123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636 |
- /*
- * Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #if defined(_WIN32)
- # include <windows.h>
- # if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600
- # define USE_RWLOCK
- # endif
- #endif
- #include <assert.h>
- /*
- * VC++ 2008 or earlier x86 compilers do not have an inline implementation
- * of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit.
- * https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements
- * To work around this problem, we implement a manual locking mechanism for
- * only VC++ 2008 or earlier x86 compilers.
- */
- #if (defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600)
- # define NO_INTERLOCKEDOR64
- #endif
- #include <openssl/crypto.h>
- #include <crypto/cryptlib.h>
- #include "internal/common.h"
- #include "internal/thread_arch.h"
- #include "internal/rcu.h"
- #include "rcu_internal.h"
- #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS)
- # ifdef USE_RWLOCK
- typedef struct {
- SRWLOCK lock;
- int exclusive;
- } CRYPTO_win_rwlock;
- # endif
- static CRYPTO_THREAD_LOCAL rcu_thr_key;
- # define READER_SHIFT 0
- # define ID_SHIFT 32
- # define READER_SIZE 32
- # define ID_SIZE 32
- # define READER_MASK (((LONG64)1 << READER_SIZE)-1)
- # define ID_MASK (((LONG64)1 << ID_SIZE)-1)
- # define READER_COUNT(x) (((LONG64)(x) >> READER_SHIFT) & READER_MASK)
- # define ID_VAL(x) (((LONG64)(x) >> ID_SHIFT) & ID_MASK)
- # define VAL_READER ((LONG64)1 << READER_SHIFT)
- # define VAL_ID(x) ((LONG64)x << ID_SHIFT)
- /*
- * This defines a quescent point (qp)
- * This is the barrier beyond which a writer
- * must wait before freeing data that was
- * atomically updated
- */
- struct rcu_qp {
- volatile LONG64 users;
- };
- struct thread_qp {
- struct rcu_qp *qp;
- unsigned int depth;
- CRYPTO_RCU_LOCK *lock;
- };
- #define MAX_QPS 10
- /*
- * This is the per thread tracking data
- * that is assigned to each thread participating
- * in an rcu qp
- *
- * qp points to the qp that it last acquired
- *
- */
- struct rcu_thr_data {
- struct thread_qp thread_qps[MAX_QPS];
- };
- /*
- * This is the internal version of a CRYPTO_RCU_LOCK
- * it is cast from CRYPTO_RCU_LOCK
- */
- struct rcu_lock_st {
- struct rcu_cb_item *cb_items;
- uint32_t id_ctr;
- struct rcu_qp *qp_group;
- size_t group_count;
- uint32_t next_to_retire;
- volatile long int reader_idx;
- uint32_t current_alloc_idx;
- uint32_t writers_alloced;
- CRYPTO_MUTEX *write_lock;
- CRYPTO_MUTEX *alloc_lock;
- CRYPTO_CONDVAR *alloc_signal;
- CRYPTO_MUTEX *prior_lock;
- CRYPTO_CONDVAR *prior_signal;
- };
- /*
- * Called on thread exit to free the pthread key
- * associated with this thread, if any
- */
- static void free_rcu_thr_data(void *ptr)
- {
- struct rcu_thr_data *data =
- (struct rcu_thr_data *)CRYPTO_THREAD_get_local(&rcu_thr_key);
- OPENSSL_free(data);
- CRYPTO_THREAD_set_local(&rcu_thr_key, NULL);
- }
- static void ossl_rcu_init(void)
- {
- CRYPTO_THREAD_init_local(&rcu_thr_key, NULL);
- ossl_init_thread_start(NULL, NULL, free_rcu_thr_data);
- }
- static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock,
- int count)
- {
- struct rcu_qp *new =
- OPENSSL_zalloc(sizeof(*new) * count);
- lock->group_count = count;
- return new;
- }
- static CRYPTO_ONCE rcu_init_once = CRYPTO_ONCE_STATIC_INIT;
- CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers)
- {
- struct rcu_lock_st *new;
- if (!CRYPTO_THREAD_run_once(&rcu_init_once, ossl_rcu_init))
- return NULL;
- if (num_writers < 1)
- num_writers = 1;
- new = OPENSSL_zalloc(sizeof(*new));
- if (new == NULL)
- return NULL;
- new->write_lock = ossl_crypto_mutex_new();
- new->alloc_signal = ossl_crypto_condvar_new();
- new->prior_signal = ossl_crypto_condvar_new();
- new->alloc_lock = ossl_crypto_mutex_new();
- new->prior_lock = ossl_crypto_mutex_new();
- new->write_lock = ossl_crypto_mutex_new();
- new->qp_group = allocate_new_qp_group(new, num_writers + 1);
- if (new->qp_group == NULL
- || new->alloc_signal == NULL
- || new->prior_signal == NULL
- || new->write_lock == NULL
- || new->alloc_lock == NULL
- || new->prior_lock == NULL) {
- OPENSSL_free(new->qp_group);
- ossl_crypto_condvar_free(&new->alloc_signal);
- ossl_crypto_condvar_free(&new->prior_signal);
- ossl_crypto_mutex_free(&new->alloc_lock);
- ossl_crypto_mutex_free(&new->prior_lock);
- ossl_crypto_mutex_free(&new->write_lock);
- OPENSSL_free(new);
- new = NULL;
- }
- return new;
- }
- void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
- {
- OPENSSL_free(lock->qp_group);
- ossl_crypto_condvar_free(&lock->alloc_signal);
- ossl_crypto_condvar_free(&lock->prior_signal);
- ossl_crypto_mutex_free(&lock->alloc_lock);
- ossl_crypto_mutex_free(&lock->prior_lock);
- ossl_crypto_mutex_free(&lock->write_lock);
- OPENSSL_free(lock);
- }
- static inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock)
- {
- uint32_t qp_idx;
- /* get the current qp index */
- for (;;) {
- qp_idx = InterlockedOr(&lock->reader_idx, 0);
- InterlockedAdd64(&lock->qp_group[qp_idx].users, VAL_READER);
- if (qp_idx == InterlockedOr(&lock->reader_idx, 0))
- break;
- InterlockedAdd64(&lock->qp_group[qp_idx].users, -VAL_READER);
- }
- return &lock->qp_group[qp_idx];
- }
- void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
- {
- struct rcu_thr_data *data;
- int i;
- int available_qp = -1;
- /*
- * we're going to access current_qp here so ask the
- * processor to fetch it
- */
- data = CRYPTO_THREAD_get_local(&rcu_thr_key);
- if (data == NULL) {
- data = OPENSSL_zalloc(sizeof(*data));
- OPENSSL_assert(data != NULL);
- CRYPTO_THREAD_set_local(&rcu_thr_key, data);
- }
- for (i = 0; i < MAX_QPS; i++) {
- if (data->thread_qps[i].qp == NULL && available_qp == -1)
- available_qp = i;
- /* If we have a hold on this lock already, we're good */
- if (data->thread_qps[i].lock == lock)
- return;
- }
- /*
- * if we get here, then we don't have a hold on this lock yet
- */
- assert(available_qp != -1);
- data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
- data->thread_qps[available_qp].depth = 1;
- data->thread_qps[available_qp].lock = lock;
- }
- void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
- {
- ossl_crypto_mutex_lock(lock->write_lock);
- }
- void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
- {
- ossl_crypto_mutex_unlock(lock->write_lock);
- }
- void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
- {
- struct rcu_thr_data *data = CRYPTO_THREAD_get_local(&rcu_thr_key);
- int i;
- LONG64 ret;
- assert(data != NULL);
- for (i = 0; i < MAX_QPS; i++) {
- if (data->thread_qps[i].lock == lock) {
- data->thread_qps[i].depth--;
- if (data->thread_qps[i].depth == 0) {
- ret = InterlockedAdd64(&data->thread_qps[i].qp->users, -VAL_READER);
- OPENSSL_assert(ret >= 0);
- data->thread_qps[i].qp = NULL;
- data->thread_qps[i].lock = NULL;
- }
- return;
- }
- }
- }
- static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
- {
- uint64_t new_id;
- uint32_t current_idx;
- uint32_t tmp;
- ossl_crypto_mutex_lock(lock->alloc_lock);
- /*
- * we need at least one qp to be available with one
- * left over, so that readers can start working on
- * one that isn't yet being waited on
- */
- while (lock->group_count - lock->writers_alloced < 2)
- ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock);
- current_idx = lock->current_alloc_idx;
- /* Allocate the qp */
- lock->writers_alloced++;
- /* increment the allocation index */
- lock->current_alloc_idx =
- (lock->current_alloc_idx + 1) % lock->group_count;
- /* get and insert a new id */
- new_id = lock->id_ctr;
- lock->id_ctr++;
- new_id = VAL_ID(new_id);
- InterlockedAnd64(&lock->qp_group[current_idx].users, ID_MASK);
- InterlockedAdd64(&lock->qp_group[current_idx].users, new_id);
- /* update the reader index to be the prior qp */
- tmp = lock->current_alloc_idx;
- InterlockedExchange(&lock->reader_idx, tmp);
- /* wake up any waiters */
- ossl_crypto_condvar_broadcast(lock->alloc_signal);
- ossl_crypto_mutex_unlock(lock->alloc_lock);
- return &lock->qp_group[current_idx];
- }
- static void retire_qp(CRYPTO_RCU_LOCK *lock,
- struct rcu_qp *qp)
- {
- ossl_crypto_mutex_lock(lock->alloc_lock);
- lock->writers_alloced--;
- ossl_crypto_condvar_broadcast(lock->alloc_signal);
- ossl_crypto_mutex_unlock(lock->alloc_lock);
- }
- void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
- {
- struct rcu_qp *qp;
- uint64_t count;
- struct rcu_cb_item *cb_items, *tmpcb;
- /* before we do anything else, lets grab the cb list */
- cb_items = InterlockedExchangePointer((void * volatile *)&lock->cb_items, NULL);
- qp = update_qp(lock);
- /* wait for the reader count to reach zero */
- do {
- count = InterlockedOr64(&qp->users, 0);
- } while (READER_COUNT(count) != 0);
- /* retire in order */
- ossl_crypto_mutex_lock(lock->prior_lock);
- while (lock->next_to_retire != ID_VAL(count))
- ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock);
- lock->next_to_retire++;
- ossl_crypto_condvar_broadcast(lock->prior_signal);
- ossl_crypto_mutex_unlock(lock->prior_lock);
- retire_qp(lock, qp);
- /* handle any callbacks that we have */
- while (cb_items != NULL) {
- tmpcb = cb_items;
- cb_items = cb_items->next;
- tmpcb->fn(tmpcb->data);
- OPENSSL_free(tmpcb);
- }
- /* and we're done */
- return;
- }
- int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
- {
- struct rcu_cb_item *new;
- struct rcu_cb_item *prev;
- new = OPENSSL_zalloc(sizeof(struct rcu_cb_item));
- if (new == NULL)
- return 0;
- prev = new;
- new->data = data;
- new->fn = cb;
- InterlockedExchangePointer((void * volatile *)&lock->cb_items, prev);
- new->next = prev;
- return 1;
- }
- void *ossl_rcu_uptr_deref(void **p)
- {
- return (void *)*p;
- }
- void ossl_rcu_assign_uptr(void **p, void **v)
- {
- InterlockedExchangePointer((void * volatile *)p, (void *)*v);
- }
- CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
- {
- CRYPTO_RWLOCK *lock;
- # ifdef USE_RWLOCK
- CRYPTO_win_rwlock *rwlock;
- if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL)
- /* Don't set error, to avoid recursion blowup. */
- return NULL;
- rwlock = lock;
- InitializeSRWLock(&rwlock->lock);
- # else
- if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL)
- /* Don't set error, to avoid recursion blowup. */
- return NULL;
- # if !defined(_WIN32_WCE)
- /* 0x400 is the spin count value suggested in the documentation */
- if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) {
- OPENSSL_free(lock);
- return NULL;
- }
- # else
- InitializeCriticalSection(lock);
- # endif
- # endif
- return lock;
- }
- __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
- {
- # ifdef USE_RWLOCK
- CRYPTO_win_rwlock *rwlock = lock;
- AcquireSRWLockShared(&rwlock->lock);
- # else
- EnterCriticalSection(lock);
- # endif
- return 1;
- }
- __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
- {
- # ifdef USE_RWLOCK
- CRYPTO_win_rwlock *rwlock = lock;
- AcquireSRWLockExclusive(&rwlock->lock);
- rwlock->exclusive = 1;
- # else
- EnterCriticalSection(lock);
- # endif
- return 1;
- }
- int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
- {
- # ifdef USE_RWLOCK
- CRYPTO_win_rwlock *rwlock = lock;
- if (rwlock->exclusive) {
- rwlock->exclusive = 0;
- ReleaseSRWLockExclusive(&rwlock->lock);
- } else {
- ReleaseSRWLockShared(&rwlock->lock);
- }
- # else
- LeaveCriticalSection(lock);
- # endif
- return 1;
- }
- void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
- {
- if (lock == NULL)
- return;
- # ifndef USE_RWLOCK
- DeleteCriticalSection(lock);
- # endif
- OPENSSL_free(lock);
- return;
- }
- # define ONCE_UNINITED 0
- # define ONCE_ININIT 1
- # define ONCE_DONE 2
- /*
- * We don't use InitOnceExecuteOnce because that isn't available in WinXP which
- * we still have to support.
- */
- int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
- {
- LONG volatile *lock = (LONG *)once;
- LONG result;
- if (*lock == ONCE_DONE)
- return 1;
- do {
- result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED);
- if (result == ONCE_UNINITED) {
- init();
- *lock = ONCE_DONE;
- return 1;
- }
- } while (result == ONCE_ININIT);
- return (*lock == ONCE_DONE);
- }
- int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
- {
- *key = TlsAlloc();
- if (*key == TLS_OUT_OF_INDEXES)
- return 0;
- return 1;
- }
- void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
- {
- DWORD last_error;
- void *ret;
- /*
- * TlsGetValue clears the last error even on success, so that callers may
- * distinguish it successfully returning NULL or failing. It is documented
- * to never fail if the argument is a valid index from TlsAlloc, so we do
- * not need to handle this.
- *
- * However, this error-mangling behavior interferes with the caller's use of
- * GetLastError. In particular SSL_get_error queries the error queue to
- * determine whether the caller should look at the OS's errors. To avoid
- * destroying state, save and restore the Windows error.
- *
- * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx
- */
- last_error = GetLastError();
- ret = TlsGetValue(*key);
- SetLastError(last_error);
- return ret;
- }
- int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
- {
- if (TlsSetValue(*key, val) == 0)
- return 0;
- return 1;
- }
- int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
- {
- if (TlsFree(*key) == 0)
- return 0;
- return 1;
- }
- CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
- {
- return GetCurrentThreadId();
- }
- int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
- {
- return (a == b);
- }
- int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
- {
- *ret = (int)InterlockedExchangeAdd((long volatile *)val, (long)amount) + amount;
- return 1;
- }
- int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
- CRYPTO_RWLOCK *lock)
- {
- #if (defined(NO_INTERLOCKEDOR64))
- if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
- return 0;
- *val |= op;
- *ret = *val;
- if (!CRYPTO_THREAD_unlock(lock))
- return 0;
- return 1;
- #else
- *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op;
- return 1;
- #endif
- }
- int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
- {
- #if (defined(NO_INTERLOCKEDOR64))
- if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
- return 0;
- *ret = *val;
- if (!CRYPTO_THREAD_unlock(lock))
- return 0;
- return 1;
- #else
- *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0);
- return 1;
- #endif
- }
- int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
- {
- #if (defined(NO_INTERLOCKEDOR64))
- if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
- return 0;
- *ret = *val;
- if (!CRYPTO_THREAD_unlock(lock))
- return 0;
- return 1;
- #else
- /* On Windows, LONG is always the same size as int. */
- *ret = (int)InterlockedOr((LONG volatile *)val, 0);
- return 1;
- #endif
- }
- int openssl_init_fork_handlers(void)
- {
- return 0;
- }
- int openssl_get_fork_id(void)
- {
- return 0;
- }
- #endif
|