12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253 |
- /*
- * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <openssl/e_os2.h>
- #include <string.h>
- #include <assert.h>
- size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
- size_t r);
- void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r);
- #if !defined(KECCAK1600_ASM) || !defined(SELFTEST)
- /*
- * Choose some sensible defaults
- */
- #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \
- !defined(KECCAK_2X) && !defined(KECCAK_INPLACE)
- # define KECCAK_2X /* default to KECCAK_2X variant */
- #endif
- #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
- (defined(__x86_64) && !defined(__BMI__)) || defined(_M_X64) || \
- defined(__mips) || defined(__riscv) || defined(__s390__) || \
- defined(__EMSCRIPTEN__)
- /*
- * These don't have "and with complement" instruction, so minimize amount
- * of "not"-s. Implemented only in the [default] KECCAK_2X variant.
- */
- # define KECCAK_COMPLEMENTING_TRANSFORM
- #endif
- #if defined(__x86_64__) || defined(__aarch64__) || \
- defined(__mips64) || defined(__ia64) || \
- (defined(__VMS) && !defined(__vax))
- /*
- * These are available even in ILP32 flavours, but even then they are
- * capable of performing 64-bit operations as efficiently as in *P64.
- * Since it's not given that we can use sizeof(void *), just shunt it.
- */
- # define BIT_INTERLEAVE (0)
- #else
- # define BIT_INTERLEAVE (sizeof(void *) < 8)
- #endif
- #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31)))
- static uint64_t ROL64(uint64_t val, int offset)
- {
- if (offset == 0) {
- return val;
- } else if (!BIT_INTERLEAVE) {
- return (val << offset) | (val >> (64-offset));
- } else {
- uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val;
- if (offset & 1) {
- uint32_t tmp = hi;
- offset >>= 1;
- hi = ROL32(lo, offset);
- lo = ROL32(tmp, offset + 1);
- } else {
- offset >>= 1;
- lo = ROL32(lo, offset);
- hi = ROL32(hi, offset);
- }
- return ((uint64_t)hi << 32) | lo;
- }
- }
- static const unsigned char rhotates[5][5] = {
- { 0, 1, 62, 28, 27 },
- { 36, 44, 6, 55, 20 },
- { 3, 10, 43, 25, 39 },
- { 41, 45, 15, 21, 8 },
- { 18, 2, 61, 56, 14 }
- };
- static const uint64_t iotas[] = {
- BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL,
- BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL,
- BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL,
- BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL,
- BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL,
- BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL,
- BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL,
- BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL,
- BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL,
- BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL,
- BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL,
- BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL,
- BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL,
- BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL,
- BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL,
- BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL,
- BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL,
- BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL,
- BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL,
- BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL,
- BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL,
- BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL,
- BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL,
- BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL
- };
- #if defined(KECCAK_REF)
- /*
- * This is straightforward or "maximum clarity" implementation aiming
- * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard:
- * Permutation-Based Hash and Extendible-Output Functions" as much as
- * possible. With one caveat. Because of the way C stores matrices,
- * references to A[x,y] in the specification are presented as A[y][x].
- * Implementation unrolls inner x-loops so that modulo 5 operations are
- * explicitly pre-computed.
- */
- static void Theta(uint64_t A[5][5])
- {
- uint64_t C[5], D[5];
- size_t y;
- C[0] = A[0][0];
- C[1] = A[0][1];
- C[2] = A[0][2];
- C[3] = A[0][3];
- C[4] = A[0][4];
- for (y = 1; y < 5; y++) {
- C[0] ^= A[y][0];
- C[1] ^= A[y][1];
- C[2] ^= A[y][2];
- C[3] ^= A[y][3];
- C[4] ^= A[y][4];
- }
- D[0] = ROL64(C[1], 1) ^ C[4];
- D[1] = ROL64(C[2], 1) ^ C[0];
- D[2] = ROL64(C[3], 1) ^ C[1];
- D[3] = ROL64(C[4], 1) ^ C[2];
- D[4] = ROL64(C[0], 1) ^ C[3];
- for (y = 0; y < 5; y++) {
- A[y][0] ^= D[0];
- A[y][1] ^= D[1];
- A[y][2] ^= D[2];
- A[y][3] ^= D[3];
- A[y][4] ^= D[4];
- }
- }
- static void Rho(uint64_t A[5][5])
- {
- size_t y;
- for (y = 0; y < 5; y++) {
- A[y][0] = ROL64(A[y][0], rhotates[y][0]);
- A[y][1] = ROL64(A[y][1], rhotates[y][1]);
- A[y][2] = ROL64(A[y][2], rhotates[y][2]);
- A[y][3] = ROL64(A[y][3], rhotates[y][3]);
- A[y][4] = ROL64(A[y][4], rhotates[y][4]);
- }
- }
- static void Pi(uint64_t A[5][5])
- {
- uint64_t T[5][5];
- /*
- * T = A
- * A[y][x] = T[x][(3*y+x)%5]
- */
- memcpy(T, A, sizeof(T));
- A[0][0] = T[0][0];
- A[0][1] = T[1][1];
- A[0][2] = T[2][2];
- A[0][3] = T[3][3];
- A[0][4] = T[4][4];
- A[1][0] = T[0][3];
- A[1][1] = T[1][4];
- A[1][2] = T[2][0];
- A[1][3] = T[3][1];
- A[1][4] = T[4][2];
- A[2][0] = T[0][1];
- A[2][1] = T[1][2];
- A[2][2] = T[2][3];
- A[2][3] = T[3][4];
- A[2][4] = T[4][0];
- A[3][0] = T[0][4];
- A[3][1] = T[1][0];
- A[3][2] = T[2][1];
- A[3][3] = T[3][2];
- A[3][4] = T[4][3];
- A[4][0] = T[0][2];
- A[4][1] = T[1][3];
- A[4][2] = T[2][4];
- A[4][3] = T[3][0];
- A[4][4] = T[4][1];
- }
- static void Chi(uint64_t A[5][5])
- {
- uint64_t C[5];
- size_t y;
- for (y = 0; y < 5; y++) {
- C[0] = A[y][0] ^ (~A[y][1] & A[y][2]);
- C[1] = A[y][1] ^ (~A[y][2] & A[y][3]);
- C[2] = A[y][2] ^ (~A[y][3] & A[y][4]);
- C[3] = A[y][3] ^ (~A[y][4] & A[y][0]);
- C[4] = A[y][4] ^ (~A[y][0] & A[y][1]);
- A[y][0] = C[0];
- A[y][1] = C[1];
- A[y][2] = C[2];
- A[y][3] = C[3];
- A[y][4] = C[4];
- }
- }
- static void Iota(uint64_t A[5][5], size_t i)
- {
- assert(i < (sizeof(iotas) / sizeof(iotas[0])));
- A[0][0] ^= iotas[i];
- }
- static void KeccakF1600(uint64_t A[5][5])
- {
- size_t i;
- for (i = 0; i < 24; i++) {
- Theta(A);
- Rho(A);
- Pi(A);
- Chi(A);
- Iota(A, i);
- }
- }
- #elif defined(KECCAK_1X)
- /*
- * This implementation is optimization of above code featuring unroll
- * of even y-loops, their fusion and code motion. It also minimizes
- * temporary storage. Compiler would normally do all these things for
- * you, purpose of manual optimization is to provide "unobscured"
- * reference for assembly implementation [in case this approach is
- * chosen for implementation on some platform]. In the nutshell it's
- * equivalent of "plane-per-plane processing" approach discussed in
- * section 2.4 of "Keccak implementation overview".
- */
- static void Round(uint64_t A[5][5], size_t i)
- {
- uint64_t C[5], E[2]; /* registers */
- uint64_t D[5], T[2][5]; /* memory */
- assert(i < (sizeof(iotas) / sizeof(iotas[0])));
- C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
- C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
- C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
- C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
- C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
- #if defined(__arm__)
- D[1] = E[0] = ROL64(C[2], 1) ^ C[0];
- D[4] = E[1] = ROL64(C[0], 1) ^ C[3];
- D[0] = C[0] = ROL64(C[1], 1) ^ C[4];
- D[2] = C[1] = ROL64(C[3], 1) ^ C[1];
- D[3] = C[2] = ROL64(C[4], 1) ^ C[2];
- T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */
- T[0][1] = A[0][1] ^ E[0]; /* D[1] */
- T[0][2] = A[0][2] ^ C[1]; /* D[2] */
- T[0][3] = A[0][3] ^ C[2]; /* D[3] */
- T[0][4] = A[0][4] ^ E[1]; /* D[4] */
- C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */
- C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */
- C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */
- C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */
- C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */
- #else
- D[0] = ROL64(C[1], 1) ^ C[4];
- D[1] = ROL64(C[2], 1) ^ C[0];
- D[2] = ROL64(C[3], 1) ^ C[1];
- D[3] = ROL64(C[4], 1) ^ C[2];
- D[4] = ROL64(C[0], 1) ^ C[3];
- T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */
- T[0][1] = A[0][1] ^ D[1];
- T[0][2] = A[0][2] ^ D[2];
- T[0][3] = A[0][3] ^ D[3];
- T[0][4] = A[0][4] ^ D[4];
- C[0] = A[0][0] ^ D[0]; /* rotate by 0 */
- C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
- C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
- C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
- C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
- #endif
- A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
- A[0][1] = C[1] ^ (~C[2] & C[3]);
- A[0][2] = C[2] ^ (~C[3] & C[4]);
- A[0][3] = C[3] ^ (~C[4] & C[0]);
- A[0][4] = C[4] ^ (~C[0] & C[1]);
- T[1][0] = A[1][0] ^ (C[3] = D[0]);
- T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */
- T[1][2] = A[1][2] ^ (E[0] = D[2]);
- T[1][3] = A[1][3] ^ (E[1] = D[3]);
- T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */
- C[0] = ROL64(T[0][3], rhotates[0][3]);
- C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */
- C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */
- C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */
- C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */
- A[1][0] = C[0] ^ (~C[1] & C[2]);
- A[1][1] = C[1] ^ (~C[2] & C[3]);
- A[1][2] = C[2] ^ (~C[3] & C[4]);
- A[1][3] = C[3] ^ (~C[4] & C[0]);
- A[1][4] = C[4] ^ (~C[0] & C[1]);
- C[0] = ROL64(T[0][1], rhotates[0][1]);
- C[1] = ROL64(T[1][2], rhotates[1][2]);
- C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
- C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
- C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
- A[2][0] = C[0] ^ (~C[1] & C[2]);
- A[2][1] = C[1] ^ (~C[2] & C[3]);
- A[2][2] = C[2] ^ (~C[3] & C[4]);
- A[2][3] = C[3] ^ (~C[4] & C[0]);
- A[2][4] = C[4] ^ (~C[0] & C[1]);
- C[0] = ROL64(T[0][4], rhotates[0][4]);
- C[1] = ROL64(T[1][0], rhotates[1][0]);
- C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */
- C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
- C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
- A[3][0] = C[0] ^ (~C[1] & C[2]);
- A[3][1] = C[1] ^ (~C[2] & C[3]);
- A[3][2] = C[2] ^ (~C[3] & C[4]);
- A[3][3] = C[3] ^ (~C[4] & C[0]);
- A[3][4] = C[4] ^ (~C[0] & C[1]);
- C[0] = ROL64(T[0][2], rhotates[0][2]);
- C[1] = ROL64(T[1][3], rhotates[1][3]);
- C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */
- C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */
- C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
- A[4][0] = C[0] ^ (~C[1] & C[2]);
- A[4][1] = C[1] ^ (~C[2] & C[3]);
- A[4][2] = C[2] ^ (~C[3] & C[4]);
- A[4][3] = C[3] ^ (~C[4] & C[0]);
- A[4][4] = C[4] ^ (~C[0] & C[1]);
- }
- static void KeccakF1600(uint64_t A[5][5])
- {
- size_t i;
- for (i = 0; i < 24; i++) {
- Round(A, i);
- }
- }
- #elif defined(KECCAK_1X_ALT)
- /*
- * This is variant of above KECCAK_1X that reduces requirement for
- * temporary storage even further, but at cost of more updates to A[][].
- * It's less suitable if A[][] is memory bound, but better if it's
- * register bound.
- */
- static void Round(uint64_t A[5][5], size_t i)
- {
- uint64_t C[5], D[5];
- assert(i < (sizeof(iotas) / sizeof(iotas[0])));
- C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
- C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
- C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
- C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
- C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
- D[1] = C[0] ^ ROL64(C[2], 1);
- D[2] = C[1] ^ ROL64(C[3], 1);
- D[3] = C[2] ^= ROL64(C[4], 1);
- D[4] = C[3] ^= ROL64(C[0], 1);
- D[0] = C[4] ^= ROL64(C[1], 1);
- A[0][1] ^= D[1];
- A[1][1] ^= D[1];
- A[2][1] ^= D[1];
- A[3][1] ^= D[1];
- A[4][1] ^= D[1];
- A[0][2] ^= D[2];
- A[1][2] ^= D[2];
- A[2][2] ^= D[2];
- A[3][2] ^= D[2];
- A[4][2] ^= D[2];
- A[0][3] ^= C[2];
- A[1][3] ^= C[2];
- A[2][3] ^= C[2];
- A[3][3] ^= C[2];
- A[4][3] ^= C[2];
- A[0][4] ^= C[3];
- A[1][4] ^= C[3];
- A[2][4] ^= C[3];
- A[3][4] ^= C[3];
- A[4][4] ^= C[3];
- A[0][0] ^= C[4];
- A[1][0] ^= C[4];
- A[2][0] ^= C[4];
- A[3][0] ^= C[4];
- A[4][0] ^= C[4];
- C[1] = A[0][1];
- C[2] = A[0][2];
- C[3] = A[0][3];
- C[4] = A[0][4];
- A[0][1] = ROL64(A[1][1], rhotates[1][1]);
- A[0][2] = ROL64(A[2][2], rhotates[2][2]);
- A[0][3] = ROL64(A[3][3], rhotates[3][3]);
- A[0][4] = ROL64(A[4][4], rhotates[4][4]);
- A[1][1] = ROL64(A[1][4], rhotates[1][4]);
- A[2][2] = ROL64(A[2][3], rhotates[2][3]);
- A[3][3] = ROL64(A[3][2], rhotates[3][2]);
- A[4][4] = ROL64(A[4][1], rhotates[4][1]);
- A[1][4] = ROL64(A[4][2], rhotates[4][2]);
- A[2][3] = ROL64(A[3][4], rhotates[3][4]);
- A[3][2] = ROL64(A[2][1], rhotates[2][1]);
- A[4][1] = ROL64(A[1][3], rhotates[1][3]);
- A[4][2] = ROL64(A[2][4], rhotates[2][4]);
- A[3][4] = ROL64(A[4][3], rhotates[4][3]);
- A[2][1] = ROL64(A[1][2], rhotates[1][2]);
- A[1][3] = ROL64(A[3][1], rhotates[3][1]);
- A[2][4] = ROL64(A[4][0], rhotates[4][0]);
- A[4][3] = ROL64(A[3][0], rhotates[3][0]);
- A[1][2] = ROL64(A[2][0], rhotates[2][0]);
- A[3][1] = ROL64(A[1][0], rhotates[1][0]);
- A[1][0] = ROL64(C[3], rhotates[0][3]);
- A[2][0] = ROL64(C[1], rhotates[0][1]);
- A[3][0] = ROL64(C[4], rhotates[0][4]);
- A[4][0] = ROL64(C[2], rhotates[0][2]);
- C[0] = A[0][0];
- C[1] = A[1][0];
- D[0] = A[0][1];
- D[1] = A[1][1];
- A[0][0] ^= (~A[0][1] & A[0][2]);
- A[1][0] ^= (~A[1][1] & A[1][2]);
- A[0][1] ^= (~A[0][2] & A[0][3]);
- A[1][1] ^= (~A[1][2] & A[1][3]);
- A[0][2] ^= (~A[0][3] & A[0][4]);
- A[1][2] ^= (~A[1][3] & A[1][4]);
- A[0][3] ^= (~A[0][4] & C[0]);
- A[1][3] ^= (~A[1][4] & C[1]);
- A[0][4] ^= (~C[0] & D[0]);
- A[1][4] ^= (~C[1] & D[1]);
- C[2] = A[2][0];
- C[3] = A[3][0];
- D[2] = A[2][1];
- D[3] = A[3][1];
- A[2][0] ^= (~A[2][1] & A[2][2]);
- A[3][0] ^= (~A[3][1] & A[3][2]);
- A[2][1] ^= (~A[2][2] & A[2][3]);
- A[3][1] ^= (~A[3][2] & A[3][3]);
- A[2][2] ^= (~A[2][3] & A[2][4]);
- A[3][2] ^= (~A[3][3] & A[3][4]);
- A[2][3] ^= (~A[2][4] & C[2]);
- A[3][3] ^= (~A[3][4] & C[3]);
- A[2][4] ^= (~C[2] & D[2]);
- A[3][4] ^= (~C[3] & D[3]);
- C[4] = A[4][0];
- D[4] = A[4][1];
- A[4][0] ^= (~A[4][1] & A[4][2]);
- A[4][1] ^= (~A[4][2] & A[4][3]);
- A[4][2] ^= (~A[4][3] & A[4][4]);
- A[4][3] ^= (~A[4][4] & C[4]);
- A[4][4] ^= (~C[4] & D[4]);
- A[0][0] ^= iotas[i];
- }
- static void KeccakF1600(uint64_t A[5][5])
- {
- size_t i;
- for (i = 0; i < 24; i++) {
- Round(A, i);
- }
- }
- #elif defined(KECCAK_2X)
- /*
- * This implementation is variant of KECCAK_1X above with outer-most
- * round loop unrolled twice. This allows to take temporary storage
- * out of round procedure and simplify references to it by alternating
- * it with actual data (see round loop below). Originally it was meant
- * rather as reference for an assembly implementation, but it seems to
- * play best with compilers [as well as provide best instruction per
- * processed byte ratio at minimal round unroll factor]...
- */
- static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i)
- {
- uint64_t C[5], D[5];
- assert(i < (sizeof(iotas) / sizeof(iotas[0])));
- C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
- C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
- C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
- C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
- C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
- D[0] = ROL64(C[1], 1) ^ C[4];
- D[1] = ROL64(C[2], 1) ^ C[0];
- D[2] = ROL64(C[3], 1) ^ C[1];
- D[3] = ROL64(C[4], 1) ^ C[2];
- D[4] = ROL64(C[0], 1) ^ C[3];
- C[0] = A[0][0] ^ D[0]; /* rotate by 0 */
- C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
- C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
- C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
- C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
- #ifdef KECCAK_COMPLEMENTING_TRANSFORM
- R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i];
- R[0][1] = C[1] ^ (~C[2] | C[3]);
- R[0][2] = C[2] ^ ( C[3] & C[4]);
- R[0][3] = C[3] ^ ( C[4] | C[0]);
- R[0][4] = C[4] ^ ( C[0] & C[1]);
- #else
- R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
- R[0][1] = C[1] ^ (~C[2] & C[3]);
- R[0][2] = C[2] ^ (~C[3] & C[4]);
- R[0][3] = C[3] ^ (~C[4] & C[0]);
- R[0][4] = C[4] ^ (~C[0] & C[1]);
- #endif
- C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
- C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
- C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
- C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
- C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
- #ifdef KECCAK_COMPLEMENTING_TRANSFORM
- R[1][0] = C[0] ^ (C[1] | C[2]);
- R[1][1] = C[1] ^ (C[2] & C[3]);
- R[1][2] = C[2] ^ (C[3] | ~C[4]);
- R[1][3] = C[3] ^ (C[4] | C[0]);
- R[1][4] = C[4] ^ (C[0] & C[1]);
- #else
- R[1][0] = C[0] ^ (~C[1] & C[2]);
- R[1][1] = C[1] ^ (~C[2] & C[3]);
- R[1][2] = C[2] ^ (~C[3] & C[4]);
- R[1][3] = C[3] ^ (~C[4] & C[0]);
- R[1][4] = C[4] ^ (~C[0] & C[1]);
- #endif
- C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
- C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
- C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
- C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
- C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
- #ifdef KECCAK_COMPLEMENTING_TRANSFORM
- R[2][0] = C[0] ^ ( C[1] | C[2]);
- R[2][1] = C[1] ^ ( C[2] & C[3]);
- R[2][2] = C[2] ^ (~C[3] & C[4]);
- R[2][3] = ~C[3] ^ ( C[4] | C[0]);
- R[2][4] = C[4] ^ ( C[0] & C[1]);
- #else
- R[2][0] = C[0] ^ (~C[1] & C[2]);
- R[2][1] = C[1] ^ (~C[2] & C[3]);
- R[2][2] = C[2] ^ (~C[3] & C[4]);
- R[2][3] = C[3] ^ (~C[4] & C[0]);
- R[2][4] = C[4] ^ (~C[0] & C[1]);
- #endif
- C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
- C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
- C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
- C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
- C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
- #ifdef KECCAK_COMPLEMENTING_TRANSFORM
- R[3][0] = C[0] ^ ( C[1] & C[2]);
- R[3][1] = C[1] ^ ( C[2] | C[3]);
- R[3][2] = C[2] ^ (~C[3] | C[4]);
- R[3][3] = ~C[3] ^ ( C[4] & C[0]);
- R[3][4] = C[4] ^ ( C[0] | C[1]);
- #else
- R[3][0] = C[0] ^ (~C[1] & C[2]);
- R[3][1] = C[1] ^ (~C[2] & C[3]);
- R[3][2] = C[2] ^ (~C[3] & C[4]);
- R[3][3] = C[3] ^ (~C[4] & C[0]);
- R[3][4] = C[4] ^ (~C[0] & C[1]);
- #endif
- C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
- C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
- C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
- C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
- C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
- #ifdef KECCAK_COMPLEMENTING_TRANSFORM
- R[4][0] = C[0] ^ (~C[1] & C[2]);
- R[4][1] = ~C[1] ^ ( C[2] | C[3]);
- R[4][2] = C[2] ^ ( C[3] & C[4]);
- R[4][3] = C[3] ^ ( C[4] | C[0]);
- R[4][4] = C[4] ^ ( C[0] & C[1]);
- #else
- R[4][0] = C[0] ^ (~C[1] & C[2]);
- R[4][1] = C[1] ^ (~C[2] & C[3]);
- R[4][2] = C[2] ^ (~C[3] & C[4]);
- R[4][3] = C[3] ^ (~C[4] & C[0]);
- R[4][4] = C[4] ^ (~C[0] & C[1]);
- #endif
- }
- static void KeccakF1600(uint64_t A[5][5])
- {
- uint64_t T[5][5];
- size_t i;
- #ifdef KECCAK_COMPLEMENTING_TRANSFORM
- A[0][1] = ~A[0][1];
- A[0][2] = ~A[0][2];
- A[1][3] = ~A[1][3];
- A[2][2] = ~A[2][2];
- A[3][2] = ~A[3][2];
- A[4][0] = ~A[4][0];
- #endif
- for (i = 0; i < 24; i += 2) {
- Round(T, A, i);
- Round(A, T, i + 1);
- }
- #ifdef KECCAK_COMPLEMENTING_TRANSFORM
- A[0][1] = ~A[0][1];
- A[0][2] = ~A[0][2];
- A[1][3] = ~A[1][3];
- A[2][2] = ~A[2][2];
- A[3][2] = ~A[3][2];
- A[4][0] = ~A[4][0];
- #endif
- }
- #else /* define KECCAK_INPLACE to compile this code path */
- /*
- * This implementation is KECCAK_1X from above combined 4 times with
- * a twist that allows to omit temporary storage and perform in-place
- * processing. It's discussed in section 2.5 of "Keccak implementation
- * overview". It's likely to be best suited for processors with large
- * register bank... On the other hand processor with large register
- * bank can as well use KECCAK_1X_ALT, it would be as fast but much
- * more compact...
- */
- static void FourRounds(uint64_t A[5][5], size_t i)
- {
- uint64_t B[5], C[5], D[5];
- assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4));
- /* Round 4*n */
- C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
- C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
- C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
- C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
- C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
- D[0] = ROL64(C[1], 1) ^ C[4];
- D[1] = ROL64(C[2], 1) ^ C[0];
- D[2] = ROL64(C[3], 1) ^ C[1];
- D[3] = ROL64(C[4], 1) ^ C[2];
- D[4] = ROL64(C[0], 1) ^ C[3];
- B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
- B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
- B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
- B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
- B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
- C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i];
- C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]);
- C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]);
- C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]);
- C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
- B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
- B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
- B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
- B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
- C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
- B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
- B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
- B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
- B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
- C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
- B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
- B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
- B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
- B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
- C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
- B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
- B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
- B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
- B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
- C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
- /* Round 4*n+1 */
- D[0] = ROL64(C[1], 1) ^ C[4];
- D[1] = ROL64(C[2], 1) ^ C[0];
- D[2] = ROL64(C[3], 1) ^ C[1];
- D[3] = ROL64(C[4], 1) ^ C[2];
- D[4] = ROL64(C[0], 1) ^ C[3];
- B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
- B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]);
- B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]);
- B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]);
- B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]);
- C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1];
- C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]);
- C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]);
- C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]);
- C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]);
- B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
- B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]);
- B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]);
- B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]);
- C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]);
- B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]);
- B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
- B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]);
- B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]);
- C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]);
- B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]);
- B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]);
- B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
- B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]);
- C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]);
- B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]);
- B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]);
- B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]);
- B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
- C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
- /* Round 4*n+2 */
- D[0] = ROL64(C[1], 1) ^ C[4];
- D[1] = ROL64(C[2], 1) ^ C[0];
- D[2] = ROL64(C[3], 1) ^ C[1];
- D[3] = ROL64(C[4], 1) ^ C[2];
- D[4] = ROL64(C[0], 1) ^ C[3];
- B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
- B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]);
- B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]);
- B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]);
- B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]);
- C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2];
- C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]);
- C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]);
- C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]);
- C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]);
- B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
- B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]);
- B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]);
- B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]);
- C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]);
- B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]);
- B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
- B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]);
- B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]);
- C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]);
- B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]);
- B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]);
- B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
- B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]);
- C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]);
- B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]);
- B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]);
- B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]);
- B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
- C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
- C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
- C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
- C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
- C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
- /* Round 4*n+3 */
- D[0] = ROL64(C[1], 1) ^ C[4];
- D[1] = ROL64(C[2], 1) ^ C[0];
- D[2] = ROL64(C[3], 1) ^ C[1];
- D[3] = ROL64(C[4], 1) ^ C[2];
- D[4] = ROL64(C[0], 1) ^ C[3];
- B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
- B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]);
- B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]);
- B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]);
- B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]);
- /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3];
- /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]);
- /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]);
- /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]);
- /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]);
- B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
- B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]);
- B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]);
- B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]);
- /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]);
- /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]);
- /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]);
- /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]);
- /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]);
- B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]);
- B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
- B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]);
- B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]);
- /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]);
- /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]);
- /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]);
- /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]);
- /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]);
- B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]);
- B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]);
- B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
- B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]);
- /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]);
- /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]);
- /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]);
- /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]);
- /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]);
- B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]);
- B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]);
- B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]);
- B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]);
- B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
- /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]);
- /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]);
- /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]);
- /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]);
- /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]);
- }
- static void KeccakF1600(uint64_t A[5][5])
- {
- size_t i;
- for (i = 0; i < 24; i += 4) {
- FourRounds(A, i);
- }
- }
- #endif
- static uint64_t BitInterleave(uint64_t Ai)
- {
- if (BIT_INTERLEAVE) {
- uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
- uint32_t t0, t1;
- t0 = lo & 0x55555555;
- t0 |= t0 >> 1; t0 &= 0x33333333;
- t0 |= t0 >> 2; t0 &= 0x0f0f0f0f;
- t0 |= t0 >> 4; t0 &= 0x00ff00ff;
- t0 |= t0 >> 8; t0 &= 0x0000ffff;
- t1 = hi & 0x55555555;
- t1 |= t1 >> 1; t1 &= 0x33333333;
- t1 |= t1 >> 2; t1 &= 0x0f0f0f0f;
- t1 |= t1 >> 4; t1 &= 0x00ff00ff;
- t1 |= t1 >> 8; t1 <<= 16;
- lo &= 0xaaaaaaaa;
- lo |= lo << 1; lo &= 0xcccccccc;
- lo |= lo << 2; lo &= 0xf0f0f0f0;
- lo |= lo << 4; lo &= 0xff00ff00;
- lo |= lo << 8; lo >>= 16;
- hi &= 0xaaaaaaaa;
- hi |= hi << 1; hi &= 0xcccccccc;
- hi |= hi << 2; hi &= 0xf0f0f0f0;
- hi |= hi << 4; hi &= 0xff00ff00;
- hi |= hi << 8; hi &= 0xffff0000;
- Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
- }
- return Ai;
- }
- static uint64_t BitDeinterleave(uint64_t Ai)
- {
- if (BIT_INTERLEAVE) {
- uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
- uint32_t t0, t1;
- t0 = lo & 0x0000ffff;
- t0 |= t0 << 8; t0 &= 0x00ff00ff;
- t0 |= t0 << 4; t0 &= 0x0f0f0f0f;
- t0 |= t0 << 2; t0 &= 0x33333333;
- t0 |= t0 << 1; t0 &= 0x55555555;
- t1 = hi << 16;
- t1 |= t1 >> 8; t1 &= 0xff00ff00;
- t1 |= t1 >> 4; t1 &= 0xf0f0f0f0;
- t1 |= t1 >> 2; t1 &= 0xcccccccc;
- t1 |= t1 >> 1; t1 &= 0xaaaaaaaa;
- lo >>= 16;
- lo |= lo << 8; lo &= 0x00ff00ff;
- lo |= lo << 4; lo &= 0x0f0f0f0f;
- lo |= lo << 2; lo &= 0x33333333;
- lo |= lo << 1; lo &= 0x55555555;
- hi &= 0xffff0000;
- hi |= hi >> 8; hi &= 0xff00ff00;
- hi |= hi >> 4; hi &= 0xf0f0f0f0;
- hi |= hi >> 2; hi &= 0xcccccccc;
- hi |= hi >> 1; hi &= 0xaaaaaaaa;
- Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
- }
- return Ai;
- }
- /*
- * SHA3_absorb can be called multiple times, but at each invocation
- * largest multiple of |r| out of |len| bytes are processed. Then
- * remaining amount of bytes is returned. This is done to spare caller
- * trouble of calculating the largest multiple of |r|. |r| can be viewed
- * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104,
- * 72, but can also be (1600 - 448)/8 = 144. All this means that message
- * padding and intermediate sub-block buffering, byte- or bitwise, is
- * caller's responsibility.
- */
- size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
- size_t r)
- {
- uint64_t *A_flat = (uint64_t *)A;
- size_t i, w = r / 8;
- assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
- while (len >= r) {
- for (i = 0; i < w; i++) {
- uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 |
- (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 |
- (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 |
- (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56;
- inp += 8;
- A_flat[i] ^= BitInterleave(Ai);
- }
- KeccakF1600(A);
- len -= r;
- }
- return len;
- }
- /*
- * sha3_squeeze is called once at the end to generate |out| hash value
- * of |len| bytes.
- */
- void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r)
- {
- uint64_t *A_flat = (uint64_t *)A;
- size_t i, w = r / 8;
- assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
- while (len != 0) {
- for (i = 0; i < w && len != 0; i++) {
- uint64_t Ai = BitDeinterleave(A_flat[i]);
- if (len < 8) {
- for (i = 0; i < len; i++) {
- *out++ = (unsigned char)Ai;
- Ai >>= 8;
- }
- return;
- }
- out[0] = (unsigned char)(Ai);
- out[1] = (unsigned char)(Ai >> 8);
- out[2] = (unsigned char)(Ai >> 16);
- out[3] = (unsigned char)(Ai >> 24);
- out[4] = (unsigned char)(Ai >> 32);
- out[5] = (unsigned char)(Ai >> 40);
- out[6] = (unsigned char)(Ai >> 48);
- out[7] = (unsigned char)(Ai >> 56);
- out += 8;
- len -= 8;
- }
- if (len)
- KeccakF1600(A);
- }
- }
- #endif
- #ifdef SELFTEST
- /*
- * Post-padding one-shot implementations would look as following:
- *
- * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8);
- * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8);
- * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8);
- * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8);
- * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8);
- * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8);
- */
- void SHA3_sponge(const unsigned char *inp, size_t len,
- unsigned char *out, size_t d, size_t r)
- {
- uint64_t A[5][5];
- memset(A, 0, sizeof(A));
- SHA3_absorb(A, inp, len, r);
- SHA3_squeeze(A, out, d, r);
- }
- # include <stdio.h>
- int main()
- {
- /*
- * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing
- */
- unsigned char test[168] = { '\xf3', '\x3' };
- unsigned char out[512];
- size_t i;
- static const unsigned char result[512] = {
- 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B,
- 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF,
- 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98,
- 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA,
- 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB,
- 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C,
- 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C,
- 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D,
- 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD,
- 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F,
- 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC,
- 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C,
- 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6,
- 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE,
- 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3,
- 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64,
- 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6,
- 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5,
- 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38,
- 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05,
- 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98,
- 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2,
- 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50,
- 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75,
- 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0,
- 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04,
- 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8,
- 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03,
- 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9,
- 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B,
- 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B,
- 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73,
- 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6,
- 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C,
- 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D,
- 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20,
- 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D,
- 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F,
- 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A,
- 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15,
- 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D,
- 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6,
- 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2,
- 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D,
- 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30,
- 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C,
- 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E,
- 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28,
- 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A,
- 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25,
- 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28,
- 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C,
- 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41,
- 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B,
- 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C,
- 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C,
- 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA,
- 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F,
- 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A,
- 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60,
- 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6,
- 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50,
- 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF,
- 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9
- };
- test[167] = '\x80';
- SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test));
- /*
- * Rationale behind keeping output [formatted as below] is that
- * one should be able to redirect it to a file, then copy-n-paste
- * final "output val" from official example to another file, and
- * compare the two with diff(1).
- */
- for (i = 0; i < sizeof(out);) {
- printf("%02X", out[i]);
- printf(++i % 16 && i != sizeof(out) ? " " : "\n");
- }
- if (memcmp(out, result, sizeof(out))) {
- fprintf(stderr, "failure\n");
- return 1;
- } else {
- fprintf(stderr, "success\n");
- return 0;
- }
- }
- #endif
|