ecp_nistp224.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653
  1. /* crypto/ec/ecp_nistp224.c */
  2. /*
  3. * Written by Emilia Kasper (Google) for the OpenSSL project.
  4. */
  5. /* Copyright 2011 Google Inc.
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License");
  8. *
  9. * you may not use this file except in compliance with the License.
  10. * You may obtain a copy of the License at
  11. *
  12. * http://www.apache.org/licenses/LICENSE-2.0
  13. *
  14. * Unless required by applicable law or agreed to in writing, software
  15. * distributed under the License is distributed on an "AS IS" BASIS,
  16. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  17. * See the License for the specific language governing permissions and
  18. * limitations under the License.
  19. */
  20. /*
  21. * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
  22. *
  23. * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
  24. * and Adam Langley's public domain 64-bit C implementation of curve25519
  25. */
  26. #include <openssl/opensslconf.h>
  27. #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
  28. #include <stdint.h>
  29. #include <string.h>
  30. #include <openssl/err.h>
  31. #include "ec_lcl.h"
  32. #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
  33. /* even with gcc, the typedef won't work for 32-bit platforms */
  34. typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
  35. #else
  36. #error "Need GCC 3.1 or later to define type uint128_t"
  37. #endif
  38. typedef uint8_t u8;
  39. typedef uint64_t u64;
  40. typedef int64_t s64;
  41. /******************************************************************************/
  42. /* INTERNAL REPRESENTATION OF FIELD ELEMENTS
  43. *
  44. * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
  45. * using 64-bit coefficients called 'limbs',
  46. * and sometimes (for multiplication results) as
  47. * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
  48. * using 128-bit coefficients called 'widelimbs'.
  49. * A 4-limb representation is an 'felem';
  50. * a 7-widelimb representation is a 'widefelem'.
  51. * Even within felems, bits of adjacent limbs overlap, and we don't always
  52. * reduce the representations: we ensure that inputs to each felem
  53. * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
  54. * and fit into a 128-bit word without overflow. The coefficients are then
  55. * again partially reduced to obtain an felem satisfying a_i < 2^57.
  56. * We only reduce to the unique minimal representation at the end of the
  57. * computation.
  58. */
  59. typedef uint64_t limb;
  60. typedef uint128_t widelimb;
  61. typedef limb felem[4];
  62. typedef widelimb widefelem[7];
  63. /* Field element represented as a byte arrary.
  64. * 28*8 = 224 bits is also the group order size for the elliptic curve,
  65. * and we also use this type for scalars for point multiplication.
  66. */
  67. typedef u8 felem_bytearray[28];
  68. static const felem_bytearray nistp224_curve_params[5] = {
  69. {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */
  70. 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
  71. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
  72. {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */
  73. 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
  74. 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
  75. {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */
  76. 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
  77. 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
  78. {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */
  79. 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
  80. 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
  81. {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */
  82. 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
  83. 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
  84. };
  85. /* Precomputed multiples of the standard generator
  86. * Points are given in coordinates (X, Y, Z) where Z normally is 1
  87. * (0 for the point at infinity).
  88. * For each field element, slice a_0 is word 0, etc.
  89. *
  90. * The table has 2 * 16 elements, starting with the following:
  91. * index | bits | point
  92. * ------+---------+------------------------------
  93. * 0 | 0 0 0 0 | 0G
  94. * 1 | 0 0 0 1 | 1G
  95. * 2 | 0 0 1 0 | 2^56G
  96. * 3 | 0 0 1 1 | (2^56 + 1)G
  97. * 4 | 0 1 0 0 | 2^112G
  98. * 5 | 0 1 0 1 | (2^112 + 1)G
  99. * 6 | 0 1 1 0 | (2^112 + 2^56)G
  100. * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
  101. * 8 | 1 0 0 0 | 2^168G
  102. * 9 | 1 0 0 1 | (2^168 + 1)G
  103. * 10 | 1 0 1 0 | (2^168 + 2^56)G
  104. * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
  105. * 12 | 1 1 0 0 | (2^168 + 2^112)G
  106. * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
  107. * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
  108. * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
  109. * followed by a copy of this with each element multiplied by 2^28.
  110. *
  111. * The reason for this is so that we can clock bits into four different
  112. * locations when doing simple scalar multiplies against the base point,
  113. * and then another four locations using the second 16 elements.
  114. */
  115. static const felem gmul[2][16][3] =
  116. {{{{0, 0, 0, 0},
  117. {0, 0, 0, 0},
  118. {0, 0, 0, 0}},
  119. {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
  120. {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
  121. {1, 0, 0, 0}},
  122. {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
  123. {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
  124. {1, 0, 0, 0}},
  125. {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
  126. {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
  127. {1, 0, 0, 0}},
  128. {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
  129. {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
  130. {1, 0, 0, 0}},
  131. {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
  132. {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
  133. {1, 0, 0, 0}},
  134. {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
  135. {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
  136. {1, 0, 0, 0}},
  137. {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
  138. {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
  139. {1, 0, 0, 0}},
  140. {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
  141. {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
  142. {1, 0, 0, 0}},
  143. {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
  144. {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
  145. {1, 0, 0, 0}},
  146. {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
  147. {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
  148. {1, 0, 0, 0}},
  149. {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
  150. {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
  151. {1, 0, 0, 0}},
  152. {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
  153. {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
  154. {1, 0, 0, 0}},
  155. {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
  156. {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
  157. {1, 0, 0, 0}},
  158. {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
  159. {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
  160. {1, 0, 0, 0}},
  161. {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
  162. {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
  163. {1, 0, 0, 0}}},
  164. {{{0, 0, 0, 0},
  165. {0, 0, 0, 0},
  166. {0, 0, 0, 0}},
  167. {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
  168. {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
  169. {1, 0, 0, 0}},
  170. {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
  171. {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
  172. {1, 0, 0, 0}},
  173. {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
  174. {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
  175. {1, 0, 0, 0}},
  176. {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
  177. {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
  178. {1, 0, 0, 0}},
  179. {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
  180. {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
  181. {1, 0, 0, 0}},
  182. {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
  183. {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
  184. {1, 0, 0, 0}},
  185. {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
  186. {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
  187. {1, 0, 0, 0}},
  188. {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
  189. {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
  190. {1, 0, 0, 0}},
  191. {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
  192. {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
  193. {1, 0, 0, 0}},
  194. {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
  195. {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
  196. {1, 0, 0, 0}},
  197. {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
  198. {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
  199. {1, 0, 0, 0}},
  200. {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
  201. {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
  202. {1, 0, 0, 0}},
  203. {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
  204. {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
  205. {1, 0, 0, 0}},
  206. {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
  207. {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
  208. {1, 0, 0, 0}},
  209. {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
  210. {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
  211. {1, 0, 0, 0}}}};
  212. /* Precomputation for the group generator. */
  213. typedef struct {
  214. felem g_pre_comp[2][16][3];
  215. int references;
  216. } NISTP224_PRE_COMP;
  217. const EC_METHOD *EC_GFp_nistp224_method(void)
  218. {
  219. static const EC_METHOD ret = {
  220. EC_FLAGS_DEFAULT_OCT,
  221. NID_X9_62_prime_field,
  222. ec_GFp_nistp224_group_init,
  223. ec_GFp_simple_group_finish,
  224. ec_GFp_simple_group_clear_finish,
  225. ec_GFp_nist_group_copy,
  226. ec_GFp_nistp224_group_set_curve,
  227. ec_GFp_simple_group_get_curve,
  228. ec_GFp_simple_group_get_degree,
  229. ec_GFp_simple_group_check_discriminant,
  230. ec_GFp_simple_point_init,
  231. ec_GFp_simple_point_finish,
  232. ec_GFp_simple_point_clear_finish,
  233. ec_GFp_simple_point_copy,
  234. ec_GFp_simple_point_set_to_infinity,
  235. ec_GFp_simple_set_Jprojective_coordinates_GFp,
  236. ec_GFp_simple_get_Jprojective_coordinates_GFp,
  237. ec_GFp_simple_point_set_affine_coordinates,
  238. ec_GFp_nistp224_point_get_affine_coordinates,
  239. 0 /* point_set_compressed_coordinates */,
  240. 0 /* point2oct */,
  241. 0 /* oct2point */,
  242. ec_GFp_simple_add,
  243. ec_GFp_simple_dbl,
  244. ec_GFp_simple_invert,
  245. ec_GFp_simple_is_at_infinity,
  246. ec_GFp_simple_is_on_curve,
  247. ec_GFp_simple_cmp,
  248. ec_GFp_simple_make_affine,
  249. ec_GFp_simple_points_make_affine,
  250. ec_GFp_nistp224_points_mul,
  251. ec_GFp_nistp224_precompute_mult,
  252. ec_GFp_nistp224_have_precompute_mult,
  253. ec_GFp_nist_field_mul,
  254. ec_GFp_nist_field_sqr,
  255. 0 /* field_div */,
  256. 0 /* field_encode */,
  257. 0 /* field_decode */,
  258. 0 /* field_set_to_one */ };
  259. return &ret;
  260. }
  261. /* Helper functions to convert field elements to/from internal representation */
  262. static void bin28_to_felem(felem out, const u8 in[28])
  263. {
  264. out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
  265. out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;
  266. out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;
  267. out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff;
  268. }
  269. static void felem_to_bin28(u8 out[28], const felem in)
  270. {
  271. unsigned i;
  272. for (i = 0; i < 7; ++i)
  273. {
  274. out[i] = in[0]>>(8*i);
  275. out[i+7] = in[1]>>(8*i);
  276. out[i+14] = in[2]>>(8*i);
  277. out[i+21] = in[3]>>(8*i);
  278. }
  279. }
  280. /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
  281. static void flip_endian(u8 *out, const u8 *in, unsigned len)
  282. {
  283. unsigned i;
  284. for (i = 0; i < len; ++i)
  285. out[i] = in[len-1-i];
  286. }
  287. /* From OpenSSL BIGNUM to internal representation */
  288. static int BN_to_felem(felem out, const BIGNUM *bn)
  289. {
  290. felem_bytearray b_in;
  291. felem_bytearray b_out;
  292. unsigned num_bytes;
  293. /* BN_bn2bin eats leading zeroes */
  294. memset(b_out, 0, sizeof b_out);
  295. num_bytes = BN_num_bytes(bn);
  296. if (num_bytes > sizeof b_out)
  297. {
  298. ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
  299. return 0;
  300. }
  301. if (BN_is_negative(bn))
  302. {
  303. ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
  304. return 0;
  305. }
  306. num_bytes = BN_bn2bin(bn, b_in);
  307. flip_endian(b_out, b_in, num_bytes);
  308. bin28_to_felem(out, b_out);
  309. return 1;
  310. }
  311. /* From internal representation to OpenSSL BIGNUM */
  312. static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
  313. {
  314. felem_bytearray b_in, b_out;
  315. felem_to_bin28(b_in, in);
  316. flip_endian(b_out, b_in, sizeof b_out);
  317. return BN_bin2bn(b_out, sizeof b_out, out);
  318. }
  319. /******************************************************************************/
  320. /* FIELD OPERATIONS
  321. *
  322. * Field operations, using the internal representation of field elements.
  323. * NB! These operations are specific to our point multiplication and cannot be
  324. * expected to be correct in general - e.g., multiplication with a large scalar
  325. * will cause an overflow.
  326. *
  327. */
  328. static void felem_one(felem out)
  329. {
  330. out[0] = 1;
  331. out[1] = 0;
  332. out[2] = 0;
  333. out[3] = 0;
  334. }
  335. static void felem_assign(felem out, const felem in)
  336. {
  337. out[0] = in[0];
  338. out[1] = in[1];
  339. out[2] = in[2];
  340. out[3] = in[3];
  341. }
  342. /* Sum two field elements: out += in */
  343. static void felem_sum(felem out, const felem in)
  344. {
  345. out[0] += in[0];
  346. out[1] += in[1];
  347. out[2] += in[2];
  348. out[3] += in[3];
  349. }
  350. /* Get negative value: out = -in */
  351. /* Assumes in[i] < 2^57 */
  352. static void felem_neg(felem out, const felem in)
  353. {
  354. static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
  355. static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
  356. static const limb two58m42m2 = (((limb) 1) << 58) -
  357. (((limb) 1) << 42) - (((limb) 1) << 2);
  358. /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
  359. out[0] = two58p2 - in[0];
  360. out[1] = two58m42m2 - in[1];
  361. out[2] = two58m2 - in[2];
  362. out[3] = two58m2 - in[3];
  363. }
  364. /* Subtract field elements: out -= in */
  365. /* Assumes in[i] < 2^57 */
  366. static void felem_diff(felem out, const felem in)
  367. {
  368. static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
  369. static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
  370. static const limb two58m42m2 = (((limb) 1) << 58) -
  371. (((limb) 1) << 42) - (((limb) 1) << 2);
  372. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  373. out[0] += two58p2;
  374. out[1] += two58m42m2;
  375. out[2] += two58m2;
  376. out[3] += two58m2;
  377. out[0] -= in[0];
  378. out[1] -= in[1];
  379. out[2] -= in[2];
  380. out[3] -= in[3];
  381. }
  382. /* Subtract in unreduced 128-bit mode: out -= in */
  383. /* Assumes in[i] < 2^119 */
  384. static void widefelem_diff(widefelem out, const widefelem in)
  385. {
  386. static const widelimb two120 = ((widelimb) 1) << 120;
  387. static const widelimb two120m64 = (((widelimb) 1) << 120) -
  388. (((widelimb) 1) << 64);
  389. static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
  390. (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
  391. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  392. out[0] += two120;
  393. out[1] += two120m64;
  394. out[2] += two120m64;
  395. out[3] += two120;
  396. out[4] += two120m104m64;
  397. out[5] += two120m64;
  398. out[6] += two120m64;
  399. out[0] -= in[0];
  400. out[1] -= in[1];
  401. out[2] -= in[2];
  402. out[3] -= in[3];
  403. out[4] -= in[4];
  404. out[5] -= in[5];
  405. out[6] -= in[6];
  406. }
  407. /* Subtract in mixed mode: out128 -= in64 */
  408. /* in[i] < 2^63 */
  409. static void felem_diff_128_64(widefelem out, const felem in)
  410. {
  411. static const widelimb two64p8 = (((widelimb) 1) << 64) +
  412. (((widelimb) 1) << 8);
  413. static const widelimb two64m8 = (((widelimb) 1) << 64) -
  414. (((widelimb) 1) << 8);
  415. static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
  416. (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
  417. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  418. out[0] += two64p8;
  419. out[1] += two64m48m8;
  420. out[2] += two64m8;
  421. out[3] += two64m8;
  422. out[0] -= in[0];
  423. out[1] -= in[1];
  424. out[2] -= in[2];
  425. out[3] -= in[3];
  426. }
  427. /* Multiply a field element by a scalar: out = out * scalar
  428. * The scalars we actually use are small, so results fit without overflow */
  429. static void felem_scalar(felem out, const limb scalar)
  430. {
  431. out[0] *= scalar;
  432. out[1] *= scalar;
  433. out[2] *= scalar;
  434. out[3] *= scalar;
  435. }
  436. /* Multiply an unreduced field element by a scalar: out = out * scalar
  437. * The scalars we actually use are small, so results fit without overflow */
  438. static void widefelem_scalar(widefelem out, const widelimb scalar)
  439. {
  440. out[0] *= scalar;
  441. out[1] *= scalar;
  442. out[2] *= scalar;
  443. out[3] *= scalar;
  444. out[4] *= scalar;
  445. out[5] *= scalar;
  446. out[6] *= scalar;
  447. }
  448. /* Square a field element: out = in^2 */
  449. static void felem_square(widefelem out, const felem in)
  450. {
  451. limb tmp0, tmp1, tmp2;
  452. tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2];
  453. out[0] = ((widelimb) in[0]) * in[0];
  454. out[1] = ((widelimb) in[0]) * tmp1;
  455. out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
  456. out[3] = ((widelimb) in[3]) * tmp0 +
  457. ((widelimb) in[1]) * tmp2;
  458. out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
  459. out[5] = ((widelimb) in[3]) * tmp2;
  460. out[6] = ((widelimb) in[3]) * in[3];
  461. }
  462. /* Multiply two field elements: out = in1 * in2 */
  463. static void felem_mul(widefelem out, const felem in1, const felem in2)
  464. {
  465. out[0] = ((widelimb) in1[0]) * in2[0];
  466. out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
  467. out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
  468. ((widelimb) in1[2]) * in2[0];
  469. out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
  470. ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
  471. out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
  472. ((widelimb) in1[3]) * in2[1];
  473. out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
  474. out[6] = ((widelimb) in1[3]) * in2[3];
  475. }
  476. /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
  477. * Requires in[i] < 2^126,
  478. * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
  479. static void felem_reduce(felem out, const widefelem in)
  480. {
  481. static const widelimb two127p15 = (((widelimb) 1) << 127) +
  482. (((widelimb) 1) << 15);
  483. static const widelimb two127m71 = (((widelimb) 1) << 127) -
  484. (((widelimb) 1) << 71);
  485. static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
  486. (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
  487. widelimb output[5];
  488. /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
  489. output[0] = in[0] + two127p15;
  490. output[1] = in[1] + two127m71m55;
  491. output[2] = in[2] + two127m71;
  492. output[3] = in[3];
  493. output[4] = in[4];
  494. /* Eliminate in[4], in[5], in[6] */
  495. output[4] += in[6] >> 16;
  496. output[3] += (in[6] & 0xffff) << 40;
  497. output[2] -= in[6];
  498. output[3] += in[5] >> 16;
  499. output[2] += (in[5] & 0xffff) << 40;
  500. output[1] -= in[5];
  501. output[2] += output[4] >> 16;
  502. output[1] += (output[4] & 0xffff) << 40;
  503. output[0] -= output[4];
  504. /* Carry 2 -> 3 -> 4 */
  505. output[3] += output[2] >> 56;
  506. output[2] &= 0x00ffffffffffffff;
  507. output[4] = output[3] >> 56;
  508. output[3] &= 0x00ffffffffffffff;
  509. /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
  510. /* Eliminate output[4] */
  511. output[2] += output[4] >> 16;
  512. /* output[2] < 2^56 + 2^56 = 2^57 */
  513. output[1] += (output[4] & 0xffff) << 40;
  514. output[0] -= output[4];
  515. /* Carry 0 -> 1 -> 2 -> 3 */
  516. output[1] += output[0] >> 56;
  517. out[0] = output[0] & 0x00ffffffffffffff;
  518. output[2] += output[1] >> 56;
  519. /* output[2] < 2^57 + 2^72 */
  520. out[1] = output[1] & 0x00ffffffffffffff;
  521. output[3] += output[2] >> 56;
  522. /* output[3] <= 2^56 + 2^16 */
  523. out[2] = output[2] & 0x00ffffffffffffff;
  524. /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
  525. * out[3] <= 2^56 + 2^16 (due to final carry),
  526. * so out < 2*p */
  527. out[3] = output[3];
  528. }
  529. static void felem_square_reduce(felem out, const felem in)
  530. {
  531. widefelem tmp;
  532. felem_square(tmp, in);
  533. felem_reduce(out, tmp);
  534. }
  535. static void felem_mul_reduce(felem out, const felem in1, const felem in2)
  536. {
  537. widefelem tmp;
  538. felem_mul(tmp, in1, in2);
  539. felem_reduce(out, tmp);
  540. }
  541. /* Reduce to unique minimal representation.
  542. * Requires 0 <= in < 2*p (always call felem_reduce first) */
  543. static void felem_contract(felem out, const felem in)
  544. {
  545. static const int64_t two56 = ((limb) 1) << 56;
  546. /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
  547. /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
  548. int64_t tmp[4], a;
  549. tmp[0] = in[0];
  550. tmp[1] = in[1];
  551. tmp[2] = in[2];
  552. tmp[3] = in[3];
  553. /* Case 1: a = 1 iff in >= 2^224 */
  554. a = (in[3] >> 56);
  555. tmp[0] -= a;
  556. tmp[1] += a << 40;
  557. tmp[3] &= 0x00ffffffffffffff;
  558. /* Case 2: a = 0 iff p <= in < 2^224, i.e.,
  559. * the high 128 bits are all 1 and the lower part is non-zero */
  560. a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
  561. (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
  562. a &= 0x00ffffffffffffff;
  563. /* turn a into an all-one mask (if a = 0) or an all-zero mask */
  564. a = (a - 1) >> 63;
  565. /* subtract 2^224 - 2^96 + 1 if a is all-one*/
  566. tmp[3] &= a ^ 0xffffffffffffffff;
  567. tmp[2] &= a ^ 0xffffffffffffffff;
  568. tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
  569. tmp[0] -= 1 & a;
  570. /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
  571. * be non-zero, so we only need one step */
  572. a = tmp[0] >> 63;
  573. tmp[0] += two56 & a;
  574. tmp[1] -= 1 & a;
  575. /* carry 1 -> 2 -> 3 */
  576. tmp[2] += tmp[1] >> 56;
  577. tmp[1] &= 0x00ffffffffffffff;
  578. tmp[3] += tmp[2] >> 56;
  579. tmp[2] &= 0x00ffffffffffffff;
  580. /* Now 0 <= out < p */
  581. out[0] = tmp[0];
  582. out[1] = tmp[1];
  583. out[2] = tmp[2];
  584. out[3] = tmp[3];
  585. }
  586. /* Zero-check: returns 1 if input is 0, and 0 otherwise.
  587. * We know that field elements are reduced to in < 2^225,
  588. * so we only need to check three cases: 0, 2^224 - 2^96 + 1,
  589. * and 2^225 - 2^97 + 2 */
  590. static limb felem_is_zero(const felem in)
  591. {
  592. limb zero, two224m96p1, two225m97p2;
  593. zero = in[0] | in[1] | in[2] | in[3];
  594. zero = (((int64_t)(zero) - 1) >> 63) & 1;
  595. two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
  596. | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
  597. two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1;
  598. two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
  599. | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
  600. two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1;
  601. return (zero | two224m96p1 | two225m97p2);
  602. }
  603. static limb felem_is_zero_int(const felem in)
  604. {
  605. return (int) (felem_is_zero(in) & ((limb)1));
  606. }
  607. /* Invert a field element */
  608. /* Computation chain copied from djb's code */
  609. static void felem_inv(felem out, const felem in)
  610. {
  611. felem ftmp, ftmp2, ftmp3, ftmp4;
  612. widefelem tmp;
  613. unsigned i;
  614. felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */
  615. felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */
  616. felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2 */
  617. felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 1 */
  618. felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
  619. felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
  620. felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
  621. felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 1 */
  622. felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
  623. for (i = 0; i < 5; ++i) /* 2^12 - 2^6 */
  624. {
  625. felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
  626. }
  627. felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
  628. felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
  629. for (i = 0; i < 11; ++i) /* 2^24 - 2^12 */
  630. {
  631. felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
  632. }
  633. felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
  634. felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
  635. for (i = 0; i < 23; ++i) /* 2^48 - 2^24 */
  636. {
  637. felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
  638. }
  639. felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
  640. felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
  641. for (i = 0; i < 47; ++i) /* 2^96 - 2^48 */
  642. {
  643. felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
  644. }
  645. felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
  646. felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
  647. for (i = 0; i < 23; ++i) /* 2^120 - 2^24 */
  648. {
  649. felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
  650. }
  651. felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
  652. for (i = 0; i < 6; ++i) /* 2^126 - 2^6 */
  653. {
  654. felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
  655. }
  656. felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^126 - 1 */
  657. felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^127 - 2 */
  658. felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^127 - 1 */
  659. for (i = 0; i < 97; ++i) /* 2^224 - 2^97 */
  660. {
  661. felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
  662. }
  663. felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
  664. }
  665. /* Copy in constant time:
  666. * if icopy == 1, copy in to out,
  667. * if icopy == 0, copy out to itself. */
  668. static void
  669. copy_conditional(felem out, const felem in, limb icopy)
  670. {
  671. unsigned i;
  672. /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
  673. const limb copy = -icopy;
  674. for (i = 0; i < 4; ++i)
  675. {
  676. const limb tmp = copy & (in[i] ^ out[i]);
  677. out[i] ^= tmp;
  678. }
  679. }
  680. /******************************************************************************/
  681. /* ELLIPTIC CURVE POINT OPERATIONS
  682. *
  683. * Points are represented in Jacobian projective coordinates:
  684. * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
  685. * or to the point at infinity if Z == 0.
  686. *
  687. */
  688. /* Double an elliptic curve point:
  689. * (X', Y', Z') = 2 * (X, Y, Z), where
  690. * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
  691. * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
  692. * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
  693. * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
  694. * while x_out == y_in is not (maybe this works, but it's not tested). */
  695. static void
  696. point_double(felem x_out, felem y_out, felem z_out,
  697. const felem x_in, const felem y_in, const felem z_in)
  698. {
  699. widefelem tmp, tmp2;
  700. felem delta, gamma, beta, alpha, ftmp, ftmp2;
  701. felem_assign(ftmp, x_in);
  702. felem_assign(ftmp2, x_in);
  703. /* delta = z^2 */
  704. felem_square(tmp, z_in);
  705. felem_reduce(delta, tmp);
  706. /* gamma = y^2 */
  707. felem_square(tmp, y_in);
  708. felem_reduce(gamma, tmp);
  709. /* beta = x*gamma */
  710. felem_mul(tmp, x_in, gamma);
  711. felem_reduce(beta, tmp);
  712. /* alpha = 3*(x-delta)*(x+delta) */
  713. felem_diff(ftmp, delta);
  714. /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
  715. felem_sum(ftmp2, delta);
  716. /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
  717. felem_scalar(ftmp2, 3);
  718. /* ftmp2[i] < 3 * 2^58 < 2^60 */
  719. felem_mul(tmp, ftmp, ftmp2);
  720. /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
  721. felem_reduce(alpha, tmp);
  722. /* x' = alpha^2 - 8*beta */
  723. felem_square(tmp, alpha);
  724. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  725. felem_assign(ftmp, beta);
  726. felem_scalar(ftmp, 8);
  727. /* ftmp[i] < 8 * 2^57 = 2^60 */
  728. felem_diff_128_64(tmp, ftmp);
  729. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  730. felem_reduce(x_out, tmp);
  731. /* z' = (y + z)^2 - gamma - delta */
  732. felem_sum(delta, gamma);
  733. /* delta[i] < 2^57 + 2^57 = 2^58 */
  734. felem_assign(ftmp, y_in);
  735. felem_sum(ftmp, z_in);
  736. /* ftmp[i] < 2^57 + 2^57 = 2^58 */
  737. felem_square(tmp, ftmp);
  738. /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
  739. felem_diff_128_64(tmp, delta);
  740. /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
  741. felem_reduce(z_out, tmp);
  742. /* y' = alpha*(4*beta - x') - 8*gamma^2 */
  743. felem_scalar(beta, 4);
  744. /* beta[i] < 4 * 2^57 = 2^59 */
  745. felem_diff(beta, x_out);
  746. /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
  747. felem_mul(tmp, alpha, beta);
  748. /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
  749. felem_square(tmp2, gamma);
  750. /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
  751. widefelem_scalar(tmp2, 8);
  752. /* tmp2[i] < 8 * 2^116 = 2^119 */
  753. widefelem_diff(tmp, tmp2);
  754. /* tmp[i] < 2^119 + 2^120 < 2^121 */
  755. felem_reduce(y_out, tmp);
  756. }
  757. /* Add two elliptic curve points:
  758. * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
  759. * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
  760. * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
  761. * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
  762. * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
  763. * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
  764. *
  765. * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
  766. */
  767. /* This function is not entirely constant-time:
  768. * it includes a branch for checking whether the two input points are equal,
  769. * (while not equal to the point at infinity).
  770. * This case never happens during single point multiplication,
  771. * so there is no timing leak for ECDH or ECDSA signing. */
  772. static void point_add(felem x3, felem y3, felem z3,
  773. const felem x1, const felem y1, const felem z1,
  774. const int mixed, const felem x2, const felem y2, const felem z2)
  775. {
  776. felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
  777. widefelem tmp, tmp2;
  778. limb z1_is_zero, z2_is_zero, x_equal, y_equal;
  779. if (!mixed)
  780. {
  781. /* ftmp2 = z2^2 */
  782. felem_square(tmp, z2);
  783. felem_reduce(ftmp2, tmp);
  784. /* ftmp4 = z2^3 */
  785. felem_mul(tmp, ftmp2, z2);
  786. felem_reduce(ftmp4, tmp);
  787. /* ftmp4 = z2^3*y1 */
  788. felem_mul(tmp2, ftmp4, y1);
  789. felem_reduce(ftmp4, tmp2);
  790. /* ftmp2 = z2^2*x1 */
  791. felem_mul(tmp2, ftmp2, x1);
  792. felem_reduce(ftmp2, tmp2);
  793. }
  794. else
  795. {
  796. /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
  797. /* ftmp4 = z2^3*y1 */
  798. felem_assign(ftmp4, y1);
  799. /* ftmp2 = z2^2*x1 */
  800. felem_assign(ftmp2, x1);
  801. }
  802. /* ftmp = z1^2 */
  803. felem_square(tmp, z1);
  804. felem_reduce(ftmp, tmp);
  805. /* ftmp3 = z1^3 */
  806. felem_mul(tmp, ftmp, z1);
  807. felem_reduce(ftmp3, tmp);
  808. /* tmp = z1^3*y2 */
  809. felem_mul(tmp, ftmp3, y2);
  810. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  811. /* ftmp3 = z1^3*y2 - z2^3*y1 */
  812. felem_diff_128_64(tmp, ftmp4);
  813. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  814. felem_reduce(ftmp3, tmp);
  815. /* tmp = z1^2*x2 */
  816. felem_mul(tmp, ftmp, x2);
  817. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  818. /* ftmp = z1^2*x2 - z2^2*x1 */
  819. felem_diff_128_64(tmp, ftmp2);
  820. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  821. felem_reduce(ftmp, tmp);
  822. /* the formulae are incorrect if the points are equal
  823. * so we check for this and do doubling if this happens */
  824. x_equal = felem_is_zero(ftmp);
  825. y_equal = felem_is_zero(ftmp3);
  826. z1_is_zero = felem_is_zero(z1);
  827. z2_is_zero = felem_is_zero(z2);
  828. /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
  829. if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
  830. {
  831. point_double(x3, y3, z3, x1, y1, z1);
  832. return;
  833. }
  834. /* ftmp5 = z1*z2 */
  835. if (!mixed)
  836. {
  837. felem_mul(tmp, z1, z2);
  838. felem_reduce(ftmp5, tmp);
  839. }
  840. else
  841. {
  842. /* special case z2 = 0 is handled later */
  843. felem_assign(ftmp5, z1);
  844. }
  845. /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
  846. felem_mul(tmp, ftmp, ftmp5);
  847. felem_reduce(z_out, tmp);
  848. /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
  849. felem_assign(ftmp5, ftmp);
  850. felem_square(tmp, ftmp);
  851. felem_reduce(ftmp, tmp);
  852. /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
  853. felem_mul(tmp, ftmp, ftmp5);
  854. felem_reduce(ftmp5, tmp);
  855. /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  856. felem_mul(tmp, ftmp2, ftmp);
  857. felem_reduce(ftmp2, tmp);
  858. /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
  859. felem_mul(tmp, ftmp4, ftmp5);
  860. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  861. /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
  862. felem_square(tmp2, ftmp3);
  863. /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
  864. /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
  865. felem_diff_128_64(tmp2, ftmp5);
  866. /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
  867. /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  868. felem_assign(ftmp5, ftmp2);
  869. felem_scalar(ftmp5, 2);
  870. /* ftmp5[i] < 2 * 2^57 = 2^58 */
  871. /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
  872. 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  873. felem_diff_128_64(tmp2, ftmp5);
  874. /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
  875. felem_reduce(x_out, tmp2);
  876. /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
  877. felem_diff(ftmp2, x_out);
  878. /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
  879. /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
  880. felem_mul(tmp2, ftmp3, ftmp2);
  881. /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
  882. /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
  883. z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
  884. widefelem_diff(tmp2, tmp);
  885. /* tmp2[i] < 2^118 + 2^120 < 2^121 */
  886. felem_reduce(y_out, tmp2);
  887. /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
  888. * the point at infinity, so we need to check for this separately */
  889. /* if point 1 is at infinity, copy point 2 to output, and vice versa */
  890. copy_conditional(x_out, x2, z1_is_zero);
  891. copy_conditional(x_out, x1, z2_is_zero);
  892. copy_conditional(y_out, y2, z1_is_zero);
  893. copy_conditional(y_out, y1, z2_is_zero);
  894. copy_conditional(z_out, z2, z1_is_zero);
  895. copy_conditional(z_out, z1, z2_is_zero);
  896. felem_assign(x3, x_out);
  897. felem_assign(y3, y_out);
  898. felem_assign(z3, z_out);
  899. }
  900. /* select_point selects the |idx|th point from a precomputation table and
  901. * copies it to out. */
  902. static void select_point(const u64 idx, unsigned int size, const felem pre_comp[/*size*/][3], felem out[3])
  903. {
  904. unsigned i, j;
  905. limb *outlimbs = &out[0][0];
  906. memset(outlimbs, 0, 3 * sizeof(felem));
  907. for (i = 0; i < size; i++)
  908. {
  909. const limb *inlimbs = &pre_comp[i][0][0];
  910. u64 mask = i ^ idx;
  911. mask |= mask >> 4;
  912. mask |= mask >> 2;
  913. mask |= mask >> 1;
  914. mask &= 1;
  915. mask--;
  916. for (j = 0; j < 4 * 3; j++)
  917. outlimbs[j] |= inlimbs[j] & mask;
  918. }
  919. }
  920. /* get_bit returns the |i|th bit in |in| */
  921. static char get_bit(const felem_bytearray in, unsigned i)
  922. {
  923. if (i >= 224)
  924. return 0;
  925. return (in[i >> 3] >> (i & 7)) & 1;
  926. }
  927. /* Interleaved point multiplication using precomputed point multiples:
  928. * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
  929. * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
  930. * of the generator, using certain (large) precomputed multiples in g_pre_comp.
  931. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
  932. static void batch_mul(felem x_out, felem y_out, felem z_out,
  933. const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
  934. const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3])
  935. {
  936. int i, skip;
  937. unsigned num;
  938. unsigned gen_mul = (g_scalar != NULL);
  939. felem nq[3], tmp[4];
  940. u64 bits;
  941. u8 sign, digit;
  942. /* set nq to the point at infinity */
  943. memset(nq, 0, 3 * sizeof(felem));
  944. /* Loop over all scalars msb-to-lsb, interleaving additions
  945. * of multiples of the generator (two in each of the last 28 rounds)
  946. * and additions of other points multiples (every 5th round).
  947. */
  948. skip = 1; /* save two point operations in the first round */
  949. for (i = (num_points ? 220 : 27); i >= 0; --i)
  950. {
  951. /* double */
  952. if (!skip)
  953. point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
  954. /* add multiples of the generator */
  955. if (gen_mul && (i <= 27))
  956. {
  957. /* first, look 28 bits upwards */
  958. bits = get_bit(g_scalar, i + 196) << 3;
  959. bits |= get_bit(g_scalar, i + 140) << 2;
  960. bits |= get_bit(g_scalar, i + 84) << 1;
  961. bits |= get_bit(g_scalar, i + 28);
  962. /* select the point to add, in constant time */
  963. select_point(bits, 16, g_pre_comp[1], tmp);
  964. if (!skip)
  965. {
  966. point_add(nq[0], nq[1], nq[2],
  967. nq[0], nq[1], nq[2],
  968. 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
  969. }
  970. else
  971. {
  972. memcpy(nq, tmp, 3 * sizeof(felem));
  973. skip = 0;
  974. }
  975. /* second, look at the current position */
  976. bits = get_bit(g_scalar, i + 168) << 3;
  977. bits |= get_bit(g_scalar, i + 112) << 2;
  978. bits |= get_bit(g_scalar, i + 56) << 1;
  979. bits |= get_bit(g_scalar, i);
  980. /* select the point to add, in constant time */
  981. select_point(bits, 16, g_pre_comp[0], tmp);
  982. point_add(nq[0], nq[1], nq[2],
  983. nq[0], nq[1], nq[2],
  984. 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
  985. }
  986. /* do other additions every 5 doublings */
  987. if (num_points && (i % 5 == 0))
  988. {
  989. /* loop over all scalars */
  990. for (num = 0; num < num_points; ++num)
  991. {
  992. bits = get_bit(scalars[num], i + 4) << 5;
  993. bits |= get_bit(scalars[num], i + 3) << 4;
  994. bits |= get_bit(scalars[num], i + 2) << 3;
  995. bits |= get_bit(scalars[num], i + 1) << 2;
  996. bits |= get_bit(scalars[num], i) << 1;
  997. bits |= get_bit(scalars[num], i - 1);
  998. ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
  999. /* select the point to add or subtract */
  1000. select_point(digit, 17, pre_comp[num], tmp);
  1001. felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
  1002. copy_conditional(tmp[1], tmp[3], sign);
  1003. if (!skip)
  1004. {
  1005. point_add(nq[0], nq[1], nq[2],
  1006. nq[0], nq[1], nq[2],
  1007. mixed, tmp[0], tmp[1], tmp[2]);
  1008. }
  1009. else
  1010. {
  1011. memcpy(nq, tmp, 3 * sizeof(felem));
  1012. skip = 0;
  1013. }
  1014. }
  1015. }
  1016. }
  1017. felem_assign(x_out, nq[0]);
  1018. felem_assign(y_out, nq[1]);
  1019. felem_assign(z_out, nq[2]);
  1020. }
  1021. /******************************************************************************/
  1022. /* FUNCTIONS TO MANAGE PRECOMPUTATION
  1023. */
  1024. static NISTP224_PRE_COMP *nistp224_pre_comp_new()
  1025. {
  1026. NISTP224_PRE_COMP *ret = NULL;
  1027. ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
  1028. if (!ret)
  1029. {
  1030. ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
  1031. return ret;
  1032. }
  1033. memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
  1034. ret->references = 1;
  1035. return ret;
  1036. }
  1037. static void *nistp224_pre_comp_dup(void *src_)
  1038. {
  1039. NISTP224_PRE_COMP *src = src_;
  1040. /* no need to actually copy, these objects never change! */
  1041. CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
  1042. return src_;
  1043. }
  1044. static void nistp224_pre_comp_free(void *pre_)
  1045. {
  1046. int i;
  1047. NISTP224_PRE_COMP *pre = pre_;
  1048. if (!pre)
  1049. return;
  1050. i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
  1051. if (i > 0)
  1052. return;
  1053. OPENSSL_free(pre);
  1054. }
  1055. static void nistp224_pre_comp_clear_free(void *pre_)
  1056. {
  1057. int i;
  1058. NISTP224_PRE_COMP *pre = pre_;
  1059. if (!pre)
  1060. return;
  1061. i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
  1062. if (i > 0)
  1063. return;
  1064. OPENSSL_cleanse(pre, sizeof *pre);
  1065. OPENSSL_free(pre);
  1066. }
  1067. /******************************************************************************/
  1068. /* OPENSSL EC_METHOD FUNCTIONS
  1069. */
  1070. int ec_GFp_nistp224_group_init(EC_GROUP *group)
  1071. {
  1072. int ret;
  1073. ret = ec_GFp_simple_group_init(group);
  1074. group->a_is_minus3 = 1;
  1075. return ret;
  1076. }
  1077. int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
  1078. const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
  1079. {
  1080. int ret = 0;
  1081. BN_CTX *new_ctx = NULL;
  1082. BIGNUM *curve_p, *curve_a, *curve_b;
  1083. if (ctx == NULL)
  1084. if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
  1085. BN_CTX_start(ctx);
  1086. if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
  1087. ((curve_a = BN_CTX_get(ctx)) == NULL) ||
  1088. ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
  1089. BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
  1090. BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
  1091. BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
  1092. if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
  1093. (BN_cmp(curve_b, b)))
  1094. {
  1095. ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
  1096. EC_R_WRONG_CURVE_PARAMETERS);
  1097. goto err;
  1098. }
  1099. group->field_mod_func = BN_nist_mod_224;
  1100. ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
  1101. err:
  1102. BN_CTX_end(ctx);
  1103. if (new_ctx != NULL)
  1104. BN_CTX_free(new_ctx);
  1105. return ret;
  1106. }
  1107. /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
  1108. * (X', Y') = (X/Z^2, Y/Z^3) */
  1109. int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
  1110. const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
  1111. {
  1112. felem z1, z2, x_in, y_in, x_out, y_out;
  1113. widefelem tmp;
  1114. if (EC_POINT_is_at_infinity(group, point))
  1115. {
  1116. ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
  1117. EC_R_POINT_AT_INFINITY);
  1118. return 0;
  1119. }
  1120. if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
  1121. (!BN_to_felem(z1, &point->Z))) return 0;
  1122. felem_inv(z2, z1);
  1123. felem_square(tmp, z2); felem_reduce(z1, tmp);
  1124. felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
  1125. felem_contract(x_out, x_in);
  1126. if (x != NULL)
  1127. {
  1128. if (!felem_to_BN(x, x_out)) {
  1129. ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
  1130. ERR_R_BN_LIB);
  1131. return 0;
  1132. }
  1133. }
  1134. felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
  1135. felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
  1136. felem_contract(y_out, y_in);
  1137. if (y != NULL)
  1138. {
  1139. if (!felem_to_BN(y, y_out)) {
  1140. ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
  1141. ERR_R_BN_LIB);
  1142. return 0;
  1143. }
  1144. }
  1145. return 1;
  1146. }
  1147. static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/])
  1148. {
  1149. /* Runs in constant time, unless an input is the point at infinity
  1150. * (which normally shouldn't happen). */
  1151. ec_GFp_nistp_points_make_affine_internal(
  1152. num,
  1153. points,
  1154. sizeof(felem),
  1155. tmp_felems,
  1156. (void (*)(void *)) felem_one,
  1157. (int (*)(const void *)) felem_is_zero_int,
  1158. (void (*)(void *, const void *)) felem_assign,
  1159. (void (*)(void *, const void *)) felem_square_reduce,
  1160. (void (*)(void *, const void *, const void *)) felem_mul_reduce,
  1161. (void (*)(void *, const void *)) felem_inv,
  1162. (void (*)(void *, const void *)) felem_contract);
  1163. }
  1164. /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
  1165. * Result is stored in r (r can equal one of the inputs). */
  1166. int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
  1167. const BIGNUM *scalar, size_t num, const EC_POINT *points[],
  1168. const BIGNUM *scalars[], BN_CTX *ctx)
  1169. {
  1170. int ret = 0;
  1171. int j;
  1172. unsigned i;
  1173. int mixed = 0;
  1174. BN_CTX *new_ctx = NULL;
  1175. BIGNUM *x, *y, *z, *tmp_scalar;
  1176. felem_bytearray g_secret;
  1177. felem_bytearray *secrets = NULL;
  1178. felem (*pre_comp)[17][3] = NULL;
  1179. felem *tmp_felems = NULL;
  1180. felem_bytearray tmp;
  1181. unsigned num_bytes;
  1182. int have_pre_comp = 0;
  1183. size_t num_points = num;
  1184. felem x_in, y_in, z_in, x_out, y_out, z_out;
  1185. NISTP224_PRE_COMP *pre = NULL;
  1186. const felem (*g_pre_comp)[16][3] = NULL;
  1187. EC_POINT *generator = NULL;
  1188. const EC_POINT *p = NULL;
  1189. const BIGNUM *p_scalar = NULL;
  1190. if (ctx == NULL)
  1191. if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
  1192. BN_CTX_start(ctx);
  1193. if (((x = BN_CTX_get(ctx)) == NULL) ||
  1194. ((y = BN_CTX_get(ctx)) == NULL) ||
  1195. ((z = BN_CTX_get(ctx)) == NULL) ||
  1196. ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
  1197. goto err;
  1198. if (scalar != NULL)
  1199. {
  1200. pre = EC_EX_DATA_get_data(group->extra_data,
  1201. nistp224_pre_comp_dup, nistp224_pre_comp_free,
  1202. nistp224_pre_comp_clear_free);
  1203. if (pre)
  1204. /* we have precomputation, try to use it */
  1205. g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp;
  1206. else
  1207. /* try to use the standard precomputation */
  1208. g_pre_comp = &gmul[0];
  1209. generator = EC_POINT_new(group);
  1210. if (generator == NULL)
  1211. goto err;
  1212. /* get the generator from precomputation */
  1213. if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
  1214. !felem_to_BN(y, g_pre_comp[0][1][1]) ||
  1215. !felem_to_BN(z, g_pre_comp[0][1][2]))
  1216. {
  1217. ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
  1218. goto err;
  1219. }
  1220. if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
  1221. generator, x, y, z, ctx))
  1222. goto err;
  1223. if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
  1224. /* precomputation matches generator */
  1225. have_pre_comp = 1;
  1226. else
  1227. /* we don't have valid precomputation:
  1228. * treat the generator as a random point */
  1229. num_points = num_points + 1;
  1230. }
  1231. if (num_points > 0)
  1232. {
  1233. if (num_points >= 3)
  1234. {
  1235. /* unless we precompute multiples for just one or two points,
  1236. * converting those into affine form is time well spent */
  1237. mixed = 1;
  1238. }
  1239. secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
  1240. pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
  1241. if (mixed)
  1242. tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
  1243. if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
  1244. {
  1245. ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
  1246. goto err;
  1247. }
  1248. /* we treat NULL scalars as 0, and NULL points as points at infinity,
  1249. * i.e., they contribute nothing to the linear combination */
  1250. memset(secrets, 0, num_points * sizeof(felem_bytearray));
  1251. memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
  1252. for (i = 0; i < num_points; ++i)
  1253. {
  1254. if (i == num)
  1255. /* the generator */
  1256. {
  1257. p = EC_GROUP_get0_generator(group);
  1258. p_scalar = scalar;
  1259. }
  1260. else
  1261. /* the i^th point */
  1262. {
  1263. p = points[i];
  1264. p_scalar = scalars[i];
  1265. }
  1266. if ((p_scalar != NULL) && (p != NULL))
  1267. {
  1268. /* reduce scalar to 0 <= scalar < 2^224 */
  1269. if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar)))
  1270. {
  1271. /* this is an unusual input, and we don't guarantee
  1272. * constant-timeness */
  1273. if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
  1274. {
  1275. ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
  1276. goto err;
  1277. }
  1278. num_bytes = BN_bn2bin(tmp_scalar, tmp);
  1279. }
  1280. else
  1281. num_bytes = BN_bn2bin(p_scalar, tmp);
  1282. flip_endian(secrets[i], tmp, num_bytes);
  1283. /* precompute multiples */
  1284. if ((!BN_to_felem(x_out, &p->X)) ||
  1285. (!BN_to_felem(y_out, &p->Y)) ||
  1286. (!BN_to_felem(z_out, &p->Z))) goto err;
  1287. felem_assign(pre_comp[i][1][0], x_out);
  1288. felem_assign(pre_comp[i][1][1], y_out);
  1289. felem_assign(pre_comp[i][1][2], z_out);
  1290. for (j = 2; j <= 16; ++j)
  1291. {
  1292. if (j & 1)
  1293. {
  1294. point_add(
  1295. pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
  1296. pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
  1297. 0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
  1298. }
  1299. else
  1300. {
  1301. point_double(
  1302. pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
  1303. pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
  1304. }
  1305. }
  1306. }
  1307. }
  1308. if (mixed)
  1309. make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
  1310. }
  1311. /* the scalar for the generator */
  1312. if ((scalar != NULL) && (have_pre_comp))
  1313. {
  1314. memset(g_secret, 0, sizeof g_secret);
  1315. /* reduce scalar to 0 <= scalar < 2^224 */
  1316. if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar)))
  1317. {
  1318. /* this is an unusual input, and we don't guarantee
  1319. * constant-timeness */
  1320. if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
  1321. {
  1322. ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
  1323. goto err;
  1324. }
  1325. num_bytes = BN_bn2bin(tmp_scalar, tmp);
  1326. }
  1327. else
  1328. num_bytes = BN_bn2bin(scalar, tmp);
  1329. flip_endian(g_secret, tmp, num_bytes);
  1330. /* do the multiplication with generator precomputation*/
  1331. batch_mul(x_out, y_out, z_out,
  1332. (const felem_bytearray (*)) secrets, num_points,
  1333. g_secret,
  1334. mixed, (const felem (*)[17][3]) pre_comp,
  1335. g_pre_comp);
  1336. }
  1337. else
  1338. /* do the multiplication without generator precomputation */
  1339. batch_mul(x_out, y_out, z_out,
  1340. (const felem_bytearray (*)) secrets, num_points,
  1341. NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
  1342. /* reduce the output to its unique minimal representation */
  1343. felem_contract(x_in, x_out);
  1344. felem_contract(y_in, y_out);
  1345. felem_contract(z_in, z_out);
  1346. if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
  1347. (!felem_to_BN(z, z_in)))
  1348. {
  1349. ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
  1350. goto err;
  1351. }
  1352. ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
  1353. err:
  1354. BN_CTX_end(ctx);
  1355. if (generator != NULL)
  1356. EC_POINT_free(generator);
  1357. if (new_ctx != NULL)
  1358. BN_CTX_free(new_ctx);
  1359. if (secrets != NULL)
  1360. OPENSSL_free(secrets);
  1361. if (pre_comp != NULL)
  1362. OPENSSL_free(pre_comp);
  1363. if (tmp_felems != NULL)
  1364. OPENSSL_free(tmp_felems);
  1365. return ret;
  1366. }
  1367. int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
  1368. {
  1369. int ret = 0;
  1370. NISTP224_PRE_COMP *pre = NULL;
  1371. int i, j;
  1372. BN_CTX *new_ctx = NULL;
  1373. BIGNUM *x, *y;
  1374. EC_POINT *generator = NULL;
  1375. felem tmp_felems[32];
  1376. /* throw away old precomputation */
  1377. EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
  1378. nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
  1379. if (ctx == NULL)
  1380. if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
  1381. BN_CTX_start(ctx);
  1382. if (((x = BN_CTX_get(ctx)) == NULL) ||
  1383. ((y = BN_CTX_get(ctx)) == NULL))
  1384. goto err;
  1385. /* get the generator */
  1386. if (group->generator == NULL) goto err;
  1387. generator = EC_POINT_new(group);
  1388. if (generator == NULL)
  1389. goto err;
  1390. BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
  1391. BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
  1392. if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
  1393. goto err;
  1394. if ((pre = nistp224_pre_comp_new()) == NULL)
  1395. goto err;
  1396. /* if the generator is the standard one, use built-in precomputation */
  1397. if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
  1398. {
  1399. memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
  1400. ret = 1;
  1401. goto err;
  1402. }
  1403. if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) ||
  1404. (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) ||
  1405. (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z)))
  1406. goto err;
  1407. /* compute 2^56*G, 2^112*G, 2^168*G for the first table,
  1408. * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one
  1409. */
  1410. for (i = 1; i <= 8; i <<= 1)
  1411. {
  1412. point_double(
  1413. pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
  1414. pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
  1415. for (j = 0; j < 27; ++j)
  1416. {
  1417. point_double(
  1418. pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
  1419. pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
  1420. }
  1421. if (i == 8)
  1422. break;
  1423. point_double(
  1424. pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
  1425. pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
  1426. for (j = 0; j < 27; ++j)
  1427. {
  1428. point_double(
  1429. pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
  1430. pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
  1431. }
  1432. }
  1433. for (i = 0; i < 2; i++)
  1434. {
  1435. /* g_pre_comp[i][0] is the point at infinity */
  1436. memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
  1437. /* the remaining multiples */
  1438. /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
  1439. point_add(
  1440. pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
  1441. pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
  1442. pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
  1443. 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
  1444. pre->g_pre_comp[i][2][2]);
  1445. /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
  1446. point_add(
  1447. pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
  1448. pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
  1449. pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
  1450. 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
  1451. pre->g_pre_comp[i][2][2]);
  1452. /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
  1453. point_add(
  1454. pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
  1455. pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
  1456. pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
  1457. 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
  1458. pre->g_pre_comp[i][4][2]);
  1459. /* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */
  1460. point_add(
  1461. pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
  1462. pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
  1463. pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
  1464. 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
  1465. pre->g_pre_comp[i][2][2]);
  1466. for (j = 1; j < 8; ++j)
  1467. {
  1468. /* odd multiples: add G resp. 2^28*G */
  1469. point_add(
  1470. pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1],
  1471. pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0],
  1472. pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
  1473. 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
  1474. pre->g_pre_comp[i][1][2]);
  1475. }
  1476. }
  1477. make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
  1478. if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
  1479. nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
  1480. goto err;
  1481. ret = 1;
  1482. pre = NULL;
  1483. err:
  1484. BN_CTX_end(ctx);
  1485. if (generator != NULL)
  1486. EC_POINT_free(generator);
  1487. if (new_ctx != NULL)
  1488. BN_CTX_free(new_ctx);
  1489. if (pre)
  1490. nistp224_pre_comp_free(pre);
  1491. return ret;
  1492. }
  1493. int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
  1494. {
  1495. if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
  1496. nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
  1497. != NULL)
  1498. return 1;
  1499. else
  1500. return 0;
  1501. }
  1502. #else
  1503. static void *dummy=&dummy;
  1504. #endif