123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- =pod
- =head1 NAME
- DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
- DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
- DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
- DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
- DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
- DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
- DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
- DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
- DES_fcrypt, DES_crypt - DES encryption
- =head1 SYNOPSIS
- #include <openssl/des.h>
- The following functions have been deprecated since OpenSSL 3.0, and can be
- hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value,
- see L<openssl_user_macros(7)>:
- void DES_random_key(DES_cblock *ret);
- int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
- int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
- int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule);
- void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule);
- void DES_set_odd_parity(DES_cblock *key);
- int DES_is_weak_key(const_DES_cblock *key);
- void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
- DES_key_schedule *ks, int enc);
- void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
- DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
- void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
- DES_key_schedule *ks1, DES_key_schedule *ks2,
- DES_key_schedule *ks3, int enc);
- void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- int enc);
- void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
- int numbits, long length, DES_key_schedule *schedule,
- DES_cblock *ivec, int enc);
- void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
- int numbits, long length, DES_key_schedule *schedule,
- DES_cblock *ivec);
- void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- int enc);
- void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- int *num, int enc);
- void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- int *num);
- void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- const_DES_cblock *inw, const_DES_cblock *outw, int enc);
- void DES_ede2_cbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_cblock *ivec, int enc);
- void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_cblock *ivec,
- int *num, int enc);
- void DES_ede2_ofb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_cblock *ivec, int *num);
- void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_key_schedule *ks3,
- DES_cblock *ivec, int enc);
- void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_key_schedule *ks3,
- DES_cblock *ivec, int *num, int enc);
- void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_key_schedule *ks3,
- DES_cblock *ivec, int *num);
- DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
- long length, DES_key_schedule *schedule,
- const_DES_cblock *ivec);
- DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
- long length, int out_count, DES_cblock *seed);
- void DES_string_to_key(const char *str, DES_cblock *key);
- void DES_string_to_2keys(const char *str, DES_cblock *key1, DES_cblock *key2);
- char *DES_fcrypt(const char *buf, const char *salt, char *ret);
- char *DES_crypt(const char *buf, const char *salt);
- =head1 DESCRIPTION
- All of the functions described on this page are deprecated. Applications should
- instead use L<EVP_EncryptInit_ex(3)>, L<EVP_EncryptUpdate(3)> and
- L<EVP_EncryptFinal_ex(3)> or the equivalently named decrypt functions.
- This library contains a fast implementation of the DES encryption
- algorithm.
- There are two phases to the use of DES encryption. The first is the
- generation of a I<DES_key_schedule> from a key, the second is the
- actual encryption. A DES key is of type I<DES_cblock>. This type
- consists of 8 bytes with odd parity. The least significant bit in
- each byte is the parity bit. The key schedule is an expanded form of
- the key; it is used to speed the encryption process.
- DES_random_key() generates a random key. The random generator must be
- seeded when calling this function.
- If the automatic seeding or reseeding of the OpenSSL CSPRNG fails due to
- external circumstances (see L<RAND(7)>), the operation will fail.
- If the function fails, 0 is returned.
- Before a DES key can be used, it must be converted into the
- architecture dependent I<DES_key_schedule> via the
- DES_set_key_checked() or DES_set_key_unchecked() function.
- DES_set_key_checked() will check that the key passed is of odd parity
- and is not a weak or semi-weak key. If the parity is wrong, then -1
- is returned. If the key is a weak key, then -2 is returned. If an
- error is returned, the key schedule is not generated.
- DES_set_key() works like DES_set_key_checked() and remains for
- backward compatibility.
- DES_set_odd_parity() sets the parity of the passed I<key> to odd.
- DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it
- is ok.
- The following routines mostly operate on an input and output stream of
- I<DES_cblock>s.
- DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
- decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
- (ECB) mode. It always transforms the input data, pointed to by
- I<input>, into the output data, pointed to by the I<output> argument.
- If the I<encrypt> argument is nonzero (DES_ENCRYPT), the I<input>
- (cleartext) is encrypted in to the I<output> (ciphertext) using the
- key_schedule specified by the I<schedule> argument, previously set via
- I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
- ciphertext) is decrypted into the I<output> (now cleartext). Input
- and output may overlap. DES_ecb_encrypt() does not return a value.
- DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
- three-key Triple-DES encryption in ECB mode. This involves encrypting
- the input with I<ks1>, decrypting with the key schedule I<ks2>, and
- then encrypting with I<ks3>. This routine greatly reduces the chances
- of brute force breaking of DES and has the advantage of if I<ks1>,
- I<ks2> and I<ks3> are the same, it is equivalent to just encryption
- using ECB mode and I<ks1> as the key.
- The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
- encryption by using I<ks1> for the final encryption.
- DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
- (CBC) mode of DES. If the I<encrypt> argument is nonzero, the
- routine cipher-block-chain encrypts the cleartext data pointed to by
- the I<input> argument into the ciphertext pointed to by the I<output>
- argument, using the key schedule provided by the I<schedule> argument,
- and initialization vector provided by the I<ivec> argument. If the
- I<length> argument is not an integral multiple of eight bytes, the
- last block is copied to a temporary area and zero filled. The output
- is always an integral multiple of eight bytes.
- DES_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and
- I<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret
- (unlike the iv) and are as such, part of the key. So the key is sort
- of 24 bytes. This is much better than CBC DES.
- DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
- three keys. This means that each DES operation inside the CBC mode is
- C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL.
- The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
- reusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>.
- This form of Triple-DES is used by the RSAREF library.
- DES_pcbc_encrypt() encrypts/decrypts using the propagating cipher block
- chaining mode used by Kerberos v4. Its parameters are the same as
- DES_ncbc_encrypt().
- DES_cfb_encrypt() encrypts/decrypts using cipher feedback mode. This
- method takes an array of characters as input and outputs an array of
- characters. It does not require any padding to 8 character groups.
- Note: the I<ivec> variable is changed and the new changed value needs to
- be passed to the next call to this function. Since this function runs
- a complete DES ECB encryption per I<numbits>, this function is only
- suggested for use when sending a small number of characters.
- DES_cfb64_encrypt()
- implements CFB mode of DES with 64-bit feedback. Why is this
- useful you ask? Because this routine will allow you to encrypt an
- arbitrary number of bytes, without 8 byte padding. Each call to this
- routine will encrypt the input bytes to output and then update ivec
- and num. num contains 'how far' we are though ivec. If this does
- not make much sense, read more about CFB mode of DES.
- DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
- DES_cfb64_encrypt() except that Triple-DES is used.
- DES_ofb_encrypt() encrypts using output feedback mode. This method
- takes an array of characters as input and outputs an array of
- characters. It does not require any padding to 8 character groups.
- Note: the I<ivec> variable is changed and the new changed value needs to
- be passed to the next call to this function. Since this function runs
- a complete DES ECB encryption per I<numbits>, this function is only
- suggested for use when sending a small number of characters.
- DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
- Feed Back mode.
- DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
- DES_ofb64_encrypt(), using Triple-DES.
- The following functions are included in the DES library for
- compatibility with the MIT Kerberos library.
- DES_cbc_cksum() produces an 8 byte checksum based on the input stream
- (via CBC encryption). The last 4 bytes of the checksum are returned
- and the complete 8 bytes are placed in I<output>. This function is
- used by Kerberos v4. Other applications should use
- L<EVP_DigestInit(3)> etc. instead.
- DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte
- checksum from the input bytes. The algorithm can be iterated over the
- input, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is
- non-NULL, the 8 bytes generated by each pass are written into
- I<output>.
- The following are DES-based transformations:
- DES_fcrypt() is a fast version of the Unix crypt(3) function. This
- version takes only a small amount of space relative to other fast
- crypt() implementations. This is different to the normal crypt() in
- that the third parameter is the buffer that the return value is
- written into. It needs to be at least 14 bytes long. This function
- is thread safe, unlike the normal crypt().
- DES_crypt() is a faster replacement for the normal system crypt().
- This function calls DES_fcrypt() with a static array passed as the
- third parameter. This mostly emulates the normal non-thread-safe semantics
- of crypt(3).
- The B<salt> must be two ASCII characters.
- The values returned by DES_fcrypt() and DES_crypt() are terminated by NUL
- character.
- DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
- buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
- using I<sched> for the key and I<iv> as a starting vector. The actual
- data send down I<fd> consists of 4 bytes (in network byte order)
- containing the length of the following encrypted data. The encrypted
- data then follows, padded with random data out to a multiple of 8
- bytes.
- =head1 BUGS
- DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
- instead.
- DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
- What this means is that if you set numbits to 12, and length to 2, the
- first 12 bits will come from the 1st input byte and the low half of
- the second input byte. The second 12 bits will have the low 8 bits
- taken from the 3rd input byte and the top 4 bits taken from the 4th
- input byte. The same holds for output. This function has been
- implemented this way because most people will be using a multiple of 8
- and because once you get into pulling bytes input bytes apart things
- get ugly!
- DES_string_to_key() is available for backward compatibility with the
- MIT library. New applications should use a cryptographic hash function.
- The same applies for DES_string_to_2key().
- =head1 NOTES
- The B<des> library was written to be source code compatible with
- the MIT Kerberos library.
- Applications should use the higher level functions
- L<EVP_EncryptInit(3)> etc. instead of calling these
- functions directly.
- Single-key DES is insecure due to its short key size. ECB mode is
- not suitable for most applications; see L<des_modes(7)>.
- =head1 RETURN VALUES
- DES_set_key(), DES_key_sched(), and DES_set_key_checked()
- return 0 on success or negative values on error.
- DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it
- is ok.
- DES_cbc_cksum() and DES_quad_cksum() return 4-byte integer representing the
- last 4 bytes of the checksum of the input.
- DES_fcrypt() returns a pointer to the caller-provided buffer and DES_crypt() -
- to a static buffer on success; otherwise they return NULL.
- =head1 SEE ALSO
- L<des_modes(7)>,
- L<EVP_EncryptInit(3)>
- =head1 HISTORY
- All of these functions were deprecated in OpenSSL 3.0.
- The requirement that the B<salt> parameter to DES_crypt() and DES_fcrypt()
- be two ASCII characters was first enforced in
- OpenSSL 1.1.0. Previous versions tried to use the letter uppercase B<A>
- if both character were not present, and could crash when given non-ASCII
- on some platforms.
- =head1 COPYRIGHT
- Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.
- Licensed under the Apache License 2.0 (the "License"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file LICENSE in the source distribution or at
- L<https://www.openssl.org/source/license.html>.
- =cut
|