOST_c2l(data, l);
  195. X(8) = l;
  196. BODY_00_15(7, T, A, B, C, D, E, X(7));
  197. (void)HOST_c2l(data, l);
  198. X(9) = l;
  199. BODY_00_15(8, E, T, A, B, C, D, X(8));
  200. (void)HOST_c2l(data, l);
  201. X(10) = l;
  202. BODY_00_15(9, D, E, T, A, B, C, X(9));
  203. (void)HOST_c2l(data, l);
  204. X(11) = l;
  205. BODY_00_15(10, C, D, E, T, A, B, X(10));
  206. (void)HOST_c2l(data, l);
  207. X(12) = l;
  208. BODY_00_15(11, B, C, D, E, T, A, X(11));
  209. (void)HOST_c2l(data, l);
  210. X(13) = l;
  211. BODY_00_15(12, A, B, C, D, E, T, X(12));
  212. (void)HOST_c2l(data, l);
  213. X(14) = l;
  214. BODY_00_15(13, T, A, B, C, D, E, X(13));
  215. (void)HOST_c2l(data, l);
  216. X(15) = l;
  217. BODY_00_15(14, E, T, A, B, C, D, X(14));
  218. BODY_00_15(15, D, E, T, A, B, C, X(15));
  219. }
  220. BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
  221. BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
  222. BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
  223. BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
  224. BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
  225. BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
  226. BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
  227. BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
  228. BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
  229. BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
  230. BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
  231. BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
  232. BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
  233. BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
  234. BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
  235. BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
  236. BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
  237. BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
  238. BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
  239. BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
  240. BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
  241. BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
  242. BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
  243. BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
  244. BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
  245. BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
  246. BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
  247. BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
  248. BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
  249. BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
  250. BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
  251. BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
  252. BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
  253. BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
  254. BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
  255. BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
  256. BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
  257. BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
  258. BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
  259. BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
  260. BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
  261. BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
  262. BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
  263. BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
  264. BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
  265. BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
  266. BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
  267. BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
  268. BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
  269. BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
  270. BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
  271. BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
  272. BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
  273. BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
  274. BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
  275. BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
  276. BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
  277. BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
  278. BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
  279. BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
  280. BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
  281. BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
  282. BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
  283. BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
  284. c->h0 = (c->h0 + E) & 0xffffffffL;
  285. c->h1 = (c->h1 + T) & 0xffffffffL;
  286. c->h2 = (c->h2 + A) & 0xffffffffL;
  287. c->h3 = (c->h3 + B) & 0xffffffffL;
  288. c->h4 = (c->h4 + C) & 0xffffffffL;
  289. if (--num == 0)
  290. break;
  291. A = c->h0;
  292. B = c->h1;
  293. C = c->h2;
  294. D = c->h3;
  295. E = c->h4;
  296. }
  297. }
  298. # endif
  299. #else /* OPENSSL_SMALL_FOOTPRINT */
  300. # define BODY_00_15(xi) do { \
  301. T=E+K_00_19+F_00_19(B,C,D); \
  302. E=D, D=C, C=ROTATE(B,30), B=A; \
  303. A=ROTATE(A,5)+T+xi; } while(0)
  304. # define BODY_16_19(xa,xb,xc,xd) do { \
  305. Xupdate(T,xa,xa,xb,xc,xd); \
  306. T+=E+K_00_19+F_00_19(B,C,D); \
  307. E=D, D=C, C=ROTATE(B,30), B=A; \
  308. A=ROTATE(A,5)+T; } while(0)
  309. # define BODY_20_39(xa,xb,xc,xd) do { \
  310. Xupdate(T,xa,xa,xb,xc,xd); \
  311. T+=E+K_20_39+F_20_39(B,C,D); \
  312. E=D, D=C, C=ROTATE(B,30), B=A; \
  313. A=ROTATE(A,5)+T; } while(0)
  314. # define BODY_40_59(xa,xb,xc,xd) do { \
  315. Xupdate(T,xa,xa,xb,xc,xd); \
  316. T+=E+K_40_59+F_40_59(B,C,D); \
  317. E=D, D=C, C=ROTATE(B,30), B=A; \
  318. A=ROTATE(A,5)+T; } while(0)
  319. # define BODY_60_79(xa,xb,xc,xd) do { \
  320. Xupdate(T,xa,xa,xb,xc,xd); \
  321. T=E+K_60_79+F_60_79(B,C,D); \
  322. E=D, D=C, C=ROTATE(B,30), B=A; \
  323. A=ROTATE(A,5)+T+xa; } while(0)
  324. # if !defined(SHA1_ASM)
  325. static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
  326. {
  327. const unsigned char *data = p;
  328. register unsigned MD32_REG_T A, B, C, D, E, T, l;
  329. int i;
  330. SHA_LONG X[16];
  331. A = c->h0;
  332. B = c->h1;
  333. C = c->h2;
  334. D = c->h3;
  335. E = c->h4;
  336. for (;;) {
  337. for (i = 0; i < 16; i++) {
  338. (void)HOST_c2l(data, l);
  339. X[i] = l;
  340. BODY_00_15(X[i]);
  341. }
  342. for (i = 0; i < 4; i++) {
  343. BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]);
  344. }
  345. for (; i < 24; i++) {
  346. BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15],
  347. X[(i + 13) & 15]);
  348. }
  349. for (i = 0; i < 20; i++) {
  350. BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
  351. X[(i + 5) & 15]);
  352. }
  353. for (i = 4; i < 24; i++) {
  354. BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
  355. X[(i + 5) & 15]);
  356. }
  357. c->h0 = (c->h0 + A) & 0xffffffffL;
  358. c->h1 = (c->h1 + B) & 0xffffffffL;
  359. c->h2 = (c->h2 + C) & 0xffffffffL;
  360. c->h3 = (c->h3 + D) & 0xffffffffL;
  361. c->h4 = (c->h4 + E) & 0xffffffffL;
  362. if (--num == 0)
  363. break;
  364. A = c->h0;
  365. B = c->h1;
  366. C = c->h2;
  367. D = c->h3;
  368. E = c->h4;
  369. }
  370. }
  371. # endif
  372. #endif