evp_test.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138
  1. /*
  2. * Copyright 2015-2019 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <stdio.h>
  10. #include <string.h>
  11. #include <stdlib.h>
  12. #include <ctype.h>
  13. #include <openssl/evp.h>
  14. #include <openssl/pem.h>
  15. #include <openssl/err.h>
  16. #include <openssl/provider.h>
  17. #include <openssl/x509v3.h>
  18. #include <openssl/pkcs12.h>
  19. #include <openssl/kdf.h>
  20. #include "internal/numbers.h"
  21. #include "testutil.h"
  22. #include "evp_test.h"
  23. #define AAD_NUM 4
  24. typedef struct evp_test_method_st EVP_TEST_METHOD;
  25. /*
  26. * Structure holding test information
  27. */
  28. typedef struct evp_test_st {
  29. STANZA s; /* Common test stanza */
  30. char *name;
  31. int skip; /* Current test should be skipped */
  32. const EVP_TEST_METHOD *meth; /* method for this test */
  33. const char *err, *aux_err; /* Error string for test */
  34. char *expected_err; /* Expected error value of test */
  35. char *reason; /* Expected error reason string */
  36. void *data; /* test specific data */
  37. } EVP_TEST;
  38. /*
  39. * Test method structure
  40. */
  41. struct evp_test_method_st {
  42. /* Name of test as it appears in file */
  43. const char *name;
  44. /* Initialise test for "alg" */
  45. int (*init) (EVP_TEST * t, const char *alg);
  46. /* Clean up method */
  47. void (*cleanup) (EVP_TEST * t);
  48. /* Test specific name value pair processing */
  49. int (*parse) (EVP_TEST * t, const char *name, const char *value);
  50. /* Run the test itself */
  51. int (*run_test) (EVP_TEST * t);
  52. };
  53. /*
  54. * Linked list of named keys.
  55. */
  56. typedef struct key_list_st {
  57. char *name;
  58. EVP_PKEY *key;
  59. struct key_list_st *next;
  60. } KEY_LIST;
  61. /*
  62. * List of public and private keys
  63. */
  64. static KEY_LIST *private_keys;
  65. static KEY_LIST *public_keys;
  66. static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
  67. static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
  68. /*
  69. * Compare two memory regions for equality, returning zero if they differ.
  70. * However, if there is expected to be an error and the actual error
  71. * matches then the memory is expected to be different so handle this
  72. * case without producing unnecessary test framework output.
  73. */
  74. static int memory_err_compare(EVP_TEST *t, const char *err,
  75. const void *expected, size_t expected_len,
  76. const void *got, size_t got_len)
  77. {
  78. int r;
  79. if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
  80. r = !TEST_mem_ne(expected, expected_len, got, got_len);
  81. else
  82. r = TEST_mem_eq(expected, expected_len, got, got_len);
  83. if (!r)
  84. t->err = err;
  85. return r;
  86. }
  87. /*
  88. * Structure used to hold a list of blocks of memory to test
  89. * calls to "update" like functions.
  90. */
  91. struct evp_test_buffer_st {
  92. unsigned char *buf;
  93. size_t buflen;
  94. size_t count;
  95. int count_set;
  96. };
  97. static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
  98. {
  99. if (db != NULL) {
  100. OPENSSL_free(db->buf);
  101. OPENSSL_free(db);
  102. }
  103. }
  104. /*
  105. * append buffer to a list
  106. */
  107. static int evp_test_buffer_append(const char *value,
  108. STACK_OF(EVP_TEST_BUFFER) **sk)
  109. {
  110. EVP_TEST_BUFFER *db = NULL;
  111. if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
  112. goto err;
  113. if (!parse_bin(value, &db->buf, &db->buflen))
  114. goto err;
  115. db->count = 1;
  116. db->count_set = 0;
  117. if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
  118. goto err;
  119. if (!sk_EVP_TEST_BUFFER_push(*sk, db))
  120. goto err;
  121. return 1;
  122. err:
  123. evp_test_buffer_free(db);
  124. return 0;
  125. }
  126. /*
  127. * replace last buffer in list with copies of itself
  128. */
  129. static int evp_test_buffer_ncopy(const char *value,
  130. STACK_OF(EVP_TEST_BUFFER) *sk)
  131. {
  132. EVP_TEST_BUFFER *db;
  133. unsigned char *tbuf, *p;
  134. size_t tbuflen;
  135. int ncopy = atoi(value);
  136. int i;
  137. if (ncopy <= 0)
  138. return 0;
  139. if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
  140. return 0;
  141. db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
  142. tbuflen = db->buflen * ncopy;
  143. if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
  144. return 0;
  145. for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
  146. memcpy(p, db->buf, db->buflen);
  147. OPENSSL_free(db->buf);
  148. db->buf = tbuf;
  149. db->buflen = tbuflen;
  150. return 1;
  151. }
  152. /*
  153. * set repeat count for last buffer in list
  154. */
  155. static int evp_test_buffer_set_count(const char *value,
  156. STACK_OF(EVP_TEST_BUFFER) *sk)
  157. {
  158. EVP_TEST_BUFFER *db;
  159. int count = atoi(value);
  160. if (count <= 0)
  161. return 0;
  162. if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
  163. return 0;
  164. db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
  165. if (db->count_set != 0)
  166. return 0;
  167. db->count = (size_t)count;
  168. db->count_set = 1;
  169. return 1;
  170. }
  171. /*
  172. * call "fn" with each element of the list in turn
  173. */
  174. static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
  175. int (*fn)(void *ctx,
  176. const unsigned char *buf,
  177. size_t buflen),
  178. void *ctx)
  179. {
  180. int i;
  181. for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
  182. EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
  183. size_t j;
  184. for (j = 0; j < tb->count; j++) {
  185. if (fn(ctx, tb->buf, tb->buflen) <= 0)
  186. return 0;
  187. }
  188. }
  189. return 1;
  190. }
  191. /*
  192. * Unescape some sequences in string literals (only \n for now).
  193. * Return an allocated buffer, set |out_len|. If |input_len|
  194. * is zero, get an empty buffer but set length to zero.
  195. */
  196. static unsigned char* unescape(const char *input, size_t input_len,
  197. size_t *out_len)
  198. {
  199. unsigned char *ret, *p;
  200. size_t i;
  201. if (input_len == 0) {
  202. *out_len = 0;
  203. return OPENSSL_zalloc(1);
  204. }
  205. /* Escaping is non-expanding; over-allocate original size for simplicity. */
  206. if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
  207. return NULL;
  208. for (i = 0; i < input_len; i++) {
  209. if (*input == '\\') {
  210. if (i == input_len - 1 || *++input != 'n') {
  211. TEST_error("Bad escape sequence in file");
  212. goto err;
  213. }
  214. *p++ = '\n';
  215. i++;
  216. input++;
  217. } else {
  218. *p++ = *input++;
  219. }
  220. }
  221. *out_len = p - ret;
  222. return ret;
  223. err:
  224. OPENSSL_free(ret);
  225. return NULL;
  226. }
  227. /*
  228. * For a hex string "value" convert to a binary allocated buffer.
  229. * Return 1 on success or 0 on failure.
  230. */
  231. static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
  232. {
  233. long len;
  234. /* Check for NULL literal */
  235. if (strcmp(value, "NULL") == 0) {
  236. *buf = NULL;
  237. *buflen = 0;
  238. return 1;
  239. }
  240. /* Check for empty value */
  241. if (*value == '\0') {
  242. /*
  243. * Don't return NULL for zero length buffer. This is needed for
  244. * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
  245. * buffer even if the key length is 0, in order to detect key reset.
  246. */
  247. *buf = OPENSSL_malloc(1);
  248. if (*buf == NULL)
  249. return 0;
  250. **buf = 0;
  251. *buflen = 0;
  252. return 1;
  253. }
  254. /* Check for string literal */
  255. if (value[0] == '"') {
  256. size_t vlen = strlen(++value);
  257. if (vlen == 0 || value[vlen - 1] != '"')
  258. return 0;
  259. vlen--;
  260. *buf = unescape(value, vlen, buflen);
  261. return *buf == NULL ? 0 : 1;
  262. }
  263. /* Otherwise assume as hex literal and convert it to binary buffer */
  264. if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
  265. TEST_info("Can't convert %s", value);
  266. TEST_openssl_errors();
  267. return -1;
  268. }
  269. /* Size of input buffer means we'll never overflow */
  270. *buflen = len;
  271. return 1;
  272. }
  273. /**
  274. *** MESSAGE DIGEST TESTS
  275. **/
  276. typedef struct digest_data_st {
  277. /* Digest this test is for */
  278. const EVP_MD *digest;
  279. /* Input to digest */
  280. STACK_OF(EVP_TEST_BUFFER) *input;
  281. /* Expected output */
  282. unsigned char *output;
  283. size_t output_len;
  284. } DIGEST_DATA;
  285. static int digest_test_init(EVP_TEST *t, const char *alg)
  286. {
  287. DIGEST_DATA *mdat;
  288. const EVP_MD *digest;
  289. if ((digest = EVP_get_digestbyname(alg)) == NULL) {
  290. /* If alg has an OID assume disabled algorithm */
  291. if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
  292. t->skip = 1;
  293. return 1;
  294. }
  295. return 0;
  296. }
  297. if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
  298. return 0;
  299. t->data = mdat;
  300. mdat->digest = digest;
  301. return 1;
  302. }
  303. static void digest_test_cleanup(EVP_TEST *t)
  304. {
  305. DIGEST_DATA *mdat = t->data;
  306. sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
  307. OPENSSL_free(mdat->output);
  308. }
  309. static int digest_test_parse(EVP_TEST *t,
  310. const char *keyword, const char *value)
  311. {
  312. DIGEST_DATA *mdata = t->data;
  313. if (strcmp(keyword, "Input") == 0)
  314. return evp_test_buffer_append(value, &mdata->input);
  315. if (strcmp(keyword, "Output") == 0)
  316. return parse_bin(value, &mdata->output, &mdata->output_len);
  317. if (strcmp(keyword, "Count") == 0)
  318. return evp_test_buffer_set_count(value, mdata->input);
  319. if (strcmp(keyword, "Ncopy") == 0)
  320. return evp_test_buffer_ncopy(value, mdata->input);
  321. return 0;
  322. }
  323. static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
  324. {
  325. return EVP_DigestUpdate(ctx, buf, buflen);
  326. }
  327. static int digest_test_run(EVP_TEST *t)
  328. {
  329. DIGEST_DATA *expected = t->data;
  330. EVP_MD_CTX *mctx;
  331. unsigned char *got = NULL;
  332. unsigned int got_len;
  333. t->err = "TEST_FAILURE";
  334. if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
  335. goto err;
  336. got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
  337. expected->output_len : EVP_MAX_MD_SIZE);
  338. if (!TEST_ptr(got))
  339. goto err;
  340. if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
  341. t->err = "DIGESTINIT_ERROR";
  342. goto err;
  343. }
  344. if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
  345. t->err = "DIGESTUPDATE_ERROR";
  346. goto err;
  347. }
  348. if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
  349. got_len = expected->output_len;
  350. if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
  351. t->err = "DIGESTFINALXOF_ERROR";
  352. goto err;
  353. }
  354. } else {
  355. if (!EVP_DigestFinal(mctx, got, &got_len)) {
  356. t->err = "DIGESTFINAL_ERROR";
  357. goto err;
  358. }
  359. }
  360. if (!TEST_int_eq(expected->output_len, got_len)) {
  361. t->err = "DIGEST_LENGTH_MISMATCH";
  362. goto err;
  363. }
  364. if (!memory_err_compare(t, "DIGEST_MISMATCH",
  365. expected->output, expected->output_len,
  366. got, got_len))
  367. goto err;
  368. t->err = NULL;
  369. err:
  370. OPENSSL_free(got);
  371. EVP_MD_CTX_free(mctx);
  372. return 1;
  373. }
  374. static const EVP_TEST_METHOD digest_test_method = {
  375. "Digest",
  376. digest_test_init,
  377. digest_test_cleanup,
  378. digest_test_parse,
  379. digest_test_run
  380. };
  381. /**
  382. *** CIPHER TESTS
  383. **/
  384. typedef struct cipher_data_st {
  385. const EVP_CIPHER *cipher;
  386. int enc;
  387. /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
  388. int aead;
  389. unsigned char *key;
  390. size_t key_len;
  391. unsigned char *iv;
  392. size_t iv_len;
  393. unsigned char *plaintext;
  394. size_t plaintext_len;
  395. unsigned char *ciphertext;
  396. size_t ciphertext_len;
  397. /* GCM, CCM, OCB and SIV only */
  398. unsigned char *aad[AAD_NUM];
  399. size_t aad_len[AAD_NUM];
  400. unsigned char *tag;
  401. size_t tag_len;
  402. int tag_late;
  403. } CIPHER_DATA;
  404. static int cipher_test_init(EVP_TEST *t, const char *alg)
  405. {
  406. const EVP_CIPHER *cipher;
  407. CIPHER_DATA *cdat;
  408. int m;
  409. if ((cipher = EVP_get_cipherbyname(alg)) == NULL) {
  410. /* If alg has an OID assume disabled algorithm */
  411. if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
  412. t->skip = 1;
  413. return 1;
  414. }
  415. return 0;
  416. }
  417. cdat = OPENSSL_zalloc(sizeof(*cdat));
  418. cdat->cipher = cipher;
  419. cdat->enc = -1;
  420. m = EVP_CIPHER_mode(cipher);
  421. if (m == EVP_CIPH_GCM_MODE
  422. || m == EVP_CIPH_OCB_MODE
  423. || m == EVP_CIPH_SIV_MODE
  424. || m == EVP_CIPH_CCM_MODE)
  425. cdat->aead = m;
  426. else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
  427. cdat->aead = -1;
  428. else
  429. cdat->aead = 0;
  430. t->data = cdat;
  431. return 1;
  432. }
  433. static void cipher_test_cleanup(EVP_TEST *t)
  434. {
  435. int i;
  436. CIPHER_DATA *cdat = t->data;
  437. OPENSSL_free(cdat->key);
  438. OPENSSL_free(cdat->iv);
  439. OPENSSL_free(cdat->ciphertext);
  440. OPENSSL_free(cdat->plaintext);
  441. for (i = 0; i < AAD_NUM; i++)
  442. OPENSSL_free(cdat->aad[i]);
  443. OPENSSL_free(cdat->tag);
  444. }
  445. static int cipher_test_parse(EVP_TEST *t, const char *keyword,
  446. const char *value)
  447. {
  448. CIPHER_DATA *cdat = t->data;
  449. int i;
  450. if (strcmp(keyword, "Key") == 0)
  451. return parse_bin(value, &cdat->key, &cdat->key_len);
  452. if (strcmp(keyword, "IV") == 0)
  453. return parse_bin(value, &cdat->iv, &cdat->iv_len);
  454. if (strcmp(keyword, "Plaintext") == 0)
  455. return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
  456. if (strcmp(keyword, "Ciphertext") == 0)
  457. return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
  458. if (cdat->aead) {
  459. if (strcmp(keyword, "AAD") == 0) {
  460. for (i = 0; i < AAD_NUM; i++) {
  461. if (cdat->aad[i] == NULL)
  462. return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]);
  463. }
  464. return 0;
  465. }
  466. if (strcmp(keyword, "Tag") == 0)
  467. return parse_bin(value, &cdat->tag, &cdat->tag_len);
  468. if (strcmp(keyword, "SetTagLate") == 0) {
  469. if (strcmp(value, "TRUE") == 0)
  470. cdat->tag_late = 1;
  471. else if (strcmp(value, "FALSE") == 0)
  472. cdat->tag_late = 0;
  473. else
  474. return 0;
  475. return 1;
  476. }
  477. }
  478. if (strcmp(keyword, "Operation") == 0) {
  479. if (strcmp(value, "ENCRYPT") == 0)
  480. cdat->enc = 1;
  481. else if (strcmp(value, "DECRYPT") == 0)
  482. cdat->enc = 0;
  483. else
  484. return 0;
  485. return 1;
  486. }
  487. return 0;
  488. }
  489. static int cipher_test_enc(EVP_TEST *t, int enc,
  490. size_t out_misalign, size_t inp_misalign, int frag)
  491. {
  492. CIPHER_DATA *expected = t->data;
  493. unsigned char *in, *expected_out, *tmp = NULL;
  494. size_t in_len, out_len, donelen = 0;
  495. int ok = 0, tmplen, chunklen, tmpflen, i;
  496. EVP_CIPHER_CTX *ctx = NULL;
  497. t->err = "TEST_FAILURE";
  498. if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
  499. goto err;
  500. EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
  501. if (enc) {
  502. in = expected->plaintext;
  503. in_len = expected->plaintext_len;
  504. expected_out = expected->ciphertext;
  505. out_len = expected->ciphertext_len;
  506. } else {
  507. in = expected->ciphertext;
  508. in_len = expected->ciphertext_len;
  509. expected_out = expected->plaintext;
  510. out_len = expected->plaintext_len;
  511. }
  512. if (inp_misalign == (size_t)-1) {
  513. /*
  514. * Exercise in-place encryption
  515. */
  516. tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
  517. if (!tmp)
  518. goto err;
  519. in = memcpy(tmp + out_misalign, in, in_len);
  520. } else {
  521. inp_misalign += 16 - ((out_misalign + in_len) & 15);
  522. /*
  523. * 'tmp' will store both output and copy of input. We make the copy
  524. * of input to specifically aligned part of 'tmp'. So we just
  525. * figured out how much padding would ensure the required alignment,
  526. * now we allocate extended buffer and finally copy the input just
  527. * past inp_misalign in expression below. Output will be written
  528. * past out_misalign...
  529. */
  530. tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
  531. inp_misalign + in_len);
  532. if (!tmp)
  533. goto err;
  534. in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
  535. inp_misalign, in, in_len);
  536. }
  537. if (!EVP_CipherInit_ex(ctx, expected->cipher, NULL, NULL, NULL, enc)) {
  538. t->err = "CIPHERINIT_ERROR";
  539. goto err;
  540. }
  541. if (expected->iv) {
  542. if (expected->aead) {
  543. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
  544. expected->iv_len, 0)) {
  545. t->err = "INVALID_IV_LENGTH";
  546. goto err;
  547. }
  548. } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) {
  549. t->err = "INVALID_IV_LENGTH";
  550. goto err;
  551. }
  552. }
  553. if (expected->aead) {
  554. unsigned char *tag;
  555. /*
  556. * If encrypting or OCB just set tag length initially, otherwise
  557. * set tag length and value.
  558. */
  559. if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) {
  560. t->err = "TAG_LENGTH_SET_ERROR";
  561. tag = NULL;
  562. } else {
  563. t->err = "TAG_SET_ERROR";
  564. tag = expected->tag;
  565. }
  566. if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
  567. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
  568. expected->tag_len, tag))
  569. goto err;
  570. }
  571. }
  572. if (!EVP_CIPHER_CTX_set_key_length(ctx, expected->key_len)) {
  573. t->err = "INVALID_KEY_LENGTH";
  574. goto err;
  575. }
  576. if (!EVP_CipherInit_ex(ctx, NULL, NULL, expected->key, expected->iv, -1)) {
  577. t->err = "KEY_SET_ERROR";
  578. goto err;
  579. }
  580. /* Check that we get the same IV back */
  581. if (expected->iv != NULL
  582. && (EVP_CIPHER_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0
  583. && !TEST_mem_eq(expected->iv, expected->iv_len,
  584. EVP_CIPHER_CTX_iv(ctx), expected->iv_len)) {
  585. t->err = "INVALID_IV";
  586. goto err;
  587. }
  588. if (expected->aead == EVP_CIPH_CCM_MODE) {
  589. if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
  590. t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
  591. goto err;
  592. }
  593. }
  594. if (expected->aad[0] != NULL) {
  595. t->err = "AAD_SET_ERROR";
  596. if (!frag) {
  597. for (i = 0; expected->aad[i] != NULL; i++) {
  598. if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i],
  599. expected->aad_len[i]))
  600. goto err;
  601. }
  602. } else {
  603. /*
  604. * Supply the AAD in chunks less than the block size where possible
  605. */
  606. for (i = 0; expected->aad[i] != NULL; i++) {
  607. if (expected->aad_len[i] > 0) {
  608. if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1))
  609. goto err;
  610. donelen++;
  611. }
  612. if (expected->aad_len[i] > 2) {
  613. if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
  614. expected->aad[i] + donelen,
  615. expected->aad_len[i] - 2))
  616. goto err;
  617. donelen += expected->aad_len[i] - 2;
  618. }
  619. if (expected->aad_len[i] > 1
  620. && !EVP_CipherUpdate(ctx, NULL, &chunklen,
  621. expected->aad[i] + donelen, 1))
  622. goto err;
  623. }
  624. }
  625. }
  626. if (!enc && (expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late)) {
  627. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
  628. expected->tag_len, expected->tag)) {
  629. t->err = "TAG_SET_ERROR";
  630. goto err;
  631. }
  632. }
  633. EVP_CIPHER_CTX_set_padding(ctx, 0);
  634. t->err = "CIPHERUPDATE_ERROR";
  635. tmplen = 0;
  636. if (!frag) {
  637. /* We supply the data all in one go */
  638. if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
  639. goto err;
  640. } else {
  641. /* Supply the data in chunks less than the block size where possible */
  642. if (in_len > 0) {
  643. if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
  644. goto err;
  645. tmplen += chunklen;
  646. in++;
  647. in_len--;
  648. }
  649. if (in_len > 1) {
  650. if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
  651. in, in_len - 1))
  652. goto err;
  653. tmplen += chunklen;
  654. in += in_len - 1;
  655. in_len = 1;
  656. }
  657. if (in_len > 0 ) {
  658. if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
  659. in, 1))
  660. goto err;
  661. tmplen += chunklen;
  662. }
  663. }
  664. if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
  665. t->err = "CIPHERFINAL_ERROR";
  666. goto err;
  667. }
  668. if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
  669. tmp + out_misalign, tmplen + tmpflen))
  670. goto err;
  671. if (enc && expected->aead) {
  672. unsigned char rtag[16];
  673. if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
  674. t->err = "TAG_LENGTH_INTERNAL_ERROR";
  675. goto err;
  676. }
  677. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
  678. expected->tag_len, rtag)) {
  679. t->err = "TAG_RETRIEVE_ERROR";
  680. goto err;
  681. }
  682. if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
  683. expected->tag, expected->tag_len,
  684. rtag, expected->tag_len))
  685. goto err;
  686. }
  687. t->err = NULL;
  688. ok = 1;
  689. err:
  690. OPENSSL_free(tmp);
  691. EVP_CIPHER_CTX_free(ctx);
  692. return ok;
  693. }
  694. static int cipher_test_run(EVP_TEST *t)
  695. {
  696. CIPHER_DATA *cdat = t->data;
  697. int rv, frag = 0;
  698. size_t out_misalign, inp_misalign;
  699. if (!cdat->key) {
  700. t->err = "NO_KEY";
  701. return 0;
  702. }
  703. if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
  704. /* IV is optional and usually omitted in wrap mode */
  705. if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
  706. t->err = "NO_IV";
  707. return 0;
  708. }
  709. }
  710. if (cdat->aead && !cdat->tag) {
  711. t->err = "NO_TAG";
  712. return 0;
  713. }
  714. for (out_misalign = 0; out_misalign <= 1;) {
  715. static char aux_err[64];
  716. t->aux_err = aux_err;
  717. for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
  718. if (inp_misalign == (size_t)-1) {
  719. /* kludge: inp_misalign == -1 means "exercise in-place" */
  720. BIO_snprintf(aux_err, sizeof(aux_err),
  721. "%s in-place, %sfragmented",
  722. out_misalign ? "misaligned" : "aligned",
  723. frag ? "" : "not ");
  724. } else {
  725. BIO_snprintf(aux_err, sizeof(aux_err),
  726. "%s output and %s input, %sfragmented",
  727. out_misalign ? "misaligned" : "aligned",
  728. inp_misalign ? "misaligned" : "aligned",
  729. frag ? "" : "not ");
  730. }
  731. if (cdat->enc) {
  732. rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
  733. /* Not fatal errors: return */
  734. if (rv != 1) {
  735. if (rv < 0)
  736. return 0;
  737. return 1;
  738. }
  739. }
  740. if (cdat->enc != 1) {
  741. rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
  742. /* Not fatal errors: return */
  743. if (rv != 1) {
  744. if (rv < 0)
  745. return 0;
  746. return 1;
  747. }
  748. }
  749. }
  750. if (out_misalign == 1 && frag == 0) {
  751. /*
  752. * XTS, SIV, CCM and Wrap modes have special requirements about input
  753. * lengths so we don't fragment for those
  754. */
  755. if (cdat->aead == EVP_CIPH_CCM_MODE
  756. || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_SIV_MODE
  757. || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
  758. || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
  759. break;
  760. out_misalign = 0;
  761. frag++;
  762. } else {
  763. out_misalign++;
  764. }
  765. }
  766. t->aux_err = NULL;
  767. return 1;
  768. }
  769. static const EVP_TEST_METHOD cipher_test_method = {
  770. "Cipher",
  771. cipher_test_init,
  772. cipher_test_cleanup,
  773. cipher_test_parse,
  774. cipher_test_run
  775. };
  776. /**
  777. *** MAC TESTS
  778. **/
  779. typedef struct mac_data_st {
  780. /* MAC type in one form or another */
  781. const EVP_MAC *mac; /* for mac_test_run_mac */
  782. int type; /* for mac_test_run_pkey */
  783. /* Algorithm string for this MAC */
  784. char *alg;
  785. /* MAC key */
  786. unsigned char *key;
  787. size_t key_len;
  788. /* MAC IV (GMAC) */
  789. unsigned char *iv;
  790. size_t iv_len;
  791. /* Input to MAC */
  792. unsigned char *input;
  793. size_t input_len;
  794. /* Expected output */
  795. unsigned char *output;
  796. size_t output_len;
  797. unsigned char *custom;
  798. size_t custom_len;
  799. /* MAC salt (blake2) */
  800. unsigned char *salt;
  801. size_t salt_len;
  802. /* Collection of controls */
  803. STACK_OF(OPENSSL_STRING) *controls;
  804. } MAC_DATA;
  805. static int mac_test_init(EVP_TEST *t, const char *alg)
  806. {
  807. const EVP_MAC *mac = NULL;
  808. int type = NID_undef;
  809. MAC_DATA *mdat;
  810. if ((mac = EVP_get_macbyname(alg)) == NULL) {
  811. /*
  812. * Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods
  813. * For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running
  814. * the EVP_PKEY method.
  815. */
  816. size_t sz = strlen(alg);
  817. static const char epilogue[] = " by EVP_PKEY";
  818. if (sz >= sizeof(epilogue)
  819. && strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0)
  820. sz -= sizeof(epilogue) - 1;
  821. if (strncmp(alg, "HMAC", sz) == 0) {
  822. type = EVP_PKEY_HMAC;
  823. } else if (strncmp(alg, "CMAC", sz) == 0) {
  824. #ifndef OPENSSL_NO_CMAC
  825. type = EVP_PKEY_CMAC;
  826. #else
  827. t->skip = 1;
  828. return 1;
  829. #endif
  830. } else if (strncmp(alg, "Poly1305", sz) == 0) {
  831. #ifndef OPENSSL_NO_POLY1305
  832. type = EVP_PKEY_POLY1305;
  833. #else
  834. t->skip = 1;
  835. return 1;
  836. #endif
  837. } else if (strncmp(alg, "SipHash", sz) == 0) {
  838. #ifndef OPENSSL_NO_SIPHASH
  839. type = EVP_PKEY_SIPHASH;
  840. #else
  841. t->skip = 1;
  842. return 1;
  843. #endif
  844. } else {
  845. /*
  846. * Not a known EVP_PKEY method either. If it's a known OID, then
  847. * assume it's been disabled.
  848. */
  849. if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
  850. t->skip = 1;
  851. return 1;
  852. }
  853. return 0;
  854. }
  855. }
  856. mdat = OPENSSL_zalloc(sizeof(*mdat));
  857. mdat->type = type;
  858. mdat->mac = mac;
  859. mdat->controls = sk_OPENSSL_STRING_new_null();
  860. t->data = mdat;
  861. return 1;
  862. }
  863. /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */
  864. static void openssl_free(char *m)
  865. {
  866. OPENSSL_free(m);
  867. }
  868. static void mac_test_cleanup(EVP_TEST *t)
  869. {
  870. MAC_DATA *mdat = t->data;
  871. sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free);
  872. OPENSSL_free(mdat->alg);
  873. OPENSSL_free(mdat->key);
  874. OPENSSL_free(mdat->iv);
  875. OPENSSL_free(mdat->custom);
  876. OPENSSL_free(mdat->salt);
  877. OPENSSL_free(mdat->input);
  878. OPENSSL_free(mdat->output);
  879. }
  880. static int mac_test_parse(EVP_TEST *t,
  881. const char *keyword, const char *value)
  882. {
  883. MAC_DATA *mdata = t->data;
  884. if (strcmp(keyword, "Key") == 0)
  885. return parse_bin(value, &mdata->key, &mdata->key_len);
  886. if (strcmp(keyword, "IV") == 0)
  887. return parse_bin(value, &mdata->iv, &mdata->iv_len);
  888. if (strcmp(keyword, "Custom") == 0)
  889. return parse_bin(value, &mdata->custom, &mdata->custom_len);
  890. if (strcmp(keyword, "Salt") == 0)
  891. return parse_bin(value, &mdata->salt, &mdata->salt_len);
  892. if (strcmp(keyword, "Algorithm") == 0) {
  893. mdata->alg = OPENSSL_strdup(value);
  894. if (!mdata->alg)
  895. return 0;
  896. return 1;
  897. }
  898. if (strcmp(keyword, "Input") == 0)
  899. return parse_bin(value, &mdata->input, &mdata->input_len);
  900. if (strcmp(keyword, "Output") == 0)
  901. return parse_bin(value, &mdata->output, &mdata->output_len);
  902. if (strcmp(keyword, "Ctrl") == 0)
  903. return sk_OPENSSL_STRING_push(mdata->controls,
  904. OPENSSL_strdup(value)) != 0;
  905. return 0;
  906. }
  907. static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx,
  908. const char *value)
  909. {
  910. int rv;
  911. char *p, *tmpval;
  912. if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
  913. return 0;
  914. p = strchr(tmpval, ':');
  915. if (p != NULL)
  916. *p++ = '\0';
  917. rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
  918. if (rv == -2)
  919. t->err = "PKEY_CTRL_INVALID";
  920. else if (rv <= 0)
  921. t->err = "PKEY_CTRL_ERROR";
  922. else
  923. rv = 1;
  924. OPENSSL_free(tmpval);
  925. return rv > 0;
  926. }
  927. static int mac_test_run_pkey(EVP_TEST *t)
  928. {
  929. MAC_DATA *expected = t->data;
  930. EVP_MD_CTX *mctx = NULL;
  931. EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
  932. EVP_PKEY *key = NULL;
  933. const EVP_MD *md = NULL;
  934. unsigned char *got = NULL;
  935. size_t got_len;
  936. int i;
  937. if (expected->alg == NULL)
  938. TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type));
  939. else
  940. TEST_info("Trying the EVP_PKEY %s test with %s",
  941. OBJ_nid2sn(expected->type), expected->alg);
  942. #ifdef OPENSSL_NO_DES
  943. if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
  944. /* Skip DES */
  945. t->err = NULL;
  946. goto err;
  947. }
  948. #endif
  949. if (expected->type == EVP_PKEY_CMAC)
  950. key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
  951. EVP_get_cipherbyname(expected->alg));
  952. else
  953. key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key,
  954. expected->key_len);
  955. if (key == NULL) {
  956. t->err = "MAC_KEY_CREATE_ERROR";
  957. goto err;
  958. }
  959. if (expected->type == EVP_PKEY_HMAC) {
  960. if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) {
  961. t->err = "MAC_ALGORITHM_SET_ERROR";
  962. goto err;
  963. }
  964. }
  965. if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
  966. t->err = "INTERNAL_ERROR";
  967. goto err;
  968. }
  969. if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
  970. t->err = "DIGESTSIGNINIT_ERROR";
  971. goto err;
  972. }
  973. for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++)
  974. if (!mac_test_ctrl_pkey(t, pctx,
  975. sk_OPENSSL_STRING_value(expected->controls,
  976. i))) {
  977. t->err = "EVPPKEYCTXCTRL_ERROR";
  978. goto err;
  979. }
  980. if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
  981. t->err = "DIGESTSIGNUPDATE_ERROR";
  982. goto err;
  983. }
  984. if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
  985. t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
  986. goto err;
  987. }
  988. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  989. t->err = "TEST_FAILURE";
  990. goto err;
  991. }
  992. if (!EVP_DigestSignFinal(mctx, got, &got_len)
  993. || !memory_err_compare(t, "TEST_MAC_ERR",
  994. expected->output, expected->output_len,
  995. got, got_len)) {
  996. t->err = "TEST_MAC_ERR";
  997. goto err;
  998. }
  999. t->err = NULL;
  1000. err:
  1001. EVP_MD_CTX_free(mctx);
  1002. OPENSSL_free(got);
  1003. EVP_PKEY_CTX_free(genctx);
  1004. EVP_PKEY_free(key);
  1005. return 1;
  1006. }
  1007. static int mac_test_run_mac(EVP_TEST *t)
  1008. {
  1009. MAC_DATA *expected = t->data;
  1010. EVP_MAC_CTX *ctx = NULL;
  1011. const void *algo = NULL;
  1012. int algo_ctrl = 0;
  1013. unsigned char *got = NULL;
  1014. size_t got_len;
  1015. int rv, i;
  1016. if (expected->alg == NULL)
  1017. TEST_info("Trying the EVP_MAC %s test", EVP_MAC_name(expected->mac));
  1018. else
  1019. TEST_info("Trying the EVP_MAC %s test with %s",
  1020. EVP_MAC_name(expected->mac), expected->alg);
  1021. #ifdef OPENSSL_NO_DES
  1022. if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
  1023. /* Skip DES */
  1024. t->err = NULL;
  1025. goto err;
  1026. }
  1027. #endif
  1028. if ((ctx = EVP_MAC_CTX_new(expected->mac)) == NULL) {
  1029. t->err = "MAC_CREATE_ERROR";
  1030. goto err;
  1031. }
  1032. if (expected->alg != NULL
  1033. && ((algo_ctrl = EVP_MAC_CTRL_SET_CIPHER,
  1034. algo = EVP_get_cipherbyname(expected->alg)) == NULL
  1035. && (algo_ctrl = EVP_MAC_CTRL_SET_MD,
  1036. algo = EVP_get_digestbyname(expected->alg)) == NULL)) {
  1037. t->err = "MAC_BAD_ALGORITHM";
  1038. goto err;
  1039. }
  1040. if (algo_ctrl != 0) {
  1041. rv = EVP_MAC_ctrl(ctx, algo_ctrl, algo);
  1042. if (rv == -2) {
  1043. t->err = "MAC_CTRL_INVALID";
  1044. goto err;
  1045. } else if (rv <= 0) {
  1046. t->err = "MAC_CTRL_ERROR";
  1047. goto err;
  1048. }
  1049. }
  1050. rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_KEY,
  1051. expected->key, expected->key_len);
  1052. if (rv == -2) {
  1053. t->err = "MAC_CTRL_INVALID";
  1054. goto err;
  1055. } else if (rv <= 0) {
  1056. t->err = "MAC_CTRL_ERROR";
  1057. goto err;
  1058. }
  1059. if (expected->custom != NULL) {
  1060. rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_CUSTOM,
  1061. expected->custom, expected->custom_len);
  1062. if (rv == -2) {
  1063. t->err = "MAC_CTRL_INVALID";
  1064. goto err;
  1065. } else if (rv <= 0) {
  1066. t->err = "MAC_CTRL_ERROR";
  1067. goto err;
  1068. }
  1069. }
  1070. if (expected->salt != NULL) {
  1071. rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_SALT,
  1072. expected->salt, expected->salt_len);
  1073. if (rv == -2) {
  1074. t->err = "MAC_CTRL_INVALID";
  1075. goto err;
  1076. } else if (rv <= 0) {
  1077. t->err = "MAC_CTRL_ERROR";
  1078. goto err;
  1079. }
  1080. }
  1081. if (expected->iv != NULL) {
  1082. rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_IV,
  1083. expected->iv, expected->iv_len);
  1084. if (rv == -2) {
  1085. t->err = "MAC_CTRL_INVALID";
  1086. goto err;
  1087. } else if (rv <= 0) {
  1088. t->err = "MAC_CTRL_ERROR";
  1089. goto err;
  1090. }
  1091. }
  1092. for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) {
  1093. char *p, *tmpval;
  1094. char *value = sk_OPENSSL_STRING_value(expected->controls, i);
  1095. if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) {
  1096. t->err = "MAC_CTRL_ERROR";
  1097. goto err;
  1098. }
  1099. p = strchr(tmpval, ':');
  1100. if (p != NULL)
  1101. *p++ = '\0';
  1102. rv = EVP_MAC_ctrl_str(ctx, tmpval, p);
  1103. OPENSSL_free(tmpval);
  1104. if (rv == -2) {
  1105. t->err = "MAC_CTRL_INVALID";
  1106. goto err;
  1107. } else if (rv <= 0) {
  1108. t->err = "MAC_CTRL_ERROR";
  1109. goto err;
  1110. }
  1111. }
  1112. if (!EVP_MAC_init(ctx)) {
  1113. t->err = "MAC_INIT_ERROR";
  1114. goto err;
  1115. }
  1116. if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) {
  1117. t->err = "MAC_UPDATE_ERROR";
  1118. goto err;
  1119. }
  1120. if (!EVP_MAC_final(ctx, NULL, &got_len)) {
  1121. t->err = "MAC_FINAL_LENGTH_ERROR";
  1122. goto err;
  1123. }
  1124. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1125. t->err = "TEST_FAILURE";
  1126. goto err;
  1127. }
  1128. if (!EVP_MAC_final(ctx, got, &got_len)
  1129. || !memory_err_compare(t, "TEST_MAC_ERR",
  1130. expected->output, expected->output_len,
  1131. got, got_len)) {
  1132. t->err = "TEST_MAC_ERR";
  1133. goto err;
  1134. }
  1135. t->err = NULL;
  1136. err:
  1137. EVP_MAC_CTX_free(ctx);
  1138. OPENSSL_free(got);
  1139. return 1;
  1140. }
  1141. static int mac_test_run(EVP_TEST *t)
  1142. {
  1143. MAC_DATA *expected = t->data;
  1144. if (expected->mac != NULL)
  1145. return mac_test_run_mac(t);
  1146. return mac_test_run_pkey(t);
  1147. }
  1148. static const EVP_TEST_METHOD mac_test_method = {
  1149. "MAC",
  1150. mac_test_init,
  1151. mac_test_cleanup,
  1152. mac_test_parse,
  1153. mac_test_run
  1154. };
  1155. /**
  1156. *** PUBLIC KEY TESTS
  1157. *** These are all very similar and share much common code.
  1158. **/
  1159. typedef struct pkey_data_st {
  1160. /* Context for this operation */
  1161. EVP_PKEY_CTX *ctx;
  1162. /* Key operation to perform */
  1163. int (*keyop) (EVP_PKEY_CTX *ctx,
  1164. unsigned char *sig, size_t *siglen,
  1165. const unsigned char *tbs, size_t tbslen);
  1166. /* Input to MAC */
  1167. unsigned char *input;
  1168. size_t input_len;
  1169. /* Expected output */
  1170. unsigned char *output;
  1171. size_t output_len;
  1172. } PKEY_DATA;
  1173. /*
  1174. * Perform public key operation setup: lookup key, allocated ctx and call
  1175. * the appropriate initialisation function
  1176. */
  1177. static int pkey_test_init(EVP_TEST *t, const char *name,
  1178. int use_public,
  1179. int (*keyopinit) (EVP_PKEY_CTX *ctx),
  1180. int (*keyop)(EVP_PKEY_CTX *ctx,
  1181. unsigned char *sig, size_t *siglen,
  1182. const unsigned char *tbs,
  1183. size_t tbslen))
  1184. {
  1185. PKEY_DATA *kdata;
  1186. EVP_PKEY *pkey = NULL;
  1187. int rv = 0;
  1188. if (use_public)
  1189. rv = find_key(&pkey, name, public_keys);
  1190. if (rv == 0)
  1191. rv = find_key(&pkey, name, private_keys);
  1192. if (rv == 0 || pkey == NULL) {
  1193. t->skip = 1;
  1194. return 1;
  1195. }
  1196. if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
  1197. EVP_PKEY_free(pkey);
  1198. return 0;
  1199. }
  1200. kdata->keyop = keyop;
  1201. if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) {
  1202. EVP_PKEY_free(pkey);
  1203. OPENSSL_free(kdata);
  1204. return 0;
  1205. }
  1206. if (keyopinit(kdata->ctx) <= 0)
  1207. t->err = "KEYOP_INIT_ERROR";
  1208. t->data = kdata;
  1209. return 1;
  1210. }
  1211. static void pkey_test_cleanup(EVP_TEST *t)
  1212. {
  1213. PKEY_DATA *kdata = t->data;
  1214. OPENSSL_free(kdata->input);
  1215. OPENSSL_free(kdata->output);
  1216. EVP_PKEY_CTX_free(kdata->ctx);
  1217. }
  1218. static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
  1219. const char *value)
  1220. {
  1221. int rv;
  1222. char *p, *tmpval;
  1223. if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
  1224. return 0;
  1225. p = strchr(tmpval, ':');
  1226. if (p != NULL)
  1227. *p++ = '\0';
  1228. rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
  1229. if (rv == -2) {
  1230. t->err = "PKEY_CTRL_INVALID";
  1231. rv = 1;
  1232. } else if (p != NULL && rv <= 0) {
  1233. /* If p has an OID and lookup fails assume disabled algorithm */
  1234. int nid = OBJ_sn2nid(p);
  1235. if (nid == NID_undef)
  1236. nid = OBJ_ln2nid(p);
  1237. if (nid != NID_undef
  1238. && EVP_get_digestbynid(nid) == NULL
  1239. && EVP_get_cipherbynid(nid) == NULL) {
  1240. t->skip = 1;
  1241. rv = 1;
  1242. } else {
  1243. t->err = "PKEY_CTRL_ERROR";
  1244. rv = 1;
  1245. }
  1246. }
  1247. OPENSSL_free(tmpval);
  1248. return rv > 0;
  1249. }
  1250. static int pkey_test_parse(EVP_TEST *t,
  1251. const char *keyword, const char *value)
  1252. {
  1253. PKEY_DATA *kdata = t->data;
  1254. if (strcmp(keyword, "Input") == 0)
  1255. return parse_bin(value, &kdata->input, &kdata->input_len);
  1256. if (strcmp(keyword, "Output") == 0)
  1257. return parse_bin(value, &kdata->output, &kdata->output_len);
  1258. if (strcmp(keyword, "Ctrl") == 0)
  1259. return pkey_test_ctrl(t, kdata->ctx, value);
  1260. return 0;
  1261. }
  1262. static int pkey_test_run(EVP_TEST *t)
  1263. {
  1264. PKEY_DATA *expected = t->data;
  1265. unsigned char *got = NULL;
  1266. size_t got_len;
  1267. EVP_PKEY_CTX *copy = NULL;
  1268. if (expected->keyop(expected->ctx, NULL, &got_len,
  1269. expected->input, expected->input_len) <= 0
  1270. || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1271. t->err = "KEYOP_LENGTH_ERROR";
  1272. goto err;
  1273. }
  1274. if (expected->keyop(expected->ctx, got, &got_len,
  1275. expected->input, expected->input_len) <= 0) {
  1276. t->err = "KEYOP_ERROR";
  1277. goto err;
  1278. }
  1279. if (!memory_err_compare(t, "KEYOP_MISMATCH",
  1280. expected->output, expected->output_len,
  1281. got, got_len))
  1282. goto err;
  1283. t->err = NULL;
  1284. OPENSSL_free(got);
  1285. got = NULL;
  1286. /* Repeat the test on a copy. */
  1287. if (!TEST_ptr(copy = EVP_PKEY_CTX_dup(expected->ctx))) {
  1288. t->err = "INTERNAL_ERROR";
  1289. goto err;
  1290. }
  1291. if (expected->keyop(copy, NULL, &got_len, expected->input,
  1292. expected->input_len) <= 0
  1293. || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1294. t->err = "KEYOP_LENGTH_ERROR";
  1295. goto err;
  1296. }
  1297. if (expected->keyop(copy, got, &got_len, expected->input,
  1298. expected->input_len) <= 0) {
  1299. t->err = "KEYOP_ERROR";
  1300. goto err;
  1301. }
  1302. if (!memory_err_compare(t, "KEYOP_MISMATCH",
  1303. expected->output, expected->output_len,
  1304. got, got_len))
  1305. goto err;
  1306. err:
  1307. OPENSSL_free(got);
  1308. EVP_PKEY_CTX_free(copy);
  1309. return 1;
  1310. }
  1311. static int sign_test_init(EVP_TEST *t, const char *name)
  1312. {
  1313. return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
  1314. }
  1315. static const EVP_TEST_METHOD psign_test_method = {
  1316. "Sign",
  1317. sign_test_init,
  1318. pkey_test_cleanup,
  1319. pkey_test_parse,
  1320. pkey_test_run
  1321. };
  1322. static int verify_recover_test_init(EVP_TEST *t, const char *name)
  1323. {
  1324. return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
  1325. EVP_PKEY_verify_recover);
  1326. }
  1327. static const EVP_TEST_METHOD pverify_recover_test_method = {
  1328. "VerifyRecover",
  1329. verify_recover_test_init,
  1330. pkey_test_cleanup,
  1331. pkey_test_parse,
  1332. pkey_test_run
  1333. };
  1334. static int decrypt_test_init(EVP_TEST *t, const char *name)
  1335. {
  1336. return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
  1337. EVP_PKEY_decrypt);
  1338. }
  1339. static const EVP_TEST_METHOD pdecrypt_test_method = {
  1340. "Decrypt",
  1341. decrypt_test_init,
  1342. pkey_test_cleanup,
  1343. pkey_test_parse,
  1344. pkey_test_run
  1345. };
  1346. static int verify_test_init(EVP_TEST *t, const char *name)
  1347. {
  1348. return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
  1349. }
  1350. static int verify_test_run(EVP_TEST *t)
  1351. {
  1352. PKEY_DATA *kdata = t->data;
  1353. if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
  1354. kdata->input, kdata->input_len) <= 0)
  1355. t->err = "VERIFY_ERROR";
  1356. return 1;
  1357. }
  1358. static const EVP_TEST_METHOD pverify_test_method = {
  1359. "Verify",
  1360. verify_test_init,
  1361. pkey_test_cleanup,
  1362. pkey_test_parse,
  1363. verify_test_run
  1364. };
  1365. static int pderive_test_init(EVP_TEST *t, const char *name)
  1366. {
  1367. return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
  1368. }
  1369. static int pderive_test_parse(EVP_TEST *t,
  1370. const char *keyword, const char *value)
  1371. {
  1372. PKEY_DATA *kdata = t->data;
  1373. if (strcmp(keyword, "PeerKey") == 0) {
  1374. EVP_PKEY *peer;
  1375. if (find_key(&peer, value, public_keys) == 0)
  1376. return 0;
  1377. if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
  1378. return 0;
  1379. return 1;
  1380. }
  1381. if (strcmp(keyword, "SharedSecret") == 0)
  1382. return parse_bin(value, &kdata->output, &kdata->output_len);
  1383. if (strcmp(keyword, "Ctrl") == 0)
  1384. return pkey_test_ctrl(t, kdata->ctx, value);
  1385. return 0;
  1386. }
  1387. static int pderive_test_run(EVP_TEST *t)
  1388. {
  1389. PKEY_DATA *expected = t->data;
  1390. unsigned char *got = NULL;
  1391. size_t got_len;
  1392. if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
  1393. t->err = "DERIVE_ERROR";
  1394. goto err;
  1395. }
  1396. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1397. t->err = "DERIVE_ERROR";
  1398. goto err;
  1399. }
  1400. if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
  1401. t->err = "DERIVE_ERROR";
  1402. goto err;
  1403. }
  1404. if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
  1405. expected->output, expected->output_len,
  1406. got, got_len))
  1407. goto err;
  1408. t->err = NULL;
  1409. err:
  1410. OPENSSL_free(got);
  1411. return 1;
  1412. }
  1413. static const EVP_TEST_METHOD pderive_test_method = {
  1414. "Derive",
  1415. pderive_test_init,
  1416. pkey_test_cleanup,
  1417. pderive_test_parse,
  1418. pderive_test_run
  1419. };
  1420. /**
  1421. *** PBE TESTS
  1422. **/
  1423. typedef enum pbe_type_enum {
  1424. PBE_TYPE_INVALID = 0,
  1425. PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
  1426. } PBE_TYPE;
  1427. typedef struct pbe_data_st {
  1428. PBE_TYPE pbe_type;
  1429. /* scrypt parameters */
  1430. uint64_t N, r, p, maxmem;
  1431. /* PKCS#12 parameters */
  1432. int id, iter;
  1433. const EVP_MD *md;
  1434. /* password */
  1435. unsigned char *pass;
  1436. size_t pass_len;
  1437. /* salt */
  1438. unsigned char *salt;
  1439. size_t salt_len;
  1440. /* Expected output */
  1441. unsigned char *key;
  1442. size_t key_len;
  1443. } PBE_DATA;
  1444. #ifndef OPENSSL_NO_SCRYPT
  1445. /*
  1446. * Parse unsigned decimal 64 bit integer value
  1447. */
  1448. static int parse_uint64(const char *value, uint64_t *pr)
  1449. {
  1450. const char *p = value;
  1451. if (!TEST_true(*p)) {
  1452. TEST_info("Invalid empty integer value");
  1453. return -1;
  1454. }
  1455. for (*pr = 0; *p; ) {
  1456. if (*pr > UINT64_MAX / 10) {
  1457. TEST_error("Integer overflow in string %s", value);
  1458. return -1;
  1459. }
  1460. *pr *= 10;
  1461. if (!TEST_true(isdigit((unsigned char)*p))) {
  1462. TEST_error("Invalid character in string %s", value);
  1463. return -1;
  1464. }
  1465. *pr += *p - '0';
  1466. p++;
  1467. }
  1468. return 1;
  1469. }
  1470. static int scrypt_test_parse(EVP_TEST *t,
  1471. const char *keyword, const char *value)
  1472. {
  1473. PBE_DATA *pdata = t->data;
  1474. if (strcmp(keyword, "N") == 0)
  1475. return parse_uint64(value, &pdata->N);
  1476. if (strcmp(keyword, "p") == 0)
  1477. return parse_uint64(value, &pdata->p);
  1478. if (strcmp(keyword, "r") == 0)
  1479. return parse_uint64(value, &pdata->r);
  1480. if (strcmp(keyword, "maxmem") == 0)
  1481. return parse_uint64(value, &pdata->maxmem);
  1482. return 0;
  1483. }
  1484. #endif
  1485. static int pbkdf2_test_parse(EVP_TEST *t,
  1486. const char *keyword, const char *value)
  1487. {
  1488. PBE_DATA *pdata = t->data;
  1489. if (strcmp(keyword, "iter") == 0) {
  1490. pdata->iter = atoi(value);
  1491. if (pdata->iter <= 0)
  1492. return -1;
  1493. return 1;
  1494. }
  1495. if (strcmp(keyword, "MD") == 0) {
  1496. pdata->md = EVP_get_digestbyname(value);
  1497. if (pdata->md == NULL)
  1498. return -1;
  1499. return 1;
  1500. }
  1501. return 0;
  1502. }
  1503. static int pkcs12_test_parse(EVP_TEST *t,
  1504. const char *keyword, const char *value)
  1505. {
  1506. PBE_DATA *pdata = t->data;
  1507. if (strcmp(keyword, "id") == 0) {
  1508. pdata->id = atoi(value);
  1509. if (pdata->id <= 0)
  1510. return -1;
  1511. return 1;
  1512. }
  1513. return pbkdf2_test_parse(t, keyword, value);
  1514. }
  1515. static int pbe_test_init(EVP_TEST *t, const char *alg)
  1516. {
  1517. PBE_DATA *pdat;
  1518. PBE_TYPE pbe_type = PBE_TYPE_INVALID;
  1519. if (strcmp(alg, "scrypt") == 0) {
  1520. #ifndef OPENSSL_NO_SCRYPT
  1521. pbe_type = PBE_TYPE_SCRYPT;
  1522. #else
  1523. t->skip = 1;
  1524. return 1;
  1525. #endif
  1526. } else if (strcmp(alg, "pbkdf2") == 0) {
  1527. pbe_type = PBE_TYPE_PBKDF2;
  1528. } else if (strcmp(alg, "pkcs12") == 0) {
  1529. pbe_type = PBE_TYPE_PKCS12;
  1530. } else {
  1531. TEST_error("Unknown pbe algorithm %s", alg);
  1532. }
  1533. pdat = OPENSSL_zalloc(sizeof(*pdat));
  1534. pdat->pbe_type = pbe_type;
  1535. t->data = pdat;
  1536. return 1;
  1537. }
  1538. static void pbe_test_cleanup(EVP_TEST *t)
  1539. {
  1540. PBE_DATA *pdat = t->data;
  1541. OPENSSL_free(pdat->pass);
  1542. OPENSSL_free(pdat->salt);
  1543. OPENSSL_free(pdat->key);
  1544. }
  1545. static int pbe_test_parse(EVP_TEST *t,
  1546. const char *keyword, const char *value)
  1547. {
  1548. PBE_DATA *pdata = t->data;
  1549. if (strcmp(keyword, "Password") == 0)
  1550. return parse_bin(value, &pdata->pass, &pdata->pass_len);
  1551. if (strcmp(keyword, "Salt") == 0)
  1552. return parse_bin(value, &pdata->salt, &pdata->salt_len);
  1553. if (strcmp(keyword, "Key") == 0)
  1554. return parse_bin(value, &pdata->key, &pdata->key_len);
  1555. if (pdata->pbe_type == PBE_TYPE_PBKDF2)
  1556. return pbkdf2_test_parse(t, keyword, value);
  1557. else if (pdata->pbe_type == PBE_TYPE_PKCS12)
  1558. return pkcs12_test_parse(t, keyword, value);
  1559. #ifndef OPENSSL_NO_SCRYPT
  1560. else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
  1561. return scrypt_test_parse(t, keyword, value);
  1562. #endif
  1563. return 0;
  1564. }
  1565. static int pbe_test_run(EVP_TEST *t)
  1566. {
  1567. PBE_DATA *expected = t->data;
  1568. unsigned char *key;
  1569. if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
  1570. t->err = "INTERNAL_ERROR";
  1571. goto err;
  1572. }
  1573. if (expected->pbe_type == PBE_TYPE_PBKDF2) {
  1574. if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
  1575. expected->salt, expected->salt_len,
  1576. expected->iter, expected->md,
  1577. expected->key_len, key) == 0) {
  1578. t->err = "PBKDF2_ERROR";
  1579. goto err;
  1580. }
  1581. #ifndef OPENSSL_NO_SCRYPT
  1582. } else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
  1583. if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
  1584. expected->salt, expected->salt_len, expected->N,
  1585. expected->r, expected->p, expected->maxmem,
  1586. key, expected->key_len) == 0) {
  1587. t->err = "SCRYPT_ERROR";
  1588. goto err;
  1589. }
  1590. #endif
  1591. } else if (expected->pbe_type == PBE_TYPE_PKCS12) {
  1592. if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
  1593. expected->salt, expected->salt_len,
  1594. expected->id, expected->iter, expected->key_len,
  1595. key, expected->md) == 0) {
  1596. t->err = "PKCS12_ERROR";
  1597. goto err;
  1598. }
  1599. }
  1600. if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
  1601. key, expected->key_len))
  1602. goto err;
  1603. t->err = NULL;
  1604. err:
  1605. OPENSSL_free(key);
  1606. return 1;
  1607. }
  1608. static const EVP_TEST_METHOD pbe_test_method = {
  1609. "PBE",
  1610. pbe_test_init,
  1611. pbe_test_cleanup,
  1612. pbe_test_parse,
  1613. pbe_test_run
  1614. };
  1615. /**
  1616. *** BASE64 TESTS
  1617. **/
  1618. typedef enum {
  1619. BASE64_CANONICAL_ENCODING = 0,
  1620. BASE64_VALID_ENCODING = 1,
  1621. BASE64_INVALID_ENCODING = 2
  1622. } base64_encoding_type;
  1623. typedef struct encode_data_st {
  1624. /* Input to encoding */
  1625. unsigned char *input;
  1626. size_t input_len;
  1627. /* Expected output */
  1628. unsigned char *output;
  1629. size_t output_len;
  1630. base64_encoding_type encoding;
  1631. } ENCODE_DATA;
  1632. static int encode_test_init(EVP_TEST *t, const char *encoding)
  1633. {
  1634. ENCODE_DATA *edata;
  1635. if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
  1636. return 0;
  1637. if (strcmp(encoding, "canonical") == 0) {
  1638. edata->encoding = BASE64_CANONICAL_ENCODING;
  1639. } else if (strcmp(encoding, "valid") == 0) {
  1640. edata->encoding = BASE64_VALID_ENCODING;
  1641. } else if (strcmp(encoding, "invalid") == 0) {
  1642. edata->encoding = BASE64_INVALID_ENCODING;
  1643. if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
  1644. goto err;
  1645. } else {
  1646. TEST_error("Bad encoding: %s."
  1647. " Should be one of {canonical, valid, invalid}",
  1648. encoding);
  1649. goto err;
  1650. }
  1651. t->data = edata;
  1652. return 1;
  1653. err:
  1654. OPENSSL_free(edata);
  1655. return 0;
  1656. }
  1657. static void encode_test_cleanup(EVP_TEST *t)
  1658. {
  1659. ENCODE_DATA *edata = t->data;
  1660. OPENSSL_free(edata->input);
  1661. OPENSSL_free(edata->output);
  1662. memset(edata, 0, sizeof(*edata));
  1663. }
  1664. static int encode_test_parse(EVP_TEST *t,
  1665. const char *keyword, const char *value)
  1666. {
  1667. ENCODE_DATA *edata = t->data;
  1668. if (strcmp(keyword, "Input") == 0)
  1669. return parse_bin(value, &edata->input, &edata->input_len);
  1670. if (strcmp(keyword, "Output") == 0)
  1671. return parse_bin(value, &edata->output, &edata->output_len);
  1672. return 0;
  1673. }
  1674. static int encode_test_run(EVP_TEST *t)
  1675. {
  1676. ENCODE_DATA *expected = t->data;
  1677. unsigned char *encode_out = NULL, *decode_out = NULL;
  1678. int output_len, chunk_len;
  1679. EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL;
  1680. if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
  1681. t->err = "INTERNAL_ERROR";
  1682. goto err;
  1683. }
  1684. if (expected->encoding == BASE64_CANONICAL_ENCODING) {
  1685. if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
  1686. || !TEST_ptr(encode_out =
  1687. OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
  1688. goto err;
  1689. EVP_EncodeInit(encode_ctx);
  1690. if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
  1691. expected->input, expected->input_len)))
  1692. goto err;
  1693. output_len = chunk_len;
  1694. EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
  1695. output_len += chunk_len;
  1696. if (!memory_err_compare(t, "BAD_ENCODING",
  1697. expected->output, expected->output_len,
  1698. encode_out, output_len))
  1699. goto err;
  1700. }
  1701. if (!TEST_ptr(decode_out =
  1702. OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
  1703. goto err;
  1704. EVP_DecodeInit(decode_ctx);
  1705. if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
  1706. expected->output_len) < 0) {
  1707. t->err = "DECODE_ERROR";
  1708. goto err;
  1709. }
  1710. output_len = chunk_len;
  1711. if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
  1712. t->err = "DECODE_ERROR";
  1713. goto err;
  1714. }
  1715. output_len += chunk_len;
  1716. if (expected->encoding != BASE64_INVALID_ENCODING
  1717. && !memory_err_compare(t, "BAD_DECODING",
  1718. expected->input, expected->input_len,
  1719. decode_out, output_len)) {
  1720. t->err = "BAD_DECODING";
  1721. goto err;
  1722. }
  1723. t->err = NULL;
  1724. err:
  1725. OPENSSL_free(encode_out);
  1726. OPENSSL_free(decode_out);
  1727. EVP_ENCODE_CTX_free(decode_ctx);
  1728. EVP_ENCODE_CTX_free(encode_ctx);
  1729. return 1;
  1730. }
  1731. static const EVP_TEST_METHOD encode_test_method = {
  1732. "Encoding",
  1733. encode_test_init,
  1734. encode_test_cleanup,
  1735. encode_test_parse,
  1736. encode_test_run,
  1737. };
  1738. /**
  1739. *** KDF TESTS
  1740. **/
  1741. typedef struct kdf_data_st {
  1742. /* Context for this operation */
  1743. EVP_KDF_CTX *ctx;
  1744. /* Expected output */
  1745. unsigned char *output;
  1746. size_t output_len;
  1747. } KDF_DATA;
  1748. /*
  1749. * Perform public key operation setup: lookup key, allocated ctx and call
  1750. * the appropriate initialisation function
  1751. */
  1752. static int kdf_test_init(EVP_TEST *t, const char *name)
  1753. {
  1754. KDF_DATA *kdata;
  1755. const EVP_KDF *kdf;
  1756. #ifdef OPENSSL_NO_SCRYPT
  1757. if (strcmp(name, "scrypt") == 0) {
  1758. t->skip = 1;
  1759. return 1;
  1760. }
  1761. #endif /* OPENSSL_NO_SCRYPT */
  1762. #ifdef OPENSSL_NO_CMS
  1763. if (strcmp(name, "X942KDF") == 0) {
  1764. t->skip = 1;
  1765. return 1;
  1766. }
  1767. #endif /* OPENSSL_NO_CMS */
  1768. kdf = EVP_get_kdfbyname(name);
  1769. if (kdf == NULL)
  1770. return 0;
  1771. if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
  1772. return 0;
  1773. kdata->ctx = EVP_KDF_CTX_new(kdf);
  1774. if (kdata->ctx == NULL) {
  1775. OPENSSL_free(kdata);
  1776. return 0;
  1777. }
  1778. t->data = kdata;
  1779. return 1;
  1780. }
  1781. static void kdf_test_cleanup(EVP_TEST *t)
  1782. {
  1783. KDF_DATA *kdata = t->data;
  1784. OPENSSL_free(kdata->output);
  1785. EVP_KDF_CTX_free(kdata->ctx);
  1786. }
  1787. static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx,
  1788. const char *value)
  1789. {
  1790. int rv;
  1791. char *p, *tmpval;
  1792. if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
  1793. return 0;
  1794. p = strchr(tmpval, ':');
  1795. if (p != NULL)
  1796. *p++ = '\0';
  1797. rv = EVP_KDF_ctrl_str(kctx, tmpval, p);
  1798. if (rv == -2) {
  1799. t->err = "KDF_CTRL_INVALID";
  1800. rv = 1;
  1801. } else if (p != NULL && rv <= 0) {
  1802. /* If p has an OID and lookup fails assume disabled algorithm */
  1803. int nid = OBJ_sn2nid(p);
  1804. if (nid == NID_undef)
  1805. nid = OBJ_ln2nid(p);
  1806. if (nid != NID_undef
  1807. && EVP_get_digestbynid(nid) == NULL
  1808. && EVP_get_cipherbynid(nid) == NULL) {
  1809. t->skip = 1;
  1810. rv = 1;
  1811. } else {
  1812. t->err = "KDF_CTRL_ERROR";
  1813. rv = 1;
  1814. }
  1815. }
  1816. OPENSSL_free(tmpval);
  1817. return rv > 0;
  1818. }
  1819. static int kdf_test_parse(EVP_TEST *t,
  1820. const char *keyword, const char *value)
  1821. {
  1822. KDF_DATA *kdata = t->data;
  1823. if (strcmp(keyword, "Output") == 0)
  1824. return parse_bin(value, &kdata->output, &kdata->output_len);
  1825. if (strncmp(keyword, "Ctrl", 4) == 0)
  1826. return kdf_test_ctrl(t, kdata->ctx, value);
  1827. return 0;
  1828. }
  1829. static int kdf_test_run(EVP_TEST *t)
  1830. {
  1831. KDF_DATA *expected = t->data;
  1832. unsigned char *got = NULL;
  1833. size_t got_len = expected->output_len;
  1834. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1835. t->err = "INTERNAL_ERROR";
  1836. goto err;
  1837. }
  1838. if (EVP_KDF_derive(expected->ctx, got, got_len) <= 0) {
  1839. t->err = "KDF_DERIVE_ERROR";
  1840. goto err;
  1841. }
  1842. if (!memory_err_compare(t, "KDF_MISMATCH",
  1843. expected->output, expected->output_len,
  1844. got, got_len))
  1845. goto err;
  1846. t->err = NULL;
  1847. err:
  1848. OPENSSL_free(got);
  1849. return 1;
  1850. }
  1851. static const EVP_TEST_METHOD kdf_test_method = {
  1852. "KDF",
  1853. kdf_test_init,
  1854. kdf_test_cleanup,
  1855. kdf_test_parse,
  1856. kdf_test_run
  1857. };
  1858. /**
  1859. *** PKEY KDF TESTS
  1860. **/
  1861. typedef struct pkey_kdf_data_st {
  1862. /* Context for this operation */
  1863. EVP_PKEY_CTX *ctx;
  1864. /* Expected output */
  1865. unsigned char *output;
  1866. size_t output_len;
  1867. } PKEY_KDF_DATA;
  1868. /*
  1869. * Perform public key operation setup: lookup key, allocated ctx and call
  1870. * the appropriate initialisation function
  1871. */
  1872. static int pkey_kdf_test_init(EVP_TEST *t, const char *name)
  1873. {
  1874. PKEY_KDF_DATA *kdata;
  1875. int kdf_nid = OBJ_sn2nid(name);
  1876. #ifdef OPENSSL_NO_SCRYPT
  1877. if (strcmp(name, "scrypt") == 0) {
  1878. t->skip = 1;
  1879. return 1;
  1880. }
  1881. #endif /* OPENSSL_NO_SCRYPT */
  1882. #ifdef OPENSSL_NO_CMS
  1883. if (strcmp(name, "X942KDF") == 0) {
  1884. t->skip = 1;
  1885. return 1;
  1886. }
  1887. #endif /* OPENSSL_NO_CMS */
  1888. if (kdf_nid == NID_undef)
  1889. kdf_nid = OBJ_ln2nid(name);
  1890. if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
  1891. return 0;
  1892. kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
  1893. if (kdata->ctx == NULL) {
  1894. OPENSSL_free(kdata);
  1895. return 0;
  1896. }
  1897. if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
  1898. EVP_PKEY_CTX_free(kdata->ctx);
  1899. OPENSSL_free(kdata);
  1900. return 0;
  1901. }
  1902. t->data = kdata;
  1903. return 1;
  1904. }
  1905. static void pkey_kdf_test_cleanup(EVP_TEST *t)
  1906. {
  1907. PKEY_KDF_DATA *kdata = t->data;
  1908. OPENSSL_free(kdata->output);
  1909. EVP_PKEY_CTX_free(kdata->ctx);
  1910. }
  1911. static int pkey_kdf_test_parse(EVP_TEST *t,
  1912. const char *keyword, const char *value)
  1913. {
  1914. PKEY_KDF_DATA *kdata = t->data;
  1915. if (strcmp(keyword, "Output") == 0)
  1916. return parse_bin(value, &kdata->output, &kdata->output_len);
  1917. if (strncmp(keyword, "Ctrl", 4) == 0)
  1918. return pkey_test_ctrl(t, kdata->ctx, value);
  1919. return 0;
  1920. }
  1921. static int pkey_kdf_test_run(EVP_TEST *t)
  1922. {
  1923. PKEY_KDF_DATA *expected = t->data;
  1924. unsigned char *got = NULL;
  1925. size_t got_len = expected->output_len;
  1926. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1927. t->err = "INTERNAL_ERROR";
  1928. goto err;
  1929. }
  1930. if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
  1931. t->err = "KDF_DERIVE_ERROR";
  1932. goto err;
  1933. }
  1934. if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
  1935. t->err = "KDF_MISMATCH";
  1936. goto err;
  1937. }
  1938. t->err = NULL;
  1939. err:
  1940. OPENSSL_free(got);
  1941. return 1;
  1942. }
  1943. static const EVP_TEST_METHOD pkey_kdf_test_method = {
  1944. "PKEYKDF",
  1945. pkey_kdf_test_init,
  1946. pkey_kdf_test_cleanup,
  1947. pkey_kdf_test_parse,
  1948. pkey_kdf_test_run
  1949. };
  1950. /**
  1951. *** KEYPAIR TESTS
  1952. **/
  1953. typedef struct keypair_test_data_st {
  1954. EVP_PKEY *privk;
  1955. EVP_PKEY *pubk;
  1956. } KEYPAIR_TEST_DATA;
  1957. static int keypair_test_init(EVP_TEST *t, const char *pair)
  1958. {
  1959. KEYPAIR_TEST_DATA *data;
  1960. int rv = 0;
  1961. EVP_PKEY *pk = NULL, *pubk = NULL;
  1962. char *pub, *priv = NULL;
  1963. /* Split private and public names. */
  1964. if (!TEST_ptr(priv = OPENSSL_strdup(pair))
  1965. || !TEST_ptr(pub = strchr(priv, ':'))) {
  1966. t->err = "PARSING_ERROR";
  1967. goto end;
  1968. }
  1969. *pub++ = '\0';
  1970. if (!TEST_true(find_key(&pk, priv, private_keys))) {
  1971. TEST_info("Can't find private key: %s", priv);
  1972. t->err = "MISSING_PRIVATE_KEY";
  1973. goto end;
  1974. }
  1975. if (!TEST_true(find_key(&pubk, pub, public_keys))) {
  1976. TEST_info("Can't find public key: %s", pub);
  1977. t->err = "MISSING_PUBLIC_KEY";
  1978. goto end;
  1979. }
  1980. if (pk == NULL && pubk == NULL) {
  1981. /* Both keys are listed but unsupported: skip this test */
  1982. t->skip = 1;
  1983. rv = 1;
  1984. goto end;
  1985. }
  1986. if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
  1987. goto end;
  1988. data->privk = pk;
  1989. data->pubk = pubk;
  1990. t->data = data;
  1991. rv = 1;
  1992. t->err = NULL;
  1993. end:
  1994. OPENSSL_free(priv);
  1995. return rv;
  1996. }
  1997. static void keypair_test_cleanup(EVP_TEST *t)
  1998. {
  1999. OPENSSL_free(t->data);
  2000. t->data = NULL;
  2001. }
  2002. /*
  2003. * For tests that do not accept any custom keywords.
  2004. */
  2005. static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
  2006. {
  2007. return 0;
  2008. }
  2009. static int keypair_test_run(EVP_TEST *t)
  2010. {
  2011. int rv = 0;
  2012. const KEYPAIR_TEST_DATA *pair = t->data;
  2013. if (pair->privk == NULL || pair->pubk == NULL) {
  2014. /*
  2015. * this can only happen if only one of the keys is not set
  2016. * which means that one of them was unsupported while the
  2017. * other isn't: hence a key type mismatch.
  2018. */
  2019. t->err = "KEYPAIR_TYPE_MISMATCH";
  2020. rv = 1;
  2021. goto end;
  2022. }
  2023. if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) {
  2024. if ( 0 == rv ) {
  2025. t->err = "KEYPAIR_MISMATCH";
  2026. } else if ( -1 == rv ) {
  2027. t->err = "KEYPAIR_TYPE_MISMATCH";
  2028. } else if ( -2 == rv ) {
  2029. t->err = "UNSUPPORTED_KEY_COMPARISON";
  2030. } else {
  2031. TEST_error("Unexpected error in key comparison");
  2032. rv = 0;
  2033. goto end;
  2034. }
  2035. rv = 1;
  2036. goto end;
  2037. }
  2038. rv = 1;
  2039. t->err = NULL;
  2040. end:
  2041. return rv;
  2042. }
  2043. static const EVP_TEST_METHOD keypair_test_method = {
  2044. "PrivPubKeyPair",
  2045. keypair_test_init,
  2046. keypair_test_cleanup,
  2047. void_test_parse,
  2048. keypair_test_run
  2049. };
  2050. /**
  2051. *** KEYGEN TEST
  2052. **/
  2053. typedef struct keygen_test_data_st {
  2054. EVP_PKEY_CTX *genctx; /* Keygen context to use */
  2055. char *keyname; /* Key name to store key or NULL */
  2056. } KEYGEN_TEST_DATA;
  2057. static int keygen_test_init(EVP_TEST *t, const char *alg)
  2058. {
  2059. KEYGEN_TEST_DATA *data;
  2060. EVP_PKEY_CTX *genctx;
  2061. int nid = OBJ_sn2nid(alg);
  2062. if (nid == NID_undef) {
  2063. nid = OBJ_ln2nid(alg);
  2064. if (nid == NID_undef)
  2065. return 0;
  2066. }
  2067. if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) {
  2068. /* assume algorithm disabled */
  2069. t->skip = 1;
  2070. return 1;
  2071. }
  2072. if (EVP_PKEY_keygen_init(genctx) <= 0) {
  2073. t->err = "KEYGEN_INIT_ERROR";
  2074. goto err;
  2075. }
  2076. if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
  2077. goto err;
  2078. data->genctx = genctx;
  2079. data->keyname = NULL;
  2080. t->data = data;
  2081. t->err = NULL;
  2082. return 1;
  2083. err:
  2084. EVP_PKEY_CTX_free(genctx);
  2085. return 0;
  2086. }
  2087. static void keygen_test_cleanup(EVP_TEST *t)
  2088. {
  2089. KEYGEN_TEST_DATA *keygen = t->data;
  2090. EVP_PKEY_CTX_free(keygen->genctx);
  2091. OPENSSL_free(keygen->keyname);
  2092. OPENSSL_free(t->data);
  2093. t->data = NULL;
  2094. }
  2095. static int keygen_test_parse(EVP_TEST *t,
  2096. const char *keyword, const char *value)
  2097. {
  2098. KEYGEN_TEST_DATA *keygen = t->data;
  2099. if (strcmp(keyword, "KeyName") == 0)
  2100. return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
  2101. if (strcmp(keyword, "Ctrl") == 0)
  2102. return pkey_test_ctrl(t, keygen->genctx, value);
  2103. return 0;
  2104. }
  2105. static int keygen_test_run(EVP_TEST *t)
  2106. {
  2107. KEYGEN_TEST_DATA *keygen = t->data;
  2108. EVP_PKEY *pkey = NULL;
  2109. t->err = NULL;
  2110. if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
  2111. t->err = "KEYGEN_GENERATE_ERROR";
  2112. goto err;
  2113. }
  2114. if (keygen->keyname != NULL) {
  2115. KEY_LIST *key;
  2116. if (find_key(NULL, keygen->keyname, private_keys)) {
  2117. TEST_info("Duplicate key %s", keygen->keyname);
  2118. goto err;
  2119. }
  2120. if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
  2121. goto err;
  2122. key->name = keygen->keyname;
  2123. keygen->keyname = NULL;
  2124. key->key = pkey;
  2125. key->next = private_keys;
  2126. private_keys = key;
  2127. } else {
  2128. EVP_PKEY_free(pkey);
  2129. }
  2130. return 1;
  2131. err:
  2132. EVP_PKEY_free(pkey);
  2133. return 0;
  2134. }
  2135. static const EVP_TEST_METHOD keygen_test_method = {
  2136. "KeyGen",
  2137. keygen_test_init,
  2138. keygen_test_cleanup,
  2139. keygen_test_parse,
  2140. keygen_test_run,
  2141. };
  2142. /**
  2143. *** DIGEST SIGN+VERIFY TESTS
  2144. **/
  2145. typedef struct {
  2146. int is_verify; /* Set to 1 if verifying */
  2147. int is_oneshot; /* Set to 1 for one shot operation */
  2148. const EVP_MD *md; /* Digest to use */
  2149. EVP_MD_CTX *ctx; /* Digest context */
  2150. EVP_PKEY_CTX *pctx;
  2151. STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
  2152. unsigned char *osin; /* Input data if one shot */
  2153. size_t osin_len; /* Input length data if one shot */
  2154. unsigned char *output; /* Expected output */
  2155. size_t output_len; /* Expected output length */
  2156. } DIGESTSIGN_DATA;
  2157. static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
  2158. int is_oneshot)
  2159. {
  2160. const EVP_MD *md = NULL;
  2161. DIGESTSIGN_DATA *mdat;
  2162. if (strcmp(alg, "NULL") != 0) {
  2163. if ((md = EVP_get_digestbyname(alg)) == NULL) {
  2164. /* If alg has an OID assume disabled algorithm */
  2165. if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
  2166. t->skip = 1;
  2167. return 1;
  2168. }
  2169. return 0;
  2170. }
  2171. }
  2172. if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
  2173. return 0;
  2174. mdat->md = md;
  2175. if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
  2176. OPENSSL_free(mdat);
  2177. return 0;
  2178. }
  2179. mdat->is_verify = is_verify;
  2180. mdat->is_oneshot = is_oneshot;
  2181. t->data = mdat;
  2182. return 1;
  2183. }
  2184. static int digestsign_test_init(EVP_TEST *t, const char *alg)
  2185. {
  2186. return digestsigver_test_init(t, alg, 0, 0);
  2187. }
  2188. static void digestsigver_test_cleanup(EVP_TEST *t)
  2189. {
  2190. DIGESTSIGN_DATA *mdata = t->data;
  2191. EVP_MD_CTX_free(mdata->ctx);
  2192. sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
  2193. OPENSSL_free(mdata->osin);
  2194. OPENSSL_free(mdata->output);
  2195. OPENSSL_free(mdata);
  2196. t->data = NULL;
  2197. }
  2198. static int digestsigver_test_parse(EVP_TEST *t,
  2199. const char *keyword, const char *value)
  2200. {
  2201. DIGESTSIGN_DATA *mdata = t->data;
  2202. if (strcmp(keyword, "Key") == 0) {
  2203. EVP_PKEY *pkey = NULL;
  2204. int rv = 0;
  2205. if (mdata->is_verify)
  2206. rv = find_key(&pkey, value, public_keys);
  2207. if (rv == 0)
  2208. rv = find_key(&pkey, value, private_keys);
  2209. if (rv == 0 || pkey == NULL) {
  2210. t->skip = 1;
  2211. return 1;
  2212. }
  2213. if (mdata->is_verify) {
  2214. if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md,
  2215. NULL, pkey))
  2216. t->err = "DIGESTVERIFYINIT_ERROR";
  2217. return 1;
  2218. }
  2219. if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL,
  2220. pkey))
  2221. t->err = "DIGESTSIGNINIT_ERROR";
  2222. return 1;
  2223. }
  2224. if (strcmp(keyword, "Input") == 0) {
  2225. if (mdata->is_oneshot)
  2226. return parse_bin(value, &mdata->osin, &mdata->osin_len);
  2227. return evp_test_buffer_append(value, &mdata->input);
  2228. }
  2229. if (strcmp(keyword, "Output") == 0)
  2230. return parse_bin(value, &mdata->output, &mdata->output_len);
  2231. if (!mdata->is_oneshot) {
  2232. if (strcmp(keyword, "Count") == 0)
  2233. return evp_test_buffer_set_count(value, mdata->input);
  2234. if (strcmp(keyword, "Ncopy") == 0)
  2235. return evp_test_buffer_ncopy(value, mdata->input);
  2236. }
  2237. if (strcmp(keyword, "Ctrl") == 0) {
  2238. if (mdata->pctx == NULL)
  2239. return 0;
  2240. return pkey_test_ctrl(t, mdata->pctx, value);
  2241. }
  2242. return 0;
  2243. }
  2244. static int digestsign_update_fn(void *ctx, const unsigned char *buf,
  2245. size_t buflen)
  2246. {
  2247. return EVP_DigestSignUpdate(ctx, buf, buflen);
  2248. }
  2249. static int digestsign_test_run(EVP_TEST *t)
  2250. {
  2251. DIGESTSIGN_DATA *expected = t->data;
  2252. unsigned char *got = NULL;
  2253. size_t got_len;
  2254. if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
  2255. expected->ctx)) {
  2256. t->err = "DIGESTUPDATE_ERROR";
  2257. goto err;
  2258. }
  2259. if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
  2260. t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
  2261. goto err;
  2262. }
  2263. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  2264. t->err = "MALLOC_FAILURE";
  2265. goto err;
  2266. }
  2267. if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
  2268. t->err = "DIGESTSIGNFINAL_ERROR";
  2269. goto err;
  2270. }
  2271. if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
  2272. expected->output, expected->output_len,
  2273. got, got_len))
  2274. goto err;
  2275. t->err = NULL;
  2276. err:
  2277. OPENSSL_free(got);
  2278. return 1;
  2279. }
  2280. static const EVP_TEST_METHOD digestsign_test_method = {
  2281. "DigestSign",
  2282. digestsign_test_init,
  2283. digestsigver_test_cleanup,
  2284. digestsigver_test_parse,
  2285. digestsign_test_run
  2286. };
  2287. static int digestverify_test_init(EVP_TEST *t, const char *alg)
  2288. {
  2289. return digestsigver_test_init(t, alg, 1, 0);
  2290. }
  2291. static int digestverify_update_fn(void *ctx, const unsigned char *buf,
  2292. size_t buflen)
  2293. {
  2294. return EVP_DigestVerifyUpdate(ctx, buf, buflen);
  2295. }
  2296. static int digestverify_test_run(EVP_TEST *t)
  2297. {
  2298. DIGESTSIGN_DATA *mdata = t->data;
  2299. if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
  2300. t->err = "DIGESTUPDATE_ERROR";
  2301. return 1;
  2302. }
  2303. if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
  2304. mdata->output_len) <= 0)
  2305. t->err = "VERIFY_ERROR";
  2306. return 1;
  2307. }
  2308. static const EVP_TEST_METHOD digestverify_test_method = {
  2309. "DigestVerify",
  2310. digestverify_test_init,
  2311. digestsigver_test_cleanup,
  2312. digestsigver_test_parse,
  2313. digestverify_test_run
  2314. };
  2315. static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
  2316. {
  2317. return digestsigver_test_init(t, alg, 0, 1);
  2318. }
  2319. static int oneshot_digestsign_test_run(EVP_TEST *t)
  2320. {
  2321. DIGESTSIGN_DATA *expected = t->data;
  2322. unsigned char *got = NULL;
  2323. size_t got_len;
  2324. if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
  2325. expected->osin, expected->osin_len)) {
  2326. t->err = "DIGESTSIGN_LENGTH_ERROR";
  2327. goto err;
  2328. }
  2329. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  2330. t->err = "MALLOC_FAILURE";
  2331. goto err;
  2332. }
  2333. if (!EVP_DigestSign(expected->ctx, got, &got_len,
  2334. expected->osin, expected->osin_len)) {
  2335. t->err = "DIGESTSIGN_ERROR";
  2336. goto err;
  2337. }
  2338. if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
  2339. expected->output, expected->output_len,
  2340. got, got_len))
  2341. goto err;
  2342. t->err = NULL;
  2343. err:
  2344. OPENSSL_free(got);
  2345. return 1;
  2346. }
  2347. static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
  2348. "OneShotDigestSign",
  2349. oneshot_digestsign_test_init,
  2350. digestsigver_test_cleanup,
  2351. digestsigver_test_parse,
  2352. oneshot_digestsign_test_run
  2353. };
  2354. static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
  2355. {
  2356. return digestsigver_test_init(t, alg, 1, 1);
  2357. }
  2358. static int oneshot_digestverify_test_run(EVP_TEST *t)
  2359. {
  2360. DIGESTSIGN_DATA *mdata = t->data;
  2361. if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
  2362. mdata->osin, mdata->osin_len) <= 0)
  2363. t->err = "VERIFY_ERROR";
  2364. return 1;
  2365. }
  2366. static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
  2367. "OneShotDigestVerify",
  2368. oneshot_digestverify_test_init,
  2369. digestsigver_test_cleanup,
  2370. digestsigver_test_parse,
  2371. oneshot_digestverify_test_run
  2372. };
  2373. /**
  2374. *** PARSING AND DISPATCH
  2375. **/
  2376. static const EVP_TEST_METHOD *evp_test_list[] = {
  2377. &cipher_test_method,
  2378. &digest_test_method,
  2379. &digestsign_test_method,
  2380. &digestverify_test_method,
  2381. &encode_test_method,
  2382. &kdf_test_method,
  2383. &pkey_kdf_test_method,
  2384. &keypair_test_method,
  2385. &keygen_test_method,
  2386. &mac_test_method,
  2387. &oneshot_digestsign_test_method,
  2388. &oneshot_digestverify_test_method,
  2389. &pbe_test_method,
  2390. &pdecrypt_test_method,
  2391. &pderive_test_method,
  2392. &psign_test_method,
  2393. &pverify_recover_test_method,
  2394. &pverify_test_method,
  2395. NULL
  2396. };
  2397. static const EVP_TEST_METHOD *find_test(const char *name)
  2398. {
  2399. const EVP_TEST_METHOD **tt;
  2400. for (tt = evp_test_list; *tt; tt++) {
  2401. if (strcmp(name, (*tt)->name) == 0)
  2402. return *tt;
  2403. }
  2404. return NULL;
  2405. }
  2406. static void clear_test(EVP_TEST *t)
  2407. {
  2408. test_clearstanza(&t->s);
  2409. ERR_clear_error();
  2410. if (t->data != NULL) {
  2411. if (t->meth != NULL)
  2412. t->meth->cleanup(t);
  2413. OPENSSL_free(t->data);
  2414. t->data = NULL;
  2415. }
  2416. OPENSSL_free(t->expected_err);
  2417. t->expected_err = NULL;
  2418. OPENSSL_free(t->reason);
  2419. t->reason = NULL;
  2420. /* Text literal. */
  2421. t->err = NULL;
  2422. t->skip = 0;
  2423. t->meth = NULL;
  2424. }
  2425. /*
  2426. * Check for errors in the test structure; return 1 if okay, else 0.
  2427. */
  2428. static int check_test_error(EVP_TEST *t)
  2429. {
  2430. unsigned long err;
  2431. const char *func;
  2432. const char *reason;
  2433. if (t->err == NULL && t->expected_err == NULL)
  2434. return 1;
  2435. if (t->err != NULL && t->expected_err == NULL) {
  2436. if (t->aux_err != NULL) {
  2437. TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
  2438. t->s.test_file, t->s.start, t->aux_err, t->err);
  2439. } else {
  2440. TEST_info("%s:%d: Source of above error; unexpected error %s",
  2441. t->s.test_file, t->s.start, t->err);
  2442. }
  2443. return 0;
  2444. }
  2445. if (t->err == NULL && t->expected_err != NULL) {
  2446. TEST_info("%s:%d: Succeeded but was expecting %s",
  2447. t->s.test_file, t->s.start, t->expected_err);
  2448. return 0;
  2449. }
  2450. if (strcmp(t->err, t->expected_err) != 0) {
  2451. TEST_info("%s:%d: Expected %s got %s",
  2452. t->s.test_file, t->s.start, t->expected_err, t->err);
  2453. return 0;
  2454. }
  2455. if (t->reason == NULL)
  2456. return 1;
  2457. if (t->reason == NULL) {
  2458. TEST_info("%s:%d: Test is missing function or reason code",
  2459. t->s.test_file, t->s.start);
  2460. return 0;
  2461. }
  2462. err = ERR_peek_error();
  2463. if (err == 0) {
  2464. TEST_info("%s:%d: Expected error \"%s\" not set",
  2465. t->s.test_file, t->s.start, t->reason);
  2466. return 0;
  2467. }
  2468. func = ERR_func_error_string(err);
  2469. reason = ERR_reason_error_string(err);
  2470. if (func == NULL && reason == NULL) {
  2471. TEST_info("%s:%d: Expected error \"%s\", no strings available."
  2472. " Assuming ok.",
  2473. t->s.test_file, t->s.start, t->reason);
  2474. return 1;
  2475. }
  2476. if (strcmp(reason, t->reason) == 0)
  2477. return 1;
  2478. TEST_info("%s:%d: Expected error \"%s\", got \"%s\"",
  2479. t->s.test_file, t->s.start, t->reason, reason);
  2480. return 0;
  2481. }
  2482. /*
  2483. * Run a parsed test. Log a message and return 0 on error.
  2484. */
  2485. static int run_test(EVP_TEST *t)
  2486. {
  2487. if (t->meth == NULL)
  2488. return 1;
  2489. t->s.numtests++;
  2490. if (t->skip) {
  2491. t->s.numskip++;
  2492. } else {
  2493. /* run the test */
  2494. if (t->err == NULL && t->meth->run_test(t) != 1) {
  2495. TEST_info("%s:%d %s error",
  2496. t->s.test_file, t->s.start, t->meth->name);
  2497. return 0;
  2498. }
  2499. if (!check_test_error(t)) {
  2500. TEST_openssl_errors();
  2501. t->s.errors++;
  2502. }
  2503. }
  2504. /* clean it up */
  2505. return 1;
  2506. }
  2507. static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
  2508. {
  2509. for (; lst != NULL; lst = lst->next) {
  2510. if (strcmp(lst->name, name) == 0) {
  2511. if (ppk != NULL)
  2512. *ppk = lst->key;
  2513. return 1;
  2514. }
  2515. }
  2516. return 0;
  2517. }
  2518. static void free_key_list(KEY_LIST *lst)
  2519. {
  2520. while (lst != NULL) {
  2521. KEY_LIST *next = lst->next;
  2522. EVP_PKEY_free(lst->key);
  2523. OPENSSL_free(lst->name);
  2524. OPENSSL_free(lst);
  2525. lst = next;
  2526. }
  2527. }
  2528. /*
  2529. * Is the key type an unsupported algorithm?
  2530. */
  2531. static int key_unsupported(void)
  2532. {
  2533. long err = ERR_peek_error();
  2534. if (ERR_GET_LIB(err) == ERR_LIB_EVP
  2535. && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
  2536. ERR_clear_error();
  2537. return 1;
  2538. }
  2539. #ifndef OPENSSL_NO_EC
  2540. /*
  2541. * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
  2542. * hint to an unsupported algorithm/curve (e.g. if binary EC support is
  2543. * disabled).
  2544. */
  2545. if (ERR_GET_LIB(err) == ERR_LIB_EC
  2546. && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
  2547. ERR_clear_error();
  2548. return 1;
  2549. }
  2550. #endif /* OPENSSL_NO_EC */
  2551. return 0;
  2552. }
  2553. /*
  2554. * NULL out the value from |pp| but return it. This "steals" a pointer.
  2555. */
  2556. static char *take_value(PAIR *pp)
  2557. {
  2558. char *p = pp->value;
  2559. pp->value = NULL;
  2560. return p;
  2561. }
  2562. /*
  2563. * Return 1 if one of the providers named in the string is available.
  2564. * The provider names are separated with whitespace.
  2565. * NOTE: destructive function, it inserts '\0' after each provider name.
  2566. */
  2567. static int prov_available(char *providers)
  2568. {
  2569. char *p;
  2570. int more = 1;
  2571. while (more) {
  2572. for (; isspace(*providers); providers++)
  2573. continue;
  2574. if (*providers == '\0')
  2575. break; /* End of the road */
  2576. for (p = providers; *p != '\0' && !isspace(*p); p++)
  2577. continue;
  2578. if (*p == '\0')
  2579. more = 0;
  2580. else
  2581. *p = '\0';
  2582. if (OSSL_PROVIDER_available(NULL, providers))
  2583. return 1; /* Found one */
  2584. }
  2585. return 0;
  2586. }
  2587. /*
  2588. * Read and parse one test. Return 0 if failure, 1 if okay.
  2589. */
  2590. static int parse(EVP_TEST *t)
  2591. {
  2592. KEY_LIST *key, **klist;
  2593. EVP_PKEY *pkey;
  2594. PAIR *pp;
  2595. int i;
  2596. top:
  2597. do {
  2598. if (BIO_eof(t->s.fp))
  2599. return EOF;
  2600. clear_test(t);
  2601. if (!test_readstanza(&t->s))
  2602. return 0;
  2603. } while (t->s.numpairs == 0);
  2604. pp = &t->s.pairs[0];
  2605. /* Are we adding a key? */
  2606. klist = NULL;
  2607. pkey = NULL;
  2608. if (strcmp(pp->key, "PrivateKey") == 0) {
  2609. pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL);
  2610. if (pkey == NULL && !key_unsupported()) {
  2611. EVP_PKEY_free(pkey);
  2612. TEST_info("Can't read private key %s", pp->value);
  2613. TEST_openssl_errors();
  2614. return 0;
  2615. }
  2616. klist = &private_keys;
  2617. } else if (strcmp(pp->key, "PublicKey") == 0) {
  2618. pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL);
  2619. if (pkey == NULL && !key_unsupported()) {
  2620. EVP_PKEY_free(pkey);
  2621. TEST_info("Can't read public key %s", pp->value);
  2622. TEST_openssl_errors();
  2623. return 0;
  2624. }
  2625. klist = &public_keys;
  2626. } else if (strcmp(pp->key, "PrivateKeyRaw") == 0
  2627. || strcmp(pp->key, "PublicKeyRaw") == 0 ) {
  2628. char *strnid = NULL, *keydata = NULL;
  2629. unsigned char *keybin;
  2630. size_t keylen;
  2631. int nid;
  2632. if (strcmp(pp->key, "PrivateKeyRaw") == 0)
  2633. klist = &private_keys;
  2634. else
  2635. klist = &public_keys;
  2636. strnid = strchr(pp->value, ':');
  2637. if (strnid != NULL) {
  2638. *strnid++ = '\0';
  2639. keydata = strchr(strnid, ':');
  2640. if (keydata != NULL)
  2641. *keydata++ = '\0';
  2642. }
  2643. if (keydata == NULL) {
  2644. TEST_info("Failed to parse %s value", pp->key);
  2645. return 0;
  2646. }
  2647. nid = OBJ_txt2nid(strnid);
  2648. if (nid == NID_undef) {
  2649. TEST_info("Uncrecognised algorithm NID");
  2650. return 0;
  2651. }
  2652. if (!parse_bin(keydata, &keybin, &keylen)) {
  2653. TEST_info("Failed to create binary key");
  2654. return 0;
  2655. }
  2656. if (klist == &private_keys)
  2657. pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen);
  2658. else
  2659. pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen);
  2660. if (pkey == NULL && !key_unsupported()) {
  2661. TEST_info("Can't read %s data", pp->key);
  2662. OPENSSL_free(keybin);
  2663. TEST_openssl_errors();
  2664. return 0;
  2665. }
  2666. OPENSSL_free(keybin);
  2667. }
  2668. /* If we have a key add to list */
  2669. if (klist != NULL) {
  2670. if (find_key(NULL, pp->value, *klist)) {
  2671. TEST_info("Duplicate key %s", pp->value);
  2672. return 0;
  2673. }
  2674. if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
  2675. return 0;
  2676. key->name = take_value(pp);
  2677. /* Hack to detect SM2 keys */
  2678. if(pkey != NULL && strstr(key->name, "SM2") != NULL) {
  2679. #ifdef OPENSSL_NO_SM2
  2680. EVP_PKEY_free(pkey);
  2681. pkey = NULL;
  2682. #else
  2683. EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2);
  2684. #endif
  2685. }
  2686. key->key = pkey;
  2687. key->next = *klist;
  2688. *klist = key;
  2689. /* Go back and start a new stanza. */
  2690. if (t->s.numpairs != 1)
  2691. TEST_info("Line %d: missing blank line\n", t->s.curr);
  2692. goto top;
  2693. }
  2694. /* Find the test, based on first keyword. */
  2695. if (!TEST_ptr(t->meth = find_test(pp->key)))
  2696. return 0;
  2697. if (!t->meth->init(t, pp->value)) {
  2698. TEST_error("unknown %s: %s\n", pp->key, pp->value);
  2699. return 0;
  2700. }
  2701. if (t->skip == 1) {
  2702. /* TEST_info("skipping %s %s", pp->key, pp->value); */
  2703. return 0;
  2704. }
  2705. for (pp++, i = 1; i < t->s.numpairs; pp++, i++) {
  2706. if (strcmp(pp->key, "Availablein") == 0) {
  2707. if (!prov_available(pp->value)) {
  2708. TEST_info("skipping, providers not available: %s:%d",
  2709. t->s.test_file, t->s.start);
  2710. t->skip = 1;
  2711. return 0;
  2712. }
  2713. }
  2714. if (strcmp(pp->key, "Result") == 0) {
  2715. if (t->expected_err != NULL) {
  2716. TEST_info("Line %d: multiple result lines", t->s.curr);
  2717. return 0;
  2718. }
  2719. t->expected_err = take_value(pp);
  2720. } else if (strcmp(pp->key, "Function") == 0) {
  2721. /* Ignore old line. */
  2722. } else if (strcmp(pp->key, "Reason") == 0) {
  2723. if (t->reason != NULL) {
  2724. TEST_info("Line %d: multiple reason lines", t->s.curr);
  2725. return 0;
  2726. }
  2727. t->reason = take_value(pp);
  2728. } else {
  2729. /* Must be test specific line: try to parse it */
  2730. int rv = t->meth->parse(t, pp->key, pp->value);
  2731. if (rv == 0) {
  2732. TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
  2733. return 0;
  2734. }
  2735. if (rv < 0) {
  2736. TEST_info("Line %d: error processing keyword %s = %s\n",
  2737. t->s.curr, pp->key, pp->value);
  2738. return 0;
  2739. }
  2740. }
  2741. }
  2742. return 1;
  2743. }
  2744. static int run_file_tests(int i)
  2745. {
  2746. EVP_TEST *t;
  2747. const char *testfile = test_get_argument(i);
  2748. int c;
  2749. if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
  2750. return 0;
  2751. if (!test_start_file(&t->s, testfile)) {
  2752. OPENSSL_free(t);
  2753. return 0;
  2754. }
  2755. while (!BIO_eof(t->s.fp)) {
  2756. c = parse(t);
  2757. if (t->skip) {
  2758. t->s.numskip++;
  2759. continue;
  2760. }
  2761. if (c == 0 || !run_test(t)) {
  2762. t->s.errors++;
  2763. break;
  2764. }
  2765. }
  2766. test_end_file(&t->s);
  2767. clear_test(t);
  2768. free_key_list(public_keys);
  2769. free_key_list(private_keys);
  2770. BIO_free(t->s.key);
  2771. c = t->s.errors;
  2772. OPENSSL_free(t);
  2773. return c == 0;
  2774. }
  2775. OPT_TEST_DECLARE_USAGE("file...\n")
  2776. int setup_tests(void)
  2777. {
  2778. size_t n = test_get_argument_count();
  2779. if (n == 0)
  2780. return 0;
  2781. ADD_ALL_TESTS(run_file_tests, n);
  2782. return 1;
  2783. }