bn.h 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. /*
  2. * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
  3. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
  4. *
  5. * Licensed under the Apache License 2.0 (the "License"). You may not use
  6. * this file except in compliance with the License. You can obtain a copy
  7. * in the file LICENSE in the source distribution or at
  8. * https://www.openssl.org/source/license.html
  9. */
  10. #ifndef OPENSSL_BN_H
  11. # define OPENSSL_BN_H
  12. # pragma once
  13. # include <openssl/macros.h>
  14. # ifndef OPENSSL_NO_DEPRECATED_3_0
  15. # define HEADER_BN_H
  16. # endif
  17. # include <openssl/e_os2.h>
  18. # ifndef OPENSSL_NO_STDIO
  19. # include <stdio.h>
  20. # endif
  21. # include <openssl/opensslconf.h>
  22. # include <openssl/types.h>
  23. # include <openssl/crypto.h>
  24. # include <openssl/bnerr.h>
  25. #ifdef __cplusplus
  26. extern "C" {
  27. #endif
  28. /*
  29. * 64-bit processor with LP64 ABI
  30. */
  31. # ifdef SIXTY_FOUR_BIT_LONG
  32. # define BN_ULONG unsigned long
  33. # define BN_BYTES 8
  34. # endif
  35. /*
  36. * 64-bit processor other than LP64 ABI
  37. */
  38. # ifdef SIXTY_FOUR_BIT
  39. # define BN_ULONG unsigned long long
  40. # define BN_BYTES 8
  41. # endif
  42. # ifdef THIRTY_TWO_BIT
  43. # define BN_ULONG unsigned int
  44. # define BN_BYTES 4
  45. # endif
  46. # define BN_BITS2 (BN_BYTES * 8)
  47. # define BN_BITS (BN_BITS2 * 2)
  48. # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1))
  49. # define BN_FLG_MALLOCED 0x01
  50. # define BN_FLG_STATIC_DATA 0x02
  51. /*
  52. * avoid leaking exponent information through timing,
  53. * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime,
  54. * BN_div() will call BN_div_no_branch,
  55. * BN_mod_inverse() will call bn_mod_inverse_no_branch.
  56. */
  57. # define BN_FLG_CONSTTIME 0x04
  58. # define BN_FLG_SECURE 0x08
  59. # ifndef OPENSSL_NO_DEPRECATED_0_9_8
  60. /* deprecated name for the flag */
  61. # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME
  62. # define BN_FLG_FREE 0x8000 /* used for debugging */
  63. # endif
  64. void BN_set_flags(BIGNUM *b, int n);
  65. int BN_get_flags(const BIGNUM *b, int n);
  66. /* Values for |top| in BN_rand() */
  67. #define BN_RAND_TOP_ANY -1
  68. #define BN_RAND_TOP_ONE 0
  69. #define BN_RAND_TOP_TWO 1
  70. /* Values for |bottom| in BN_rand() */
  71. #define BN_RAND_BOTTOM_ANY 0
  72. #define BN_RAND_BOTTOM_ODD 1
  73. /*
  74. * get a clone of a BIGNUM with changed flags, for *temporary* use only (the
  75. * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The
  76. * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that
  77. * has not been otherwise initialised or used.
  78. */
  79. void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags);
  80. /* Wrapper function to make using BN_GENCB easier */
  81. int BN_GENCB_call(BN_GENCB *cb, int a, int b);
  82. BN_GENCB *BN_GENCB_new(void);
  83. void BN_GENCB_free(BN_GENCB *cb);
  84. /* Populate a BN_GENCB structure with an "old"-style callback */
  85. void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
  86. void *cb_arg);
  87. /* Populate a BN_GENCB structure with a "new"-style callback */
  88. void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
  89. void *cb_arg);
  90. void *BN_GENCB_get_arg(BN_GENCB *cb);
  91. # ifndef OPENSSL_NO_DEPRECATED_3_0
  92. # define BN_prime_checks 0 /* default: select number of iterations based
  93. * on the size of the number */
  94. /*
  95. * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
  96. * that will be done for checking that a random number is probably prime. The
  97. * error rate for accepting a composite number as prime depends on the size of
  98. * the prime |b|. The error rates used are for calculating an RSA key with 2 primes,
  99. * and so the level is what you would expect for a key of double the size of the
  100. * prime.
  101. *
  102. * This table is generated using the algorithm of FIPS PUB 186-4
  103. * Digital Signature Standard (DSS), section F.1, page 117.
  104. * (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
  105. *
  106. * The following magma script was used to generate the output:
  107. * securitybits:=125;
  108. * k:=1024;
  109. * for t:=1 to 65 do
  110. * for M:=3 to Floor(2*Sqrt(k-1)-1) do
  111. * S:=0;
  112. * // Sum over m
  113. * for m:=3 to M do
  114. * s:=0;
  115. * // Sum over j
  116. * for j:=2 to m do
  117. * s+:=(RealField(32)!2)^-(j+(k-1)/j);
  118. * end for;
  119. * S+:=2^(m-(m-1)*t)*s;
  120. * end for;
  121. * A:=2^(k-2-M*t);
  122. * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
  123. * pkt:=2.00743*Log(2)*k*2^-k*(A+B);
  124. * seclevel:=Floor(-Log(2,pkt));
  125. * if seclevel ge securitybits then
  126. * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
  127. * break;
  128. * end if;
  129. * end for;
  130. * if seclevel ge securitybits then break; end if;
  131. * end for;
  132. *
  133. * It can be run online at:
  134. * http://magma.maths.usyd.edu.au/calc
  135. *
  136. * And will output:
  137. * k: 1024, security: 129 bits (t: 6, M: 23)
  138. *
  139. * k is the number of bits of the prime, securitybits is the level we want to
  140. * reach.
  141. *
  142. * prime length | RSA key size | # MR tests | security level
  143. * -------------+--------------|------------+---------------
  144. * (b) >= 6394 | >= 12788 | 3 | 256 bit
  145. * (b) >= 3747 | >= 7494 | 3 | 192 bit
  146. * (b) >= 1345 | >= 2690 | 4 | 128 bit
  147. * (b) >= 1080 | >= 2160 | 5 | 128 bit
  148. * (b) >= 852 | >= 1704 | 5 | 112 bit
  149. * (b) >= 476 | >= 952 | 5 | 80 bit
  150. * (b) >= 400 | >= 800 | 6 | 80 bit
  151. * (b) >= 347 | >= 694 | 7 | 80 bit
  152. * (b) >= 308 | >= 616 | 8 | 80 bit
  153. * (b) >= 55 | >= 110 | 27 | 64 bit
  154. * (b) >= 6 | >= 12 | 34 | 64 bit
  155. */
  156. # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
  157. (b) >= 1345 ? 4 : \
  158. (b) >= 476 ? 5 : \
  159. (b) >= 400 ? 6 : \
  160. (b) >= 347 ? 7 : \
  161. (b) >= 308 ? 8 : \
  162. (b) >= 55 ? 27 : \
  163. /* b >= 6 */ 34)
  164. # endif
  165. # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
  166. int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w);
  167. int BN_is_zero(const BIGNUM *a);
  168. int BN_is_one(const BIGNUM *a);
  169. int BN_is_word(const BIGNUM *a, const BN_ULONG w);
  170. int BN_is_odd(const BIGNUM *a);
  171. # define BN_one(a) (BN_set_word((a),1))
  172. void BN_zero_ex(BIGNUM *a);
  173. # if OPENSSL_API_LEVEL > 908
  174. # define BN_zero(a) BN_zero_ex(a)
  175. # else
  176. # define BN_zero(a) (BN_set_word((a),0))
  177. # endif
  178. const BIGNUM *BN_value_one(void);
  179. char *BN_options(void);
  180. BN_CTX *BN_CTX_new_ex(OSSL_LIB_CTX *ctx);
  181. BN_CTX *BN_CTX_new(void);
  182. BN_CTX *BN_CTX_secure_new_ex(OSSL_LIB_CTX *ctx);
  183. BN_CTX *BN_CTX_secure_new(void);
  184. void BN_CTX_free(BN_CTX *c);
  185. void BN_CTX_start(BN_CTX *ctx);
  186. BIGNUM *BN_CTX_get(BN_CTX *ctx);
  187. void BN_CTX_end(BN_CTX *ctx);
  188. int BN_rand_ex(BIGNUM *rnd, int bits, int top, int bottom,
  189. unsigned int strength, BN_CTX *ctx);
  190. int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
  191. int BN_priv_rand_ex(BIGNUM *rnd, int bits, int top, int bottom,
  192. unsigned int strength, BN_CTX *ctx);
  193. int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom);
  194. int BN_rand_range_ex(BIGNUM *r, const BIGNUM *range, unsigned int strength,
  195. BN_CTX *ctx);
  196. int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
  197. int BN_priv_rand_range_ex(BIGNUM *r, const BIGNUM *range,
  198. unsigned int strength, BN_CTX *ctx);
  199. int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range);
  200. # ifndef OPENSSL_NO_DEPRECATED_3_0
  201. OSSL_DEPRECATEDIN_3_0
  202. int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
  203. OSSL_DEPRECATEDIN_3_0
  204. int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
  205. # endif
  206. int BN_num_bits(const BIGNUM *a);
  207. int BN_num_bits_word(BN_ULONG l);
  208. int BN_security_bits(int L, int N);
  209. BIGNUM *BN_new(void);
  210. BIGNUM *BN_secure_new(void);
  211. void BN_clear_free(BIGNUM *a);
  212. BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
  213. void BN_swap(BIGNUM *a, BIGNUM *b);
  214. BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
  215. BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
  216. int BN_bn2bin(const BIGNUM *a, unsigned char *to);
  217. int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
  218. int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen);
  219. BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
  220. BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
  221. int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
  222. int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen);
  223. BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret);
  224. BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret);
  225. int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen);
  226. int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen);
  227. BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
  228. int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
  229. int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  230. int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  231. int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  232. int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  233. int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
  234. int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
  235. /** BN_set_negative sets sign of a BIGNUM
  236. * \param b pointer to the BIGNUM object
  237. * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise
  238. */
  239. void BN_set_negative(BIGNUM *b, int n);
  240. /** BN_is_negative returns 1 if the BIGNUM is negative
  241. * \param b pointer to the BIGNUM object
  242. * \return 1 if a < 0 and 0 otherwise
  243. */
  244. int BN_is_negative(const BIGNUM *b);
  245. int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
  246. BN_CTX *ctx);
  247. # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
  248. int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
  249. int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
  250. BN_CTX *ctx);
  251. int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  252. const BIGNUM *m);
  253. int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
  254. BN_CTX *ctx);
  255. int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  256. const BIGNUM *m);
  257. int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
  258. BN_CTX *ctx);
  259. int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  260. int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  261. int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
  262. int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
  263. BN_CTX *ctx);
  264. int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
  265. BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
  266. BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
  267. int BN_mul_word(BIGNUM *a, BN_ULONG w);
  268. int BN_add_word(BIGNUM *a, BN_ULONG w);
  269. int BN_sub_word(BIGNUM *a, BN_ULONG w);
  270. int BN_set_word(BIGNUM *a, BN_ULONG w);
  271. BN_ULONG BN_get_word(const BIGNUM *a);
  272. int BN_cmp(const BIGNUM *a, const BIGNUM *b);
  273. void BN_free(BIGNUM *a);
  274. int BN_is_bit_set(const BIGNUM *a, int n);
  275. int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
  276. int BN_lshift1(BIGNUM *r, const BIGNUM *a);
  277. int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  278. int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  279. const BIGNUM *m, BN_CTX *ctx);
  280. int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  281. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
  282. int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
  283. const BIGNUM *m, BN_CTX *ctx,
  284. BN_MONT_CTX *in_mont);
  285. int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
  286. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
  287. int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
  288. const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
  289. BN_CTX *ctx, BN_MONT_CTX *m_ctx);
  290. int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  291. const BIGNUM *m, BN_CTX *ctx);
  292. int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1,
  293. const BIGNUM *m1, BN_MONT_CTX *in_mont1,
  294. BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2,
  295. const BIGNUM *m2, BN_MONT_CTX *in_mont2,
  296. BN_CTX *ctx);
  297. int BN_mask_bits(BIGNUM *a, int n);
  298. # ifndef OPENSSL_NO_STDIO
  299. int BN_print_fp(FILE *fp, const BIGNUM *a);
  300. # endif
  301. int BN_print(BIO *bio, const BIGNUM *a);
  302. int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
  303. int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
  304. int BN_rshift1(BIGNUM *r, const BIGNUM *a);
  305. void BN_clear(BIGNUM *a);
  306. BIGNUM *BN_dup(const BIGNUM *a);
  307. int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
  308. int BN_set_bit(BIGNUM *a, int n);
  309. int BN_clear_bit(BIGNUM *a, int n);
  310. char *BN_bn2hex(const BIGNUM *a);
  311. char *BN_bn2dec(const BIGNUM *a);
  312. int BN_hex2bn(BIGNUM **a, const char *str);
  313. int BN_dec2bn(BIGNUM **a, const char *str);
  314. int BN_asc2bn(BIGNUM **a, const char *str);
  315. int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
  316. int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns
  317. * -2 for
  318. * error */
  319. int BN_are_coprime(BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
  320. BIGNUM *BN_mod_inverse(BIGNUM *ret,
  321. const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
  322. BIGNUM *BN_mod_sqrt(BIGNUM *ret,
  323. const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
  324. void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords);
  325. /* Deprecated versions */
  326. # ifndef OPENSSL_NO_DEPRECATED_0_9_8
  327. OSSL_DEPRECATEDIN_0_9_8
  328. BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
  329. const BIGNUM *add, const BIGNUM *rem,
  330. void (*callback) (int, int, void *),
  331. void *cb_arg);
  332. OSSL_DEPRECATEDIN_0_9_8
  333. int BN_is_prime(const BIGNUM *p, int nchecks,
  334. void (*callback) (int, int, void *),
  335. BN_CTX *ctx, void *cb_arg);
  336. OSSL_DEPRECATEDIN_0_9_8
  337. int BN_is_prime_fasttest(const BIGNUM *p, int nchecks,
  338. void (*callback) (int, int, void *),
  339. BN_CTX *ctx, void *cb_arg,
  340. int do_trial_division);
  341. # endif
  342. # ifndef OPENSSL_NO_DEPRECATED_3_0
  343. OSSL_DEPRECATEDIN_3_0
  344. int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
  345. OSSL_DEPRECATEDIN_3_0
  346. int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
  347. int do_trial_division, BN_GENCB *cb);
  348. # endif
  349. /* Newer versions */
  350. int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
  351. const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb,
  352. BN_CTX *ctx);
  353. int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
  354. const BIGNUM *rem, BN_GENCB *cb);
  355. int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb);
  356. # ifndef OPENSSL_NO_DEPRECATED_3_0
  357. OSSL_DEPRECATEDIN_3_0
  358. int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);
  359. OSSL_DEPRECATEDIN_3_0
  360. int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
  361. const BIGNUM *Xp, const BIGNUM *Xp1,
  362. const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
  363. BN_GENCB *cb);
  364. OSSL_DEPRECATEDIN_3_0
  365. int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1,
  366. BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e,
  367. BN_CTX *ctx, BN_GENCB *cb);
  368. # endif
  369. BN_MONT_CTX *BN_MONT_CTX_new(void);
  370. int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  371. BN_MONT_CTX *mont, BN_CTX *ctx);
  372. int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
  373. BN_CTX *ctx);
  374. int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
  375. BN_CTX *ctx);
  376. void BN_MONT_CTX_free(BN_MONT_CTX *mont);
  377. int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx);
  378. BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
  379. BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
  380. const BIGNUM *mod, BN_CTX *ctx);
  381. /* BN_BLINDING flags */
  382. # define BN_BLINDING_NO_UPDATE 0x00000001
  383. # define BN_BLINDING_NO_RECREATE 0x00000002
  384. BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod);
  385. void BN_BLINDING_free(BN_BLINDING *b);
  386. int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx);
  387. int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
  388. int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
  389. int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *);
  390. int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b,
  391. BN_CTX *);
  392. int BN_BLINDING_is_current_thread(BN_BLINDING *b);
  393. void BN_BLINDING_set_current_thread(BN_BLINDING *b);
  394. int BN_BLINDING_lock(BN_BLINDING *b);
  395. int BN_BLINDING_unlock(BN_BLINDING *b);
  396. unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
  397. void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
  398. BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
  399. const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
  400. int (*bn_mod_exp) (BIGNUM *r,
  401. const BIGNUM *a,
  402. const BIGNUM *p,
  403. const BIGNUM *m,
  404. BN_CTX *ctx,
  405. BN_MONT_CTX *m_ctx),
  406. BN_MONT_CTX *m_ctx);
  407. # ifndef OPENSSL_NO_DEPRECATED_0_9_8
  408. OSSL_DEPRECATEDIN_0_9_8
  409. void BN_set_params(int mul, int high, int low, int mont);
  410. OSSL_DEPRECATEDIN_0_9_8
  411. int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */
  412. # endif
  413. BN_RECP_CTX *BN_RECP_CTX_new(void);
  414. void BN_RECP_CTX_free(BN_RECP_CTX *recp);
  415. int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx);
  416. int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
  417. BN_RECP_CTX *recp, BN_CTX *ctx);
  418. int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  419. const BIGNUM *m, BN_CTX *ctx);
  420. int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
  421. BN_RECP_CTX *recp, BN_CTX *ctx);
  422. # ifndef OPENSSL_NO_EC2M
  423. /*
  424. * Functions for arithmetic over binary polynomials represented by BIGNUMs.
  425. * The BIGNUM::neg property of BIGNUMs representing binary polynomials is
  426. * ignored. Note that input arguments are not const so that their bit arrays
  427. * can be expanded to the appropriate size if needed.
  428. */
  429. /*
  430. * r = a + b
  431. */
  432. int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  433. # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
  434. /*
  435. * r=a mod p
  436. */
  437. int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p);
  438. /* r = (a * b) mod p */
  439. int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  440. const BIGNUM *p, BN_CTX *ctx);
  441. /* r = (a * a) mod p */
  442. int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  443. /* r = (1 / b) mod p */
  444. int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx);
  445. /* r = (a / b) mod p */
  446. int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  447. const BIGNUM *p, BN_CTX *ctx);
  448. /* r = (a ^ b) mod p */
  449. int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  450. const BIGNUM *p, BN_CTX *ctx);
  451. /* r = sqrt(a) mod p */
  452. int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  453. BN_CTX *ctx);
  454. /* r^2 + r = a mod p */
  455. int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  456. BN_CTX *ctx);
  457. # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
  458. /*-
  459. * Some functions allow for representation of the irreducible polynomials
  460. * as an unsigned int[], say p. The irreducible f(t) is then of the form:
  461. * t^p[0] + t^p[1] + ... + t^p[k]
  462. * where m = p[0] > p[1] > ... > p[k] = 0.
  463. */
  464. /* r = a mod p */
  465. int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]);
  466. /* r = (a * b) mod p */
  467. int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  468. const int p[], BN_CTX *ctx);
  469. /* r = (a * a) mod p */
  470. int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
  471. BN_CTX *ctx);
  472. /* r = (1 / b) mod p */
  473. int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[],
  474. BN_CTX *ctx);
  475. /* r = (a / b) mod p */
  476. int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  477. const int p[], BN_CTX *ctx);
  478. /* r = (a ^ b) mod p */
  479. int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  480. const int p[], BN_CTX *ctx);
  481. /* r = sqrt(a) mod p */
  482. int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
  483. const int p[], BN_CTX *ctx);
  484. /* r^2 + r = a mod p */
  485. int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
  486. const int p[], BN_CTX *ctx);
  487. int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max);
  488. int BN_GF2m_arr2poly(const int p[], BIGNUM *a);
  489. # endif
  490. /*
  491. * faster mod functions for the 'NIST primes' 0 <= a < p^2
  492. */
  493. int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  494. int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  495. int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  496. int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  497. int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  498. const BIGNUM *BN_get0_nist_prime_192(void);
  499. const BIGNUM *BN_get0_nist_prime_224(void);
  500. const BIGNUM *BN_get0_nist_prime_256(void);
  501. const BIGNUM *BN_get0_nist_prime_384(void);
  502. const BIGNUM *BN_get0_nist_prime_521(void);
  503. int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a,
  504. const BIGNUM *field, BN_CTX *ctx);
  505. int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
  506. const BIGNUM *priv, const unsigned char *message,
  507. size_t message_len, BN_CTX *ctx);
  508. /* Primes from RFC 2409 */
  509. BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn);
  510. BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn);
  511. /* Primes from RFC 3526 */
  512. BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn);
  513. BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn);
  514. BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn);
  515. BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn);
  516. BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn);
  517. BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn);
  518. # ifndef OPENSSL_NO_DEPRECATED_1_1_0
  519. # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768
  520. # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024
  521. # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536
  522. # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048
  523. # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072
  524. # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096
  525. # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144
  526. # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192
  527. # endif
  528. int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom);
  529. # ifdef __cplusplus
  530. }
  531. # endif
  532. #endif