123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- /*
- * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #define OPENSSL_SUPPRESS_DEPRECATED
- #include <stdio.h>
- #include <openssl/bn.h>
- #include "bn_local.h"
- /* X9.31 routines for prime derivation */
- /*
- * X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
- * q1, q2) from a parameter Xpi by checking successive odd integers.
- */
- static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
- BN_GENCB *cb)
- {
- int i = 0, is_prime;
- if (!BN_copy(pi, Xpi))
- return 0;
- if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
- return 0;
- for (;;) {
- i++;
- BN_GENCB_call(cb, 0, i);
- /* NB 27 MR is specified in X9.31 */
- is_prime = BN_check_prime(pi, ctx, cb);
- if (is_prime < 0)
- return 0;
- if (is_prime)
- break;
- if (!BN_add_word(pi, 2))
- return 0;
- }
- BN_GENCB_call(cb, 2, i);
- return 1;
- }
- /*
- * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
- * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
- * will be returned too: this is needed for testing.
- */
- int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
- const BIGNUM *Xp, const BIGNUM *Xp1,
- const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
- BN_GENCB *cb)
- {
- int ret = 0;
- BIGNUM *t, *p1p2, *pm1;
- /* Only even e supported */
- if (!BN_is_odd(e))
- return 0;
- BN_CTX_start(ctx);
- if (p1 == NULL)
- p1 = BN_CTX_get(ctx);
- if (p2 == NULL)
- p2 = BN_CTX_get(ctx);
- t = BN_CTX_get(ctx);
- p1p2 = BN_CTX_get(ctx);
- pm1 = BN_CTX_get(ctx);
- if (pm1 == NULL)
- goto err;
- if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
- goto err;
- if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
- goto err;
- if (!BN_mul(p1p2, p1, p2, ctx))
- goto err;
- /* First set p to value of Rp */
- if (!BN_mod_inverse(p, p2, p1, ctx))
- goto err;
- if (!BN_mul(p, p, p2, ctx))
- goto err;
- if (!BN_mod_inverse(t, p1, p2, ctx))
- goto err;
- if (!BN_mul(t, t, p1, ctx))
- goto err;
- if (!BN_sub(p, p, t))
- goto err;
- if (p->neg && !BN_add(p, p, p1p2))
- goto err;
- /* p now equals Rp */
- if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
- goto err;
- if (!BN_add(p, p, Xp))
- goto err;
- /* p now equals Yp0 */
- for (;;) {
- int i = 1;
- BN_GENCB_call(cb, 0, i++);
- if (!BN_copy(pm1, p))
- goto err;
- if (!BN_sub_word(pm1, 1))
- goto err;
- if (!BN_gcd(t, pm1, e, ctx))
- goto err;
- if (BN_is_one(t)) {
- /*
- * X9.31 specifies 8 MR and 1 Lucas test or any prime test
- * offering similar or better guarantees 50 MR is considerably
- * better.
- */
- int r = BN_check_prime(p, ctx, cb);
- if (r < 0)
- goto err;
- if (r)
- break;
- }
- if (!BN_add(p, p, p1p2))
- goto err;
- }
- BN_GENCB_call(cb, 3, 0);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits
- * parameter is sum of number of bits in both.
- */
- int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
- {
- BIGNUM *t;
- int i;
- /*
- * Number of bits for each prime is of the form 512+128s for s = 0, 1,
- * ...
- */
- if ((nbits < 1024) || (nbits & 0xff))
- return 0;
- nbits >>= 1;
- /*
- * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
- * - 1. By setting the top two bits we ensure that the lower bound is
- * exceeded.
- */
- if (!BN_priv_rand_ex(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY, 0,
- ctx))
- return 0;
- BN_CTX_start(ctx);
- t = BN_CTX_get(ctx);
- if (t == NULL)
- goto err;
- for (i = 0; i < 1000; i++) {
- if (!BN_priv_rand_ex(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY, 0,
- ctx))
- goto err;
- /* Check that |Xp - Xq| > 2^(nbits - 100) */
- if (!BN_sub(t, Xp, Xq))
- goto err;
- if (BN_num_bits(t) > (nbits - 100))
- break;
- }
- BN_CTX_end(ctx);
- if (i < 1000)
- return 1;
- return 0;
- err:
- BN_CTX_end(ctx);
- return 0;
- }
- /*
- * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
- * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
- * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
- * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
- * previous function and supplied as input.
- */
- int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
- BIGNUM *Xp1, BIGNUM *Xp2,
- const BIGNUM *Xp,
- const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
- {
- int ret = 0;
- BN_CTX_start(ctx);
- if (Xp1 == NULL)
- Xp1 = BN_CTX_get(ctx);
- if (Xp2 == NULL)
- Xp2 = BN_CTX_get(ctx);
- if (Xp1 == NULL || Xp2 == NULL)
- goto error;
- if (!BN_priv_rand_ex(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, 0, ctx))
- goto error;
- if (!BN_priv_rand_ex(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, 0, ctx))
- goto error;
- if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
- goto error;
- ret = 1;
- error:
- BN_CTX_end(ctx);
- return ret;
- }
|