sha512-armv8.pl 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889
  1. #! /usr/bin/env perl
  2. # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License 2.0 (the "License"). You may not use
  5. # this file except in compliance with the License. You can obtain a copy
  6. # in the file LICENSE in the source distribution or at
  7. # https://www.openssl.org/source/license.html
  8. # ====================================================================
  9. # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
  10. # project. The module is, however, dual licensed under OpenSSL and
  11. # CRYPTOGAMS licenses depending on where you obtain it. For further
  12. # details see http://www.openssl.org/~appro/cryptogams/.
  13. #
  14. # Permission to use under GPLv2 terms is granted.
  15. # ====================================================================
  16. #
  17. # SHA256/512 for ARMv8.
  18. #
  19. # Performance in cycles per processed byte and improvement coefficient
  20. # over code generated with "default" compiler:
  21. #
  22. # SHA256-hw SHA256(*) SHA512
  23. # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
  24. # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
  25. # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
  26. # Denver 2.01 10.5 (+26%) 6.70 (+8%)
  27. # X-Gene 20.0 (+100%) 12.8 (+300%(***))
  28. # Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
  29. # Kryo 1.92 17.4 (+30%) 11.2 (+8%)
  30. # ThunderX2 2.54 13.2 (+40%) 8.40 (+18%)
  31. #
  32. # (*) Software SHA256 results are of lesser relevance, presented
  33. # mostly for informational purposes.
  34. # (**) The result is a trade-off: it's possible to improve it by
  35. # 10% (or by 1 cycle per round), but at the cost of 20% loss
  36. # on Cortex-A53 (or by 4 cycles per round).
  37. # (***) Super-impressive coefficients over gcc-generated code are
  38. # indication of some compiler "pathology", most notably code
  39. # generated with -mgeneral-regs-only is significantly faster
  40. # and the gap is only 40-90%.
  41. #
  42. # October 2016.
  43. #
  44. # Originally it was reckoned that it makes no sense to implement NEON
  45. # version of SHA256 for 64-bit processors. This is because performance
  46. # improvement on most wide-spread Cortex-A5x processors was observed
  47. # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
  48. # observed that 32-bit NEON SHA256 performs significantly better than
  49. # 64-bit scalar version on *some* of the more recent processors. As
  50. # result 64-bit NEON version of SHA256 was added to provide best
  51. # all-round performance. For example it executes ~30% faster on X-Gene
  52. # and Mongoose. [For reference, NEON version of SHA512 is bound to
  53. # deliver much less improvement, likely *negative* on Cortex-A5x.
  54. # Which is why NEON support is limited to SHA256.]
  55. # $output is the last argument if it looks like a file (it has an extension)
  56. # $flavour is the first argument if it doesn't look like a file
  57. $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
  58. $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
  59. if ($flavour && $flavour ne "void") {
  60. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
  61. ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
  62. ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
  63. die "can't locate arm-xlate.pl";
  64. open OUT,"| \"$^X\" $xlate $flavour \"$output\""
  65. or die "can't call $xlate: $!";
  66. *STDOUT=*OUT;
  67. } else {
  68. $output and open STDOUT,">$output";
  69. }
  70. if ($output =~ /512/) {
  71. $BITS=512;
  72. $SZ=8;
  73. @Sigma0=(28,34,39);
  74. @Sigma1=(14,18,41);
  75. @sigma0=(1, 8, 7);
  76. @sigma1=(19,61, 6);
  77. $rounds=80;
  78. $reg_t="x";
  79. } else {
  80. $BITS=256;
  81. $SZ=4;
  82. @Sigma0=( 2,13,22);
  83. @Sigma1=( 6,11,25);
  84. @sigma0=( 7,18, 3);
  85. @sigma1=(17,19,10);
  86. $rounds=64;
  87. $reg_t="w";
  88. }
  89. $func="sha${BITS}_block_data_order";
  90. ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
  91. @X=map("$reg_t$_",(3..15,0..2));
  92. @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
  93. ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
  94. sub BODY_00_xx {
  95. my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
  96. my $j=($i+1)&15;
  97. my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
  98. $T0=@X[$i+3] if ($i<11);
  99. $code.=<<___ if ($i<16);
  100. #ifndef __AARCH64EB__
  101. rev @X[$i],@X[$i] // $i
  102. #endif
  103. ___
  104. $code.=<<___ if ($i<13 && ($i&1));
  105. ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
  106. ___
  107. $code.=<<___ if ($i==13);
  108. ldp @X[14],@X[15],[$inp]
  109. ___
  110. $code.=<<___ if ($i>=14);
  111. ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
  112. ___
  113. $code.=<<___ if ($i>0 && $i<16);
  114. add $a,$a,$t1 // h+=Sigma0(a)
  115. ___
  116. $code.=<<___ if ($i>=11);
  117. str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
  118. ___
  119. # While ARMv8 specifies merged rotate-n-logical operation such as
  120. # 'eor x,y,z,ror#n', it was found to negatively affect performance
  121. # on Apple A7. The reason seems to be that it requires even 'y' to
  122. # be available earlier. This means that such merged instruction is
  123. # not necessarily best choice on critical path... On the other hand
  124. # Cortex-A5x handles merged instructions much better than disjoint
  125. # rotate and logical... See (**) footnote above.
  126. $code.=<<___ if ($i<15);
  127. ror $t0,$e,#$Sigma1[0]
  128. add $h,$h,$t2 // h+=K[i]
  129. eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
  130. and $t1,$f,$e
  131. bic $t2,$g,$e
  132. add $h,$h,@X[$i&15] // h+=X[i]
  133. orr $t1,$t1,$t2 // Ch(e,f,g)
  134. eor $t2,$a,$b // a^b, b^c in next round
  135. eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
  136. ror $T0,$a,#$Sigma0[0]
  137. add $h,$h,$t1 // h+=Ch(e,f,g)
  138. eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
  139. add $h,$h,$t0 // h+=Sigma1(e)
  140. and $t3,$t3,$t2 // (b^c)&=(a^b)
  141. add $d,$d,$h // d+=h
  142. eor $t3,$t3,$b // Maj(a,b,c)
  143. eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
  144. add $h,$h,$t3 // h+=Maj(a,b,c)
  145. ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
  146. //add $h,$h,$t1 // h+=Sigma0(a)
  147. ___
  148. $code.=<<___ if ($i>=15);
  149. ror $t0,$e,#$Sigma1[0]
  150. add $h,$h,$t2 // h+=K[i]
  151. ror $T1,@X[($j+1)&15],#$sigma0[0]
  152. and $t1,$f,$e
  153. ror $T2,@X[($j+14)&15],#$sigma1[0]
  154. bic $t2,$g,$e
  155. ror $T0,$a,#$Sigma0[0]
  156. add $h,$h,@X[$i&15] // h+=X[i]
  157. eor $t0,$t0,$e,ror#$Sigma1[1]
  158. eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
  159. orr $t1,$t1,$t2 // Ch(e,f,g)
  160. eor $t2,$a,$b // a^b, b^c in next round
  161. eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
  162. eor $T0,$T0,$a,ror#$Sigma0[1]
  163. add $h,$h,$t1 // h+=Ch(e,f,g)
  164. and $t3,$t3,$t2 // (b^c)&=(a^b)
  165. eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
  166. eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
  167. add $h,$h,$t0 // h+=Sigma1(e)
  168. eor $t3,$t3,$b // Maj(a,b,c)
  169. eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
  170. eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
  171. add @X[$j],@X[$j],@X[($j+9)&15]
  172. add $d,$d,$h // d+=h
  173. add $h,$h,$t3 // h+=Maj(a,b,c)
  174. ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
  175. add @X[$j],@X[$j],$T1
  176. add $h,$h,$t1 // h+=Sigma0(a)
  177. add @X[$j],@X[$j],$T2
  178. ___
  179. ($t2,$t3)=($t3,$t2);
  180. }
  181. $code.=<<___;
  182. #ifndef __KERNEL__
  183. # include "arm_arch.h"
  184. .extern OPENSSL_armcap_P
  185. .hidden OPENSSL_armcap_P
  186. #endif
  187. .text
  188. .globl $func
  189. .type $func,%function
  190. .align 6
  191. $func:
  192. #ifndef __KERNEL__
  193. adrp x16,OPENSSL_armcap_P
  194. ldr w16,[x16,#:lo12:OPENSSL_armcap_P]
  195. ___
  196. $code.=<<___ if ($SZ==4);
  197. tst w16,#ARMV8_SHA256
  198. b.ne .Lv8_entry
  199. tst w16,#ARMV7_NEON
  200. b.ne .Lneon_entry
  201. ___
  202. $code.=<<___ if ($SZ==8);
  203. tst w16,#ARMV8_SHA512
  204. b.ne .Lv8_entry
  205. ___
  206. $code.=<<___;
  207. #endif
  208. .inst 0xd503233f // paciasp
  209. stp x29,x30,[sp,#-128]!
  210. add x29,sp,#0
  211. stp x19,x20,[sp,#16]
  212. stp x21,x22,[sp,#32]
  213. stp x23,x24,[sp,#48]
  214. stp x25,x26,[sp,#64]
  215. stp x27,x28,[sp,#80]
  216. sub sp,sp,#4*$SZ
  217. ldp $A,$B,[$ctx] // load context
  218. ldp $C,$D,[$ctx,#2*$SZ]
  219. ldp $E,$F,[$ctx,#4*$SZ]
  220. add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
  221. ldp $G,$H,[$ctx,#6*$SZ]
  222. adr $Ktbl,.LK$BITS
  223. stp $ctx,$num,[x29,#96]
  224. .Loop:
  225. ldp @X[0],@X[1],[$inp],#2*$SZ
  226. ldr $t2,[$Ktbl],#$SZ // *K++
  227. eor $t3,$B,$C // magic seed
  228. str $inp,[x29,#112]
  229. ___
  230. for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
  231. $code.=".Loop_16_xx:\n";
  232. for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
  233. $code.=<<___;
  234. cbnz $t2,.Loop_16_xx
  235. ldp $ctx,$num,[x29,#96]
  236. ldr $inp,[x29,#112]
  237. sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
  238. ldp @X[0],@X[1],[$ctx]
  239. ldp @X[2],@X[3],[$ctx,#2*$SZ]
  240. add $inp,$inp,#14*$SZ // advance input pointer
  241. ldp @X[4],@X[5],[$ctx,#4*$SZ]
  242. add $A,$A,@X[0]
  243. ldp @X[6],@X[7],[$ctx,#6*$SZ]
  244. add $B,$B,@X[1]
  245. add $C,$C,@X[2]
  246. add $D,$D,@X[3]
  247. stp $A,$B,[$ctx]
  248. add $E,$E,@X[4]
  249. add $F,$F,@X[5]
  250. stp $C,$D,[$ctx,#2*$SZ]
  251. add $G,$G,@X[6]
  252. add $H,$H,@X[7]
  253. cmp $inp,$num
  254. stp $E,$F,[$ctx,#4*$SZ]
  255. stp $G,$H,[$ctx,#6*$SZ]
  256. b.ne .Loop
  257. ldp x19,x20,[x29,#16]
  258. add sp,sp,#4*$SZ
  259. ldp x21,x22,[x29,#32]
  260. ldp x23,x24,[x29,#48]
  261. ldp x25,x26,[x29,#64]
  262. ldp x27,x28,[x29,#80]
  263. ldp x29,x30,[sp],#128
  264. .inst 0xd50323bf // autiasp
  265. ret
  266. .size $func,.-$func
  267. .align 6
  268. .type .LK$BITS,%object
  269. .LK$BITS:
  270. ___
  271. $code.=<<___ if ($SZ==8);
  272. .quad 0x428a2f98d728ae22,0x7137449123ef65cd
  273. .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
  274. .quad 0x3956c25bf348b538,0x59f111f1b605d019
  275. .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
  276. .quad 0xd807aa98a3030242,0x12835b0145706fbe
  277. .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
  278. .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
  279. .quad 0x9bdc06a725c71235,0xc19bf174cf692694
  280. .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
  281. .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
  282. .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
  283. .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
  284. .quad 0x983e5152ee66dfab,0xa831c66d2db43210
  285. .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
  286. .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
  287. .quad 0x06ca6351e003826f,0x142929670a0e6e70
  288. .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
  289. .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
  290. .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
  291. .quad 0x81c2c92e47edaee6,0x92722c851482353b
  292. .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
  293. .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
  294. .quad 0xd192e819d6ef5218,0xd69906245565a910
  295. .quad 0xf40e35855771202a,0x106aa07032bbd1b8
  296. .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
  297. .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
  298. .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
  299. .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
  300. .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
  301. .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
  302. .quad 0x90befffa23631e28,0xa4506cebde82bde9
  303. .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
  304. .quad 0xca273eceea26619c,0xd186b8c721c0c207
  305. .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
  306. .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
  307. .quad 0x113f9804bef90dae,0x1b710b35131c471b
  308. .quad 0x28db77f523047d84,0x32caab7b40c72493
  309. .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
  310. .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
  311. .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
  312. .quad 0 // terminator
  313. ___
  314. $code.=<<___ if ($SZ==4);
  315. .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
  316. .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
  317. .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
  318. .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
  319. .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
  320. .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
  321. .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
  322. .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
  323. .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
  324. .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
  325. .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
  326. .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
  327. .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
  328. .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
  329. .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
  330. .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
  331. .long 0 //terminator
  332. ___
  333. $code.=<<___;
  334. .size .LK$BITS,.-.LK$BITS
  335. .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
  336. .align 2
  337. ___
  338. if ($SZ==4) {
  339. my $Ktbl="x3";
  340. my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
  341. my @MSG=map("v$_.16b",(4..7));
  342. my ($W0,$W1)=("v16.4s","v17.4s");
  343. my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
  344. $code.=<<___;
  345. #ifndef __KERNEL__
  346. .type sha256_block_armv8,%function
  347. .align 6
  348. sha256_block_armv8:
  349. .Lv8_entry:
  350. stp x29,x30,[sp,#-16]!
  351. add x29,sp,#0
  352. ld1.32 {$ABCD,$EFGH},[$ctx]
  353. adr $Ktbl,.LK256
  354. .Loop_hw:
  355. ld1 {@MSG[0]-@MSG[3]},[$inp],#64
  356. sub $num,$num,#1
  357. ld1.32 {$W0},[$Ktbl],#16
  358. rev32 @MSG[0],@MSG[0]
  359. rev32 @MSG[1],@MSG[1]
  360. rev32 @MSG[2],@MSG[2]
  361. rev32 @MSG[3],@MSG[3]
  362. orr $ABCD_SAVE,$ABCD,$ABCD // offload
  363. orr $EFGH_SAVE,$EFGH,$EFGH
  364. ___
  365. for($i=0;$i<12;$i++) {
  366. $code.=<<___;
  367. ld1.32 {$W1},[$Ktbl],#16
  368. add.i32 $W0,$W0,@MSG[0]
  369. sha256su0 @MSG[0],@MSG[1]
  370. orr $abcd,$ABCD,$ABCD
  371. sha256h $ABCD,$EFGH,$W0
  372. sha256h2 $EFGH,$abcd,$W0
  373. sha256su1 @MSG[0],@MSG[2],@MSG[3]
  374. ___
  375. ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
  376. }
  377. $code.=<<___;
  378. ld1.32 {$W1},[$Ktbl],#16
  379. add.i32 $W0,$W0,@MSG[0]
  380. orr $abcd,$ABCD,$ABCD
  381. sha256h $ABCD,$EFGH,$W0
  382. sha256h2 $EFGH,$abcd,$W0
  383. ld1.32 {$W0},[$Ktbl],#16
  384. add.i32 $W1,$W1,@MSG[1]
  385. orr $abcd,$ABCD,$ABCD
  386. sha256h $ABCD,$EFGH,$W1
  387. sha256h2 $EFGH,$abcd,$W1
  388. ld1.32 {$W1},[$Ktbl]
  389. add.i32 $W0,$W0,@MSG[2]
  390. sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
  391. orr $abcd,$ABCD,$ABCD
  392. sha256h $ABCD,$EFGH,$W0
  393. sha256h2 $EFGH,$abcd,$W0
  394. add.i32 $W1,$W1,@MSG[3]
  395. orr $abcd,$ABCD,$ABCD
  396. sha256h $ABCD,$EFGH,$W1
  397. sha256h2 $EFGH,$abcd,$W1
  398. add.i32 $ABCD,$ABCD,$ABCD_SAVE
  399. add.i32 $EFGH,$EFGH,$EFGH_SAVE
  400. cbnz $num,.Loop_hw
  401. st1.32 {$ABCD,$EFGH},[$ctx]
  402. ldr x29,[sp],#16
  403. ret
  404. .size sha256_block_armv8,.-sha256_block_armv8
  405. #endif
  406. ___
  407. }
  408. if ($SZ==4) { ######################################### NEON stuff #
  409. # You'll surely note a lot of similarities with sha256-armv4 module,
  410. # and of course it's not a coincidence. sha256-armv4 was used as
  411. # initial template, but was adapted for ARMv8 instruction set and
  412. # extensively re-tuned for all-round performance.
  413. my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
  414. my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
  415. my $Ktbl="x16";
  416. my $Xfer="x17";
  417. my @X = map("q$_",(0..3));
  418. my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
  419. my $j=0;
  420. sub AUTOLOAD() # thunk [simplified] x86-style perlasm
  421. { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
  422. my $arg = pop;
  423. $arg = "#$arg" if ($arg*1 eq $arg);
  424. $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
  425. }
  426. sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
  427. sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
  428. sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
  429. sub Xupdate()
  430. { use integer;
  431. my $body = shift;
  432. my @insns = (&$body,&$body,&$body,&$body);
  433. my ($a,$b,$c,$d,$e,$f,$g,$h);
  434. &ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
  435. eval(shift(@insns));
  436. eval(shift(@insns));
  437. eval(shift(@insns));
  438. &ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
  439. eval(shift(@insns));
  440. eval(shift(@insns));
  441. &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
  442. eval(shift(@insns));
  443. eval(shift(@insns));
  444. &ushr_32 ($T2,$T0,$sigma0[0]);
  445. eval(shift(@insns));
  446. &ushr_32 ($T1,$T0,$sigma0[2]);
  447. eval(shift(@insns));
  448. &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
  449. eval(shift(@insns));
  450. &sli_32 ($T2,$T0,32-$sigma0[0]);
  451. eval(shift(@insns));
  452. eval(shift(@insns));
  453. &ushr_32 ($T3,$T0,$sigma0[1]);
  454. eval(shift(@insns));
  455. eval(shift(@insns));
  456. &eor_8 ($T1,$T1,$T2);
  457. eval(shift(@insns));
  458. eval(shift(@insns));
  459. &sli_32 ($T3,$T0,32-$sigma0[1]);
  460. eval(shift(@insns));
  461. eval(shift(@insns));
  462. &ushr_32 ($T4,$T7,$sigma1[0]);
  463. eval(shift(@insns));
  464. eval(shift(@insns));
  465. &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
  466. eval(shift(@insns));
  467. eval(shift(@insns));
  468. &sli_32 ($T4,$T7,32-$sigma1[0]);
  469. eval(shift(@insns));
  470. eval(shift(@insns));
  471. &ushr_32 ($T5,$T7,$sigma1[2]);
  472. eval(shift(@insns));
  473. eval(shift(@insns));
  474. &ushr_32 ($T3,$T7,$sigma1[1]);
  475. eval(shift(@insns));
  476. eval(shift(@insns));
  477. &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
  478. eval(shift(@insns));
  479. eval(shift(@insns));
  480. &sli_u32 ($T3,$T7,32-$sigma1[1]);
  481. eval(shift(@insns));
  482. eval(shift(@insns));
  483. &eor_8 ($T5,$T5,$T4);
  484. eval(shift(@insns));
  485. eval(shift(@insns));
  486. eval(shift(@insns));
  487. &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
  488. eval(shift(@insns));
  489. eval(shift(@insns));
  490. eval(shift(@insns));
  491. &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
  492. eval(shift(@insns));
  493. eval(shift(@insns));
  494. eval(shift(@insns));
  495. &ushr_32 ($T6,@X[0],$sigma1[0]);
  496. eval(shift(@insns));
  497. &ushr_32 ($T7,@X[0],$sigma1[2]);
  498. eval(shift(@insns));
  499. eval(shift(@insns));
  500. &sli_32 ($T6,@X[0],32-$sigma1[0]);
  501. eval(shift(@insns));
  502. &ushr_32 ($T5,@X[0],$sigma1[1]);
  503. eval(shift(@insns));
  504. eval(shift(@insns));
  505. &eor_8 ($T7,$T7,$T6);
  506. eval(shift(@insns));
  507. eval(shift(@insns));
  508. &sli_32 ($T5,@X[0],32-$sigma1[1]);
  509. eval(shift(@insns));
  510. eval(shift(@insns));
  511. &ld1_32 ("{$T0}","[$Ktbl], #16");
  512. eval(shift(@insns));
  513. &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
  514. eval(shift(@insns));
  515. eval(shift(@insns));
  516. &eor_8 ($T5,$T5,$T5);
  517. eval(shift(@insns));
  518. eval(shift(@insns));
  519. &mov (&Dhi($T5), &Dlo($T7));
  520. eval(shift(@insns));
  521. eval(shift(@insns));
  522. eval(shift(@insns));
  523. &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
  524. eval(shift(@insns));
  525. eval(shift(@insns));
  526. eval(shift(@insns));
  527. &add_32 ($T0,$T0,@X[0]);
  528. while($#insns>=1) { eval(shift(@insns)); }
  529. &st1_32 ("{$T0}","[$Xfer], #16");
  530. eval(shift(@insns));
  531. push(@X,shift(@X)); # "rotate" X[]
  532. }
  533. sub Xpreload()
  534. { use integer;
  535. my $body = shift;
  536. my @insns = (&$body,&$body,&$body,&$body);
  537. my ($a,$b,$c,$d,$e,$f,$g,$h);
  538. eval(shift(@insns));
  539. eval(shift(@insns));
  540. &ld1_8 ("{@X[0]}","[$inp],#16");
  541. eval(shift(@insns));
  542. eval(shift(@insns));
  543. &ld1_32 ("{$T0}","[$Ktbl],#16");
  544. eval(shift(@insns));
  545. eval(shift(@insns));
  546. eval(shift(@insns));
  547. eval(shift(@insns));
  548. &rev32 (@X[0],@X[0]);
  549. eval(shift(@insns));
  550. eval(shift(@insns));
  551. eval(shift(@insns));
  552. eval(shift(@insns));
  553. &add_32 ($T0,$T0,@X[0]);
  554. foreach (@insns) { eval; } # remaining instructions
  555. &st1_32 ("{$T0}","[$Xfer], #16");
  556. push(@X,shift(@X)); # "rotate" X[]
  557. }
  558. sub body_00_15 () {
  559. (
  560. '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
  561. '&add ($h,$h,$t1)', # h+=X[i]+K[i]
  562. '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
  563. '&and ($t1,$f,$e)',
  564. '&bic ($t4,$g,$e)',
  565. '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
  566. '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
  567. '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
  568. '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
  569. '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
  570. '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
  571. '&ror ($t0,$t0,"#$Sigma1[0]")',
  572. '&eor ($t2,$a,$b)', # a^b, b^c in next round
  573. '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
  574. '&add ($h,$h,$t0)', # h+=Sigma1(e)
  575. '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
  576. '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
  577. '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
  578. '&ror ($t4,$t4,"#$Sigma0[0]")',
  579. '&add ($d,$d,$h)', # d+=h
  580. '&eor ($t3,$t3,$b)', # Maj(a,b,c)
  581. '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
  582. )
  583. }
  584. $code.=<<___;
  585. #ifdef __KERNEL__
  586. .globl sha256_block_neon
  587. #endif
  588. .type sha256_block_neon,%function
  589. .align 4
  590. sha256_block_neon:
  591. .Lneon_entry:
  592. stp x29, x30, [sp, #-16]!
  593. mov x29, sp
  594. sub sp,sp,#16*4
  595. adr $Ktbl,.LK256
  596. add $num,$inp,$num,lsl#6 // len to point at the end of inp
  597. ld1.8 {@X[0]},[$inp], #16
  598. ld1.8 {@X[1]},[$inp], #16
  599. ld1.8 {@X[2]},[$inp], #16
  600. ld1.8 {@X[3]},[$inp], #16
  601. ld1.32 {$T0},[$Ktbl], #16
  602. ld1.32 {$T1},[$Ktbl], #16
  603. ld1.32 {$T2},[$Ktbl], #16
  604. ld1.32 {$T3},[$Ktbl], #16
  605. rev32 @X[0],@X[0] // yes, even on
  606. rev32 @X[1],@X[1] // big-endian
  607. rev32 @X[2],@X[2]
  608. rev32 @X[3],@X[3]
  609. mov $Xfer,sp
  610. add.32 $T0,$T0,@X[0]
  611. add.32 $T1,$T1,@X[1]
  612. add.32 $T2,$T2,@X[2]
  613. st1.32 {$T0-$T1},[$Xfer], #32
  614. add.32 $T3,$T3,@X[3]
  615. st1.32 {$T2-$T3},[$Xfer]
  616. sub $Xfer,$Xfer,#32
  617. ldp $A,$B,[$ctx]
  618. ldp $C,$D,[$ctx,#8]
  619. ldp $E,$F,[$ctx,#16]
  620. ldp $G,$H,[$ctx,#24]
  621. ldr $t1,[sp,#0]
  622. mov $t2,wzr
  623. eor $t3,$B,$C
  624. mov $t4,wzr
  625. b .L_00_48
  626. .align 4
  627. .L_00_48:
  628. ___
  629. &Xupdate(\&body_00_15);
  630. &Xupdate(\&body_00_15);
  631. &Xupdate(\&body_00_15);
  632. &Xupdate(\&body_00_15);
  633. $code.=<<___;
  634. cmp $t1,#0 // check for K256 terminator
  635. ldr $t1,[sp,#0]
  636. sub $Xfer,$Xfer,#64
  637. bne .L_00_48
  638. sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
  639. cmp $inp,$num
  640. mov $Xfer, #64
  641. csel $Xfer, $Xfer, xzr, eq
  642. sub $inp,$inp,$Xfer // avoid SEGV
  643. mov $Xfer,sp
  644. ___
  645. &Xpreload(\&body_00_15);
  646. &Xpreload(\&body_00_15);
  647. &Xpreload(\&body_00_15);
  648. &Xpreload(\&body_00_15);
  649. $code.=<<___;
  650. add $A,$A,$t4 // h+=Sigma0(a) from the past
  651. ldp $t0,$t1,[$ctx,#0]
  652. add $A,$A,$t2 // h+=Maj(a,b,c) from the past
  653. ldp $t2,$t3,[$ctx,#8]
  654. add $A,$A,$t0 // accumulate
  655. add $B,$B,$t1
  656. ldp $t0,$t1,[$ctx,#16]
  657. add $C,$C,$t2
  658. add $D,$D,$t3
  659. ldp $t2,$t3,[$ctx,#24]
  660. add $E,$E,$t0
  661. add $F,$F,$t1
  662. ldr $t1,[sp,#0]
  663. stp $A,$B,[$ctx,#0]
  664. add $G,$G,$t2
  665. mov $t2,wzr
  666. stp $C,$D,[$ctx,#8]
  667. add $H,$H,$t3
  668. stp $E,$F,[$ctx,#16]
  669. eor $t3,$B,$C
  670. stp $G,$H,[$ctx,#24]
  671. mov $t4,wzr
  672. mov $Xfer,sp
  673. b.ne .L_00_48
  674. ldr x29,[x29]
  675. add sp,sp,#16*4+16
  676. ret
  677. .size sha256_block_neon,.-sha256_block_neon
  678. ___
  679. }
  680. if ($SZ==8) {
  681. my $Ktbl="x3";
  682. my @H = map("v$_.16b",(0..4));
  683. my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
  684. my @MSG=map("v$_.16b",(16..23));
  685. my ($W0,$W1)=("v24.2d","v25.2d");
  686. my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
  687. $code.=<<___;
  688. #ifndef __KERNEL__
  689. .type sha512_block_armv8,%function
  690. .align 6
  691. sha512_block_armv8:
  692. .Lv8_entry:
  693. stp x29,x30,[sp,#-16]!
  694. add x29,sp,#0
  695. ld1 {@MSG[0]-@MSG[3]},[$inp],#64 // load input
  696. ld1 {@MSG[4]-@MSG[7]},[$inp],#64
  697. ld1.64 {@H[0]-@H[3]},[$ctx] // load context
  698. adr $Ktbl,.LK512
  699. rev64 @MSG[0],@MSG[0]
  700. rev64 @MSG[1],@MSG[1]
  701. rev64 @MSG[2],@MSG[2]
  702. rev64 @MSG[3],@MSG[3]
  703. rev64 @MSG[4],@MSG[4]
  704. rev64 @MSG[5],@MSG[5]
  705. rev64 @MSG[6],@MSG[6]
  706. rev64 @MSG[7],@MSG[7]
  707. b .Loop_hw
  708. .align 4
  709. .Loop_hw:
  710. ld1.64 {$W0},[$Ktbl],#16
  711. subs $num,$num,#1
  712. sub x4,$inp,#128
  713. orr $AB,@H[0],@H[0] // offload
  714. orr $CD,@H[1],@H[1]
  715. orr $EF,@H[2],@H[2]
  716. orr $GH,@H[3],@H[3]
  717. csel $inp,$inp,x4,ne // conditional rewind
  718. ___
  719. for($i=0;$i<32;$i++) {
  720. $code.=<<___;
  721. add.i64 $W0,$W0,@MSG[0]
  722. ld1.64 {$W1},[$Ktbl],#16
  723. ext $W0,$W0,$W0,#8
  724. ext $fg,@H[2],@H[3],#8
  725. ext $de,@H[1],@H[2],#8
  726. add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]"
  727. sha512su0 @MSG[0],@MSG[1]
  728. ext $m9_10,@MSG[4],@MSG[5],#8
  729. sha512h @H[3],$fg,$de
  730. sha512su1 @MSG[0],@MSG[7],$m9_10
  731. add.i64 @H[4],@H[1],@H[3] // "D + T1"
  732. sha512h2 @H[3],$H[1],@H[0]
  733. ___
  734. ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
  735. @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
  736. }
  737. for(;$i<40;$i++) {
  738. $code.=<<___ if ($i<39);
  739. ld1.64 {$W1},[$Ktbl],#16
  740. ___
  741. $code.=<<___ if ($i==39);
  742. sub $Ktbl,$Ktbl,#$rounds*$SZ // rewind
  743. ___
  744. $code.=<<___;
  745. add.i64 $W0,$W0,@MSG[0]
  746. ld1 {@MSG[0]},[$inp],#16 // load next input
  747. ext $W0,$W0,$W0,#8
  748. ext $fg,@H[2],@H[3],#8
  749. ext $de,@H[1],@H[2],#8
  750. add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]"
  751. sha512h @H[3],$fg,$de
  752. rev64 @MSG[0],@MSG[0]
  753. add.i64 @H[4],@H[1],@H[3] // "D + T1"
  754. sha512h2 @H[3],$H[1],@H[0]
  755. ___
  756. ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
  757. @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
  758. }
  759. $code.=<<___;
  760. add.i64 @H[0],@H[0],$AB // accumulate
  761. add.i64 @H[1],@H[1],$CD
  762. add.i64 @H[2],@H[2],$EF
  763. add.i64 @H[3],@H[3],$GH
  764. cbnz $num,.Loop_hw
  765. st1.64 {@H[0]-@H[3]},[$ctx] // store context
  766. ldr x29,[sp],#16
  767. ret
  768. .size sha512_block_armv8,.-sha512_block_armv8
  769. #endif
  770. ___
  771. }
  772. { my %opcode = (
  773. "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
  774. "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
  775. sub unsha256 {
  776. my ($mnemonic,$arg)=@_;
  777. $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
  778. &&
  779. sprintf ".inst\t0x%08x\t//%s %s",
  780. $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
  781. $mnemonic,$arg;
  782. }
  783. }
  784. { my %opcode = (
  785. "sha512h" => 0xce608000, "sha512h2" => 0xce608400,
  786. "sha512su0" => 0xcec08000, "sha512su1" => 0xce608800 );
  787. sub unsha512 {
  788. my ($mnemonic,$arg)=@_;
  789. $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
  790. &&
  791. sprintf ".inst\t0x%08x\t//%s %s",
  792. $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
  793. $mnemonic,$arg;
  794. }
  795. }
  796. open SELF,$0;
  797. while(<SELF>) {
  798. next if (/^#!/);
  799. last if (!s/^#/\/\// and !/^$/);
  800. print;
  801. }
  802. close SELF;
  803. foreach(split("\n",$code)) {
  804. s/\`([^\`]*)\`/eval($1)/ge;
  805. s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge or
  806. s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
  807. s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
  808. s/\.[ui]?8(\s)/$1/;
  809. s/\.\w?64\b// and s/\.16b/\.2d/g or
  810. s/\.\w?32\b// and s/\.16b/\.4s/g;
  811. m/\bext\b/ and s/\.2d/\.16b/g or
  812. m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
  813. print $_,"\n";
  814. }
  815. close STDOUT or die "error closing STDOUT: $!";