e_afalg.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. /*
  2. * Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /* We need to use some deprecated APIs */
  10. #define OPENSSL_SUPPRESS_DEPRECATED
  11. /* Required for vmsplice */
  12. #ifndef _GNU_SOURCE
  13. # define _GNU_SOURCE
  14. #endif
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include <unistd.h>
  18. #include <openssl/engine.h>
  19. #include <openssl/async.h>
  20. #include <openssl/err.h>
  21. #include "internal/nelem.h"
  22. #include <sys/socket.h>
  23. #include <linux/version.h>
  24. #define K_MAJ 4
  25. #define K_MIN1 1
  26. #define K_MIN2 0
  27. #if LINUX_VERSION_CODE < KERNEL_VERSION(K_MAJ, K_MIN1, K_MIN2) || \
  28. !defined(AF_ALG)
  29. # ifndef PEDANTIC
  30. # warning "AFALG ENGINE requires Kernel Headers >= 4.1.0"
  31. # warning "Skipping Compilation of AFALG engine"
  32. # endif
  33. void engine_load_afalg_int(void);
  34. void engine_load_afalg_int(void)
  35. {
  36. }
  37. #else
  38. # include <linux/if_alg.h>
  39. # include <fcntl.h>
  40. # include <sys/utsname.h>
  41. # include <linux/aio_abi.h>
  42. # include <sys/syscall.h>
  43. # include <errno.h>
  44. # include "e_afalg.h"
  45. # include "e_afalg_err.c"
  46. # ifndef SOL_ALG
  47. # define SOL_ALG 279
  48. # endif
  49. # ifdef ALG_ZERO_COPY
  50. # ifndef SPLICE_F_GIFT
  51. # define SPLICE_F_GIFT (0x08)
  52. # endif
  53. # endif
  54. # define ALG_AES_IV_LEN 16
  55. # define ALG_IV_LEN(len) (sizeof(struct af_alg_iv) + (len))
  56. # define ALG_OP_TYPE unsigned int
  57. # define ALG_OP_LEN (sizeof(ALG_OP_TYPE))
  58. # ifdef OPENSSL_NO_DYNAMIC_ENGINE
  59. void engine_load_afalg_int(void);
  60. # endif
  61. /* Local Linkage Functions */
  62. static int afalg_init_aio(afalg_aio *aio);
  63. static int afalg_fin_cipher_aio(afalg_aio *ptr, int sfd,
  64. unsigned char *buf, size_t len);
  65. static int afalg_create_sk(afalg_ctx *actx, const char *ciphertype,
  66. const char *ciphername);
  67. static int afalg_destroy(ENGINE *e);
  68. static int afalg_init(ENGINE *e);
  69. static int afalg_finish(ENGINE *e);
  70. static const EVP_CIPHER *afalg_aes_cbc(int nid);
  71. static cbc_handles *get_cipher_handle(int nid);
  72. static int afalg_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
  73. const int **nids, int nid);
  74. static int afalg_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  75. const unsigned char *iv, int enc);
  76. static int afalg_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  77. const unsigned char *in, size_t inl);
  78. static int afalg_cipher_cleanup(EVP_CIPHER_CTX *ctx);
  79. static int afalg_chk_platform(void);
  80. /* Engine Id and Name */
  81. static const char *engine_afalg_id = "afalg";
  82. static const char *engine_afalg_name = "AFALG engine support";
  83. static int afalg_cipher_nids[] = {
  84. NID_aes_128_cbc,
  85. NID_aes_192_cbc,
  86. NID_aes_256_cbc,
  87. };
  88. static cbc_handles cbc_handle[] = {{AES_KEY_SIZE_128, NULL},
  89. {AES_KEY_SIZE_192, NULL},
  90. {AES_KEY_SIZE_256, NULL}};
  91. static ossl_inline int io_setup(unsigned n, aio_context_t *ctx)
  92. {
  93. return syscall(__NR_io_setup, n, ctx);
  94. }
  95. static ossl_inline int eventfd(int n)
  96. {
  97. return syscall(__NR_eventfd2, n, 0);
  98. }
  99. static ossl_inline int io_destroy(aio_context_t ctx)
  100. {
  101. return syscall(__NR_io_destroy, ctx);
  102. }
  103. static ossl_inline int io_read(aio_context_t ctx, long n, struct iocb **iocb)
  104. {
  105. return syscall(__NR_io_submit, ctx, n, iocb);
  106. }
  107. /* A version of 'struct timespec' with 32-bit time_t and nanoseconds. */
  108. struct __timespec32
  109. {
  110. __kernel_long_t tv_sec;
  111. __kernel_long_t tv_nsec;
  112. };
  113. static ossl_inline int io_getevents(aio_context_t ctx, long min, long max,
  114. struct io_event *events,
  115. struct timespec *timeout)
  116. {
  117. #if defined(__NR_io_pgetevents_time64)
  118. /* Check if we are a 32-bit architecture with a 64-bit time_t */
  119. if (sizeof(*timeout) != sizeof(struct __timespec32)) {
  120. int ret = syscall(__NR_io_pgetevents_time64, ctx, min, max, events,
  121. timeout, NULL);
  122. if (ret == 0 || errno != ENOSYS)
  123. return ret;
  124. }
  125. #endif
  126. #if defined(__NR_io_getevents)
  127. if (sizeof(*timeout) == sizeof(struct __timespec32))
  128. /*
  129. * time_t matches our architecture length, we can just use
  130. * __NR_io_getevents
  131. */
  132. return syscall(__NR_io_getevents, ctx, min, max, events, timeout);
  133. else {
  134. /*
  135. * We don't have __NR_io_pgetevents_time64, but we are using a
  136. * 64-bit time_t on a 32-bit architecture. If we can fit the
  137. * timeout value in a 32-bit time_t, then let's do that
  138. * and then use the __NR_io_getevents syscall.
  139. */
  140. if (timeout && timeout->tv_sec == (long)timeout->tv_sec) {
  141. struct __timespec32 ts32;
  142. ts32.tv_sec = (__kernel_long_t) timeout->tv_sec;
  143. ts32.tv_nsec = (__kernel_long_t) timeout->tv_nsec;
  144. return syscall(__NR_io_getevents, ctx, min, max, events, ts32);
  145. } else {
  146. return syscall(__NR_io_getevents, ctx, min, max, events, NULL);
  147. }
  148. }
  149. #endif
  150. errno = ENOSYS;
  151. return -1;
  152. }
  153. static void afalg_waitfd_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
  154. OSSL_ASYNC_FD waitfd, void *custom)
  155. {
  156. close(waitfd);
  157. }
  158. static int afalg_setup_async_event_notification(afalg_aio *aio)
  159. {
  160. ASYNC_JOB *job;
  161. ASYNC_WAIT_CTX *waitctx;
  162. void *custom = NULL;
  163. int ret;
  164. if ((job = ASYNC_get_current_job()) != NULL) {
  165. /* Async mode */
  166. waitctx = ASYNC_get_wait_ctx(job);
  167. if (waitctx == NULL) {
  168. ALG_WARN("%s(%d): ASYNC_get_wait_ctx error", __FILE__, __LINE__);
  169. return 0;
  170. }
  171. /* Get waitfd from ASYNC_WAIT_CTX if it is already set */
  172. ret = ASYNC_WAIT_CTX_get_fd(waitctx, engine_afalg_id,
  173. &aio->efd, &custom);
  174. if (ret == 0) {
  175. /*
  176. * waitfd is not set in ASYNC_WAIT_CTX, create a new one
  177. * and set it. efd will be signaled when AIO operation completes
  178. */
  179. aio->efd = eventfd(0);
  180. if (aio->efd == -1) {
  181. ALG_PERR("%s(%d): Failed to get eventfd : ", __FILE__,
  182. __LINE__);
  183. AFALGerr(AFALG_F_AFALG_SETUP_ASYNC_EVENT_NOTIFICATION,
  184. AFALG_R_EVENTFD_FAILED);
  185. return 0;
  186. }
  187. ret = ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_afalg_id,
  188. aio->efd, custom,
  189. afalg_waitfd_cleanup);
  190. if (ret == 0) {
  191. ALG_WARN("%s(%d): Failed to set wait fd", __FILE__, __LINE__);
  192. close(aio->efd);
  193. return 0;
  194. }
  195. /* make fd non-blocking in async mode */
  196. if (fcntl(aio->efd, F_SETFL, O_NONBLOCK) != 0) {
  197. ALG_WARN("%s(%d): Failed to set event fd as NONBLOCKING",
  198. __FILE__, __LINE__);
  199. }
  200. }
  201. aio->mode = MODE_ASYNC;
  202. } else {
  203. /* Sync mode */
  204. aio->efd = eventfd(0);
  205. if (aio->efd == -1) {
  206. ALG_PERR("%s(%d): Failed to get eventfd : ", __FILE__, __LINE__);
  207. AFALGerr(AFALG_F_AFALG_SETUP_ASYNC_EVENT_NOTIFICATION,
  208. AFALG_R_EVENTFD_FAILED);
  209. return 0;
  210. }
  211. aio->mode = MODE_SYNC;
  212. }
  213. return 1;
  214. }
  215. static int afalg_init_aio(afalg_aio *aio)
  216. {
  217. int r = -1;
  218. /* Initialise for AIO */
  219. aio->aio_ctx = 0;
  220. r = io_setup(MAX_INFLIGHTS, &aio->aio_ctx);
  221. if (r < 0) {
  222. ALG_PERR("%s(%d): io_setup error : ", __FILE__, __LINE__);
  223. AFALGerr(AFALG_F_AFALG_INIT_AIO, AFALG_R_IO_SETUP_FAILED);
  224. return 0;
  225. }
  226. memset(aio->cbt, 0, sizeof(aio->cbt));
  227. aio->efd = -1;
  228. aio->mode = MODE_UNINIT;
  229. return 1;
  230. }
  231. static int afalg_fin_cipher_aio(afalg_aio *aio, int sfd, unsigned char *buf,
  232. size_t len)
  233. {
  234. int r;
  235. int retry = 0;
  236. unsigned int done = 0;
  237. struct iocb *cb;
  238. struct timespec timeout;
  239. struct io_event events[MAX_INFLIGHTS];
  240. u_int64_t eval = 0;
  241. timeout.tv_sec = 0;
  242. timeout.tv_nsec = 0;
  243. /* if efd has not been initialised yet do it here */
  244. if (aio->mode == MODE_UNINIT) {
  245. r = afalg_setup_async_event_notification(aio);
  246. if (r == 0)
  247. return 0;
  248. }
  249. cb = &(aio->cbt[0 % MAX_INFLIGHTS]);
  250. memset(cb, '\0', sizeof(*cb));
  251. cb->aio_fildes = sfd;
  252. cb->aio_lio_opcode = IOCB_CMD_PREAD;
  253. /*
  254. * The pointer has to be converted to unsigned value first to avoid
  255. * sign extension on cast to 64 bit value in 32-bit builds
  256. */
  257. cb->aio_buf = (size_t)buf;
  258. cb->aio_offset = 0;
  259. cb->aio_data = 0;
  260. cb->aio_nbytes = len;
  261. cb->aio_flags = IOCB_FLAG_RESFD;
  262. cb->aio_resfd = aio->efd;
  263. /*
  264. * Perform AIO read on AFALG socket, this in turn performs an async
  265. * crypto operation in kernel space
  266. */
  267. r = io_read(aio->aio_ctx, 1, &cb);
  268. if (r < 0) {
  269. ALG_PWARN("%s(%d): io_read failed : ", __FILE__, __LINE__);
  270. return 0;
  271. }
  272. do {
  273. /* While AIO read is being performed pause job */
  274. ASYNC_pause_job();
  275. /* Check for completion of AIO read */
  276. r = read(aio->efd, &eval, sizeof(eval));
  277. if (r < 0) {
  278. if (errno == EAGAIN || errno == EWOULDBLOCK)
  279. continue;
  280. ALG_PERR("%s(%d): read failed for event fd : ", __FILE__, __LINE__);
  281. return 0;
  282. } else if (r == 0 || eval <= 0) {
  283. ALG_WARN("%s(%d): eventfd read %d bytes, eval = %lu\n", __FILE__,
  284. __LINE__, r, eval);
  285. }
  286. if (eval > 0) {
  287. /* Get results of AIO read */
  288. r = io_getevents(aio->aio_ctx, 1, MAX_INFLIGHTS,
  289. events, &timeout);
  290. if (r > 0) {
  291. /*
  292. * events.res indicates the actual status of the operation.
  293. * Handle the error condition first.
  294. */
  295. if (events[0].res < 0) {
  296. /*
  297. * Underlying operation cannot be completed at the time
  298. * of previous submission. Resubmit for the operation.
  299. */
  300. if (events[0].res == -EBUSY && retry++ < 3) {
  301. r = io_read(aio->aio_ctx, 1, &cb);
  302. if (r < 0) {
  303. ALG_PERR("%s(%d): retry %d for io_read failed : ",
  304. __FILE__, __LINE__, retry);
  305. return 0;
  306. }
  307. continue;
  308. } else {
  309. /*
  310. * Retries exceed for -EBUSY or unrecoverable error
  311. * condition for this instance of operation.
  312. */
  313. ALG_WARN
  314. ("%s(%d): Crypto Operation failed with code %lld\n",
  315. __FILE__, __LINE__, events[0].res);
  316. return 0;
  317. }
  318. }
  319. /* Operation successful. */
  320. done = 1;
  321. } else if (r < 0) {
  322. ALG_PERR("%s(%d): io_getevents failed : ", __FILE__, __LINE__);
  323. return 0;
  324. } else {
  325. ALG_WARN("%s(%d): io_geteventd read 0 bytes\n", __FILE__,
  326. __LINE__);
  327. }
  328. }
  329. } while (!done);
  330. return 1;
  331. }
  332. static ossl_inline void afalg_set_op_sk(struct cmsghdr *cmsg,
  333. const ALG_OP_TYPE op)
  334. {
  335. cmsg->cmsg_level = SOL_ALG;
  336. cmsg->cmsg_type = ALG_SET_OP;
  337. cmsg->cmsg_len = CMSG_LEN(ALG_OP_LEN);
  338. memcpy(CMSG_DATA(cmsg), &op, ALG_OP_LEN);
  339. }
  340. static void afalg_set_iv_sk(struct cmsghdr *cmsg, const unsigned char *iv,
  341. const unsigned int len)
  342. {
  343. struct af_alg_iv *aiv;
  344. cmsg->cmsg_level = SOL_ALG;
  345. cmsg->cmsg_type = ALG_SET_IV;
  346. cmsg->cmsg_len = CMSG_LEN(ALG_IV_LEN(len));
  347. aiv = (struct af_alg_iv *)CMSG_DATA(cmsg);
  348. aiv->ivlen = len;
  349. memcpy(aiv->iv, iv, len);
  350. }
  351. static ossl_inline int afalg_set_key(afalg_ctx *actx, const unsigned char *key,
  352. const int klen)
  353. {
  354. int ret;
  355. ret = setsockopt(actx->bfd, SOL_ALG, ALG_SET_KEY, key, klen);
  356. if (ret < 0) {
  357. ALG_PERR("%s(%d): Failed to set socket option : ", __FILE__, __LINE__);
  358. AFALGerr(AFALG_F_AFALG_SET_KEY, AFALG_R_SOCKET_SET_KEY_FAILED);
  359. return 0;
  360. }
  361. return 1;
  362. }
  363. static int afalg_create_sk(afalg_ctx *actx, const char *ciphertype,
  364. const char *ciphername)
  365. {
  366. struct sockaddr_alg sa;
  367. int r = -1;
  368. actx->bfd = actx->sfd = -1;
  369. memset(&sa, 0, sizeof(sa));
  370. sa.salg_family = AF_ALG;
  371. OPENSSL_strlcpy((char *) sa.salg_type, ciphertype, sizeof(sa.salg_type));
  372. OPENSSL_strlcpy((char *) sa.salg_name, ciphername, sizeof(sa.salg_name));
  373. actx->bfd = socket(AF_ALG, SOCK_SEQPACKET, 0);
  374. if (actx->bfd == -1) {
  375. ALG_PERR("%s(%d): Failed to open socket : ", __FILE__, __LINE__);
  376. AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_CREATE_FAILED);
  377. goto err;
  378. }
  379. r = bind(actx->bfd, (struct sockaddr *)&sa, sizeof(sa));
  380. if (r < 0) {
  381. ALG_PERR("%s(%d): Failed to bind socket : ", __FILE__, __LINE__);
  382. AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_BIND_FAILED);
  383. goto err;
  384. }
  385. actx->sfd = accept(actx->bfd, NULL, 0);
  386. if (actx->sfd < 0) {
  387. ALG_PERR("%s(%d): Socket Accept Failed : ", __FILE__, __LINE__);
  388. AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_ACCEPT_FAILED);
  389. goto err;
  390. }
  391. return 1;
  392. err:
  393. if (actx->bfd >= 0)
  394. close(actx->bfd);
  395. if (actx->sfd >= 0)
  396. close(actx->sfd);
  397. actx->bfd = actx->sfd = -1;
  398. return 0;
  399. }
  400. static int afalg_start_cipher_sk(afalg_ctx *actx, const unsigned char *in,
  401. size_t inl, const unsigned char *iv,
  402. unsigned int enc)
  403. {
  404. struct msghdr msg;
  405. struct cmsghdr *cmsg;
  406. struct iovec iov;
  407. ssize_t sbytes;
  408. # ifdef ALG_ZERO_COPY
  409. int ret;
  410. # endif
  411. char cbuf[CMSG_SPACE(ALG_IV_LEN(ALG_AES_IV_LEN)) + CMSG_SPACE(ALG_OP_LEN)];
  412. memset(&msg, 0, sizeof(msg));
  413. memset(cbuf, 0, sizeof(cbuf));
  414. msg.msg_control = cbuf;
  415. msg.msg_controllen = sizeof(cbuf);
  416. /*
  417. * cipher direction (i.e. encrypt or decrypt) and iv are sent to the
  418. * kernel as part of sendmsg()'s ancillary data
  419. */
  420. cmsg = CMSG_FIRSTHDR(&msg);
  421. afalg_set_op_sk(cmsg, enc);
  422. cmsg = CMSG_NXTHDR(&msg, cmsg);
  423. afalg_set_iv_sk(cmsg, iv, ALG_AES_IV_LEN);
  424. /* iov that describes input data */
  425. iov.iov_base = (unsigned char *)in;
  426. iov.iov_len = inl;
  427. msg.msg_flags = MSG_MORE;
  428. # ifdef ALG_ZERO_COPY
  429. /*
  430. * ZERO_COPY mode
  431. * Works best when buffer is 4k aligned
  432. * OPENS: out of place processing (i.e. out != in)
  433. */
  434. /* Input data is not sent as part of call to sendmsg() */
  435. msg.msg_iovlen = 0;
  436. msg.msg_iov = NULL;
  437. /* Sendmsg() sends iv and cipher direction to the kernel */
  438. sbytes = sendmsg(actx->sfd, &msg, 0);
  439. if (sbytes < 0) {
  440. ALG_PERR("%s(%d): sendmsg failed for zero copy cipher operation : ",
  441. __FILE__, __LINE__);
  442. return 0;
  443. }
  444. /*
  445. * vmsplice and splice are used to pin the user space input buffer for
  446. * kernel space processing avoiding copies from user to kernel space
  447. */
  448. ret = vmsplice(actx->zc_pipe[1], &iov, 1, SPLICE_F_GIFT);
  449. if (ret < 0) {
  450. ALG_PERR("%s(%d): vmsplice failed : ", __FILE__, __LINE__);
  451. return 0;
  452. }
  453. ret = splice(actx->zc_pipe[0], NULL, actx->sfd, NULL, inl, 0);
  454. if (ret < 0) {
  455. ALG_PERR("%s(%d): splice failed : ", __FILE__, __LINE__);
  456. return 0;
  457. }
  458. # else
  459. msg.msg_iovlen = 1;
  460. msg.msg_iov = &iov;
  461. /* Sendmsg() sends iv, cipher direction and input data to the kernel */
  462. sbytes = sendmsg(actx->sfd, &msg, 0);
  463. if (sbytes < 0) {
  464. ALG_PERR("%s(%d): sendmsg failed for cipher operation : ", __FILE__,
  465. __LINE__);
  466. return 0;
  467. }
  468. if (sbytes != (ssize_t) inl) {
  469. ALG_WARN("Cipher operation send bytes %zd != inlen %zd\n", sbytes,
  470. inl);
  471. return 0;
  472. }
  473. # endif
  474. return 1;
  475. }
  476. static int afalg_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  477. const unsigned char *iv, int enc)
  478. {
  479. int ciphertype;
  480. int ret;
  481. afalg_ctx *actx;
  482. const char *ciphername;
  483. if (ctx == NULL || key == NULL) {
  484. ALG_WARN("%s(%d): Null Parameter\n", __FILE__, __LINE__);
  485. return 0;
  486. }
  487. if (EVP_CIPHER_CTX_get0_cipher(ctx) == NULL) {
  488. ALG_WARN("%s(%d): Cipher object NULL\n", __FILE__, __LINE__);
  489. return 0;
  490. }
  491. actx = EVP_CIPHER_CTX_get_cipher_data(ctx);
  492. if (actx == NULL) {
  493. ALG_WARN("%s(%d): Cipher data NULL\n", __FILE__, __LINE__);
  494. return 0;
  495. }
  496. ciphertype = EVP_CIPHER_CTX_get_nid(ctx);
  497. switch (ciphertype) {
  498. case NID_aes_128_cbc:
  499. case NID_aes_192_cbc:
  500. case NID_aes_256_cbc:
  501. ciphername = "cbc(aes)";
  502. break;
  503. default:
  504. ALG_WARN("%s(%d): Unsupported Cipher type %d\n", __FILE__, __LINE__,
  505. ciphertype);
  506. return 0;
  507. }
  508. if (ALG_AES_IV_LEN != EVP_CIPHER_CTX_get_iv_length(ctx)) {
  509. ALG_WARN("%s(%d): Unsupported IV length :%d\n", __FILE__, __LINE__,
  510. EVP_CIPHER_CTX_get_iv_length(ctx));
  511. return 0;
  512. }
  513. /* Setup AFALG socket for crypto processing */
  514. ret = afalg_create_sk(actx, "skcipher", ciphername);
  515. if (ret < 1)
  516. return 0;
  517. ret = afalg_set_key(actx, key, EVP_CIPHER_CTX_get_key_length(ctx));
  518. if (ret < 1)
  519. goto err;
  520. /* Setup AIO ctx to allow async AFALG crypto processing */
  521. if (afalg_init_aio(&actx->aio) == 0)
  522. goto err;
  523. # ifdef ALG_ZERO_COPY
  524. pipe(actx->zc_pipe);
  525. # endif
  526. actx->init_done = MAGIC_INIT_NUM;
  527. return 1;
  528. err:
  529. close(actx->sfd);
  530. close(actx->bfd);
  531. return 0;
  532. }
  533. static int afalg_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  534. const unsigned char *in, size_t inl)
  535. {
  536. afalg_ctx *actx;
  537. int ret;
  538. char nxtiv[ALG_AES_IV_LEN] = { 0 };
  539. if (ctx == NULL || out == NULL || in == NULL) {
  540. ALG_WARN("NULL parameter passed to function %s(%d)\n", __FILE__,
  541. __LINE__);
  542. return 0;
  543. }
  544. actx = (afalg_ctx *) EVP_CIPHER_CTX_get_cipher_data(ctx);
  545. if (actx == NULL || actx->init_done != MAGIC_INIT_NUM) {
  546. ALG_WARN("%s afalg ctx passed\n",
  547. ctx == NULL ? "NULL" : "Uninitialised");
  548. return 0;
  549. }
  550. /*
  551. * set iv now for decrypt operation as the input buffer can be
  552. * overwritten for inplace operation where in = out.
  553. */
  554. if (EVP_CIPHER_CTX_is_encrypting(ctx) == 0) {
  555. memcpy(nxtiv, in + (inl - ALG_AES_IV_LEN), ALG_AES_IV_LEN);
  556. }
  557. /* Send input data to kernel space */
  558. ret = afalg_start_cipher_sk(actx, (unsigned char *)in, inl,
  559. EVP_CIPHER_CTX_iv(ctx),
  560. EVP_CIPHER_CTX_is_encrypting(ctx));
  561. if (ret < 1) {
  562. return 0;
  563. }
  564. /* Perform async crypto operation in kernel space */
  565. ret = afalg_fin_cipher_aio(&actx->aio, actx->sfd, out, inl);
  566. if (ret < 1)
  567. return 0;
  568. if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
  569. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), out + (inl - ALG_AES_IV_LEN),
  570. ALG_AES_IV_LEN);
  571. } else {
  572. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), nxtiv, ALG_AES_IV_LEN);
  573. }
  574. return 1;
  575. }
  576. static int afalg_cipher_cleanup(EVP_CIPHER_CTX *ctx)
  577. {
  578. afalg_ctx *actx;
  579. if (ctx == NULL) {
  580. ALG_WARN("NULL parameter passed to function %s(%d)\n", __FILE__,
  581. __LINE__);
  582. return 0;
  583. }
  584. actx = (afalg_ctx *) EVP_CIPHER_CTX_get_cipher_data(ctx);
  585. if (actx == NULL || actx->init_done != MAGIC_INIT_NUM) {
  586. ALG_WARN("%s afalg ctx passed\n",
  587. ctx == NULL ? "NULL" : "Uninitialised");
  588. return 0;
  589. }
  590. close(actx->sfd);
  591. close(actx->bfd);
  592. # ifdef ALG_ZERO_COPY
  593. close(actx->zc_pipe[0]);
  594. close(actx->zc_pipe[1]);
  595. # endif
  596. /* close efd in sync mode, async mode is closed in afalg_waitfd_cleanup() */
  597. if (actx->aio.mode == MODE_SYNC)
  598. close(actx->aio.efd);
  599. io_destroy(actx->aio.aio_ctx);
  600. return 1;
  601. }
  602. static cbc_handles *get_cipher_handle(int nid)
  603. {
  604. switch (nid) {
  605. case NID_aes_128_cbc:
  606. return &cbc_handle[AES_CBC_128];
  607. case NID_aes_192_cbc:
  608. return &cbc_handle[AES_CBC_192];
  609. case NID_aes_256_cbc:
  610. return &cbc_handle[AES_CBC_256];
  611. default:
  612. return NULL;
  613. }
  614. }
  615. static const EVP_CIPHER *afalg_aes_cbc(int nid)
  616. {
  617. cbc_handles *cipher_handle = get_cipher_handle(nid);
  618. if (cipher_handle == NULL)
  619. return NULL;
  620. if (cipher_handle->_hidden == NULL
  621. && ((cipher_handle->_hidden =
  622. EVP_CIPHER_meth_new(nid,
  623. AES_BLOCK_SIZE,
  624. cipher_handle->key_size)) == NULL
  625. || !EVP_CIPHER_meth_set_iv_length(cipher_handle->_hidden,
  626. AES_IV_LEN)
  627. || !EVP_CIPHER_meth_set_flags(cipher_handle->_hidden,
  628. EVP_CIPH_CBC_MODE |
  629. EVP_CIPH_FLAG_DEFAULT_ASN1)
  630. || !EVP_CIPHER_meth_set_init(cipher_handle->_hidden,
  631. afalg_cipher_init)
  632. || !EVP_CIPHER_meth_set_do_cipher(cipher_handle->_hidden,
  633. afalg_do_cipher)
  634. || !EVP_CIPHER_meth_set_cleanup(cipher_handle->_hidden,
  635. afalg_cipher_cleanup)
  636. || !EVP_CIPHER_meth_set_impl_ctx_size(cipher_handle->_hidden,
  637. sizeof(afalg_ctx)))) {
  638. EVP_CIPHER_meth_free(cipher_handle->_hidden);
  639. cipher_handle->_hidden= NULL;
  640. }
  641. return cipher_handle->_hidden;
  642. }
  643. static int afalg_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
  644. const int **nids, int nid)
  645. {
  646. int r = 1;
  647. if (cipher == NULL) {
  648. *nids = afalg_cipher_nids;
  649. return (sizeof(afalg_cipher_nids) / sizeof(afalg_cipher_nids[0]));
  650. }
  651. switch (nid) {
  652. case NID_aes_128_cbc:
  653. case NID_aes_192_cbc:
  654. case NID_aes_256_cbc:
  655. *cipher = afalg_aes_cbc(nid);
  656. break;
  657. default:
  658. *cipher = NULL;
  659. r = 0;
  660. }
  661. return r;
  662. }
  663. static int bind_afalg(ENGINE *e)
  664. {
  665. /* Ensure the afalg error handling is set up */
  666. unsigned short i;
  667. ERR_load_AFALG_strings();
  668. if (!ENGINE_set_id(e, engine_afalg_id)
  669. || !ENGINE_set_name(e, engine_afalg_name)
  670. || !ENGINE_set_destroy_function(e, afalg_destroy)
  671. || !ENGINE_set_init_function(e, afalg_init)
  672. || !ENGINE_set_finish_function(e, afalg_finish)) {
  673. AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
  674. return 0;
  675. }
  676. /*
  677. * Create _hidden_aes_xxx_cbc by calling afalg_aes_xxx_cbc
  678. * now, as bind_aflag can only be called by one thread at a
  679. * time.
  680. */
  681. for(i = 0; i < OSSL_NELEM(afalg_cipher_nids); i++) {
  682. if (afalg_aes_cbc(afalg_cipher_nids[i]) == NULL) {
  683. AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
  684. return 0;
  685. }
  686. }
  687. if (!ENGINE_set_ciphers(e, afalg_ciphers)) {
  688. AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
  689. return 0;
  690. }
  691. return 1;
  692. }
  693. # ifndef OPENSSL_NO_DYNAMIC_ENGINE
  694. static int bind_helper(ENGINE *e, const char *id)
  695. {
  696. if (id && (strcmp(id, engine_afalg_id) != 0))
  697. return 0;
  698. if (!afalg_chk_platform())
  699. return 0;
  700. if (!bind_afalg(e))
  701. return 0;
  702. return 1;
  703. }
  704. IMPLEMENT_DYNAMIC_CHECK_FN()
  705. IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
  706. # endif
  707. static int afalg_chk_platform(void)
  708. {
  709. int ret;
  710. int i;
  711. int kver[3] = { -1, -1, -1 };
  712. int sock;
  713. char *str;
  714. struct utsname ut;
  715. ret = uname(&ut);
  716. if (ret != 0) {
  717. AFALGerr(AFALG_F_AFALG_CHK_PLATFORM,
  718. AFALG_R_FAILED_TO_GET_PLATFORM_INFO);
  719. return 0;
  720. }
  721. str = strtok(ut.release, ".");
  722. for (i = 0; i < 3 && str != NULL; i++) {
  723. kver[i] = atoi(str);
  724. str = strtok(NULL, ".");
  725. }
  726. if (KERNEL_VERSION(kver[0], kver[1], kver[2])
  727. < KERNEL_VERSION(K_MAJ, K_MIN1, K_MIN2)) {
  728. ALG_ERR("ASYNC AFALG not supported this kernel(%d.%d.%d)\n",
  729. kver[0], kver[1], kver[2]);
  730. ALG_ERR("ASYNC AFALG requires kernel version %d.%d.%d or later\n",
  731. K_MAJ, K_MIN1, K_MIN2);
  732. AFALGerr(AFALG_F_AFALG_CHK_PLATFORM,
  733. AFALG_R_KERNEL_DOES_NOT_SUPPORT_ASYNC_AFALG);
  734. return 0;
  735. }
  736. /* Test if we can actually create an AF_ALG socket */
  737. sock = socket(AF_ALG, SOCK_SEQPACKET, 0);
  738. if (sock == -1) {
  739. AFALGerr(AFALG_F_AFALG_CHK_PLATFORM, AFALG_R_SOCKET_CREATE_FAILED);
  740. return 0;
  741. }
  742. close(sock);
  743. return 1;
  744. }
  745. # ifdef OPENSSL_NO_DYNAMIC_ENGINE
  746. static ENGINE *engine_afalg(void)
  747. {
  748. ENGINE *ret = ENGINE_new();
  749. if (ret == NULL)
  750. return NULL;
  751. if (!bind_afalg(ret)) {
  752. ENGINE_free(ret);
  753. return NULL;
  754. }
  755. return ret;
  756. }
  757. void engine_load_afalg_int(void)
  758. {
  759. ENGINE *toadd;
  760. if (!afalg_chk_platform())
  761. return;
  762. toadd = engine_afalg();
  763. if (toadd == NULL)
  764. return;
  765. ERR_set_mark();
  766. ENGINE_add(toadd);
  767. /*
  768. * If the "add" worked, it gets a structural reference. So either way, we
  769. * release our just-created reference.
  770. */
  771. ENGINE_free(toadd);
  772. /*
  773. * If the "add" didn't work, it was probably a conflict because it was
  774. * already added (eg. someone calling ENGINE_load_blah then calling
  775. * ENGINE_load_builtin_engines() perhaps).
  776. */
  777. ERR_pop_to_mark();
  778. }
  779. # endif
  780. static int afalg_init(ENGINE *e)
  781. {
  782. return 1;
  783. }
  784. static int afalg_finish(ENGINE *e)
  785. {
  786. return 1;
  787. }
  788. static int free_cbc(void)
  789. {
  790. short unsigned int i;
  791. for(i = 0; i < OSSL_NELEM(afalg_cipher_nids); i++) {
  792. EVP_CIPHER_meth_free(cbc_handle[i]._hidden);
  793. cbc_handle[i]._hidden = NULL;
  794. }
  795. return 1;
  796. }
  797. static int afalg_destroy(ENGINE *e)
  798. {
  799. ERR_unload_AFALG_strings();
  800. free_cbc();
  801. return 1;
  802. }
  803. #endif /* KERNEL VERSION */