123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- =pod
- =head1 NAME
- RSA_generate_key_ex, RSA_generate_key,
- RSA_generate_multi_prime_key - generate RSA key pair
- =head1 SYNOPSIS
- #include <openssl/rsa.h>
- int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb);
- int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, BIGNUM *e, BN_GENCB *cb);
- Deprecated since OpenSSL 0.9.8, can be hidden entirely by defining
- B<OPENSSL_API_COMPAT> with a suitable version value, see
- L<openssl_user_macros(7)>:
- RSA *RSA_generate_key(int bits, unsigned long e,
- void (*callback)(int, int, void *), void *cb_arg);
- =head1 DESCRIPTION
- RSA_generate_key_ex() generates a 2-prime RSA key pair and stores it in the
- B<RSA> structure provided in B<rsa>. The pseudo-random number generator must
- be seeded prior to calling RSA_generate_key_ex().
- RSA_generate_multi_prime_key() generates a multi-prime RSA key pair and stores
- it in the B<RSA> structure provided in B<rsa>. The number of primes is given by
- the B<primes> parameter. The random number generator must be seeded when
- calling RSA_generate_multi_prime_key().
- If the automatic seeding or reseeding of the OpenSSL CSPRNG fails due to
- external circumstances (see L<RAND(7)>), the operation will fail.
- The modulus size will be of length B<bits>, the number of primes to form the
- modulus will be B<primes>, and the public exponent will be B<e>. Key sizes
- with B<num> E<lt> 1024 should be considered insecure. The exponent is an odd
- number, typically 3, 17 or 65537.
- In order to maintain adequate security level, the maximum number of permitted
- B<primes> depends on modulus bit length:
- <1024 | >=1024 | >=4096 | >=8192
- ------+--------+--------+-------
- 2 | 3 | 4 | 5
- A callback function may be used to provide feedback about the
- progress of the key generation. If B<cb> is not B<NULL>, it
- will be called as follows using the BN_GENCB_call() function
- described on the L<BN_generate_prime(3)> page.
- RSA_generate_key() is similar to RSA_generate_key_ex() but
- expects an old-style callback function; see
- L<BN_generate_prime(3)> for information on the old-style callback.
- =over 2
- =item *
- While a random prime number is generated, it is called as
- described in L<BN_generate_prime(3)>.
- =item *
- When the n-th randomly generated prime is rejected as not
- suitable for the key, B<BN_GENCB_call(cb, 2, n)> is called.
- =item *
- When a random p has been found with p-1 relatively prime to B<e>,
- it is called as B<BN_GENCB_call(cb, 3, 0)>.
- =back
- The process is then repeated for prime q and other primes (if any)
- with B<BN_GENCB_call(cb, 3, i)> where B<i> indicates the i-th prime.
- =head1 RETURN VALUES
- RSA_generate_multi_prime_key() returns 1 on success or 0 on error.
- RSA_generate_key_ex() returns 1 on success or 0 on error.
- The error codes can be obtained by L<ERR_get_error(3)>.
- RSA_generate_key() returns a pointer to the RSA structure or
- B<NULL> if the key generation fails.
- =head1 BUGS
- B<BN_GENCB_call(cb, 2, x)> is used with two different meanings.
- =head1 SEE ALSO
- L<ERR_get_error(3)>, L<RAND_bytes(3)>, L<BN_generate_prime(3)>,
- L<RAND(7)>
- =head1 HISTORY
- RSA_generate_key() was deprecated in OpenSSL 0.9.8; use
- RSA_generate_key_ex() instead.
- =head1 COPYRIGHT
- Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved.
- Licensed under the Apache License 2.0 (the "License"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file LICENSE in the source distribution or at
- L<https://www.openssl.org/source/license.html>.
- =cut
|