123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- /*
- * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <stdio.h>
- #include <string.h>
- #include <openssl/core_names.h>
- #include <openssl/evp.h>
- #include <openssl/err.h>
- /*
- * This is a demonstration of key exchange using ECDH.
- *
- * EC key exchange requires 2 parties (peers) to first agree on shared group
- * parameters (the EC curve name). Each peer then generates a public/private
- * key pair using the shared curve name. Each peer then gives their public key
- * to the other peer. A peer can then derive the same shared secret using their
- * private key and the other peers public key.
- */
- /* Object used to store information for a single Peer */
- typedef struct peer_data_st {
- const char *name; /* name of peer */
- const char *curvename; /* The shared curve name */
- EVP_PKEY *priv; /* private keypair */
- EVP_PKEY *pub; /* public key to send to other peer */
- unsigned char *secret; /* allocated shared secret buffer */
- size_t secretlen;
- } PEER_DATA;
- /*
- * The public key needs to be given to the other peer
- * The following code extracts the public key data from the private key
- * and then builds an EVP_KEY public key.
- */
- static int get_peer_public_key(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
- {
- int ret = 0;
- EVP_PKEY_CTX *ctx;
- OSSL_PARAM params[3];
- unsigned char pubkeydata[256];
- size_t pubkeylen;
- /* Get the EC encoded public key data from the peers private key */
- if (!EVP_PKEY_get_octet_string_param(peer->priv, OSSL_PKEY_PARAM_PUB_KEY,
- pubkeydata, sizeof(pubkeydata),
- &pubkeylen))
- return 0;
- /* Create a EC public key from the public key data */
- ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
- if (ctx == NULL)
- return 0;
- params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
- (char *)peer->curvename, 0);
- params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
- pubkeydata, pubkeylen);
- params[2] = OSSL_PARAM_construct_end();
- ret = EVP_PKEY_fromdata_init(ctx) > 0
- && (EVP_PKEY_fromdata(ctx, &peer->pub, EVP_PKEY_PUBLIC_KEY,
- params) > 0);
- EVP_PKEY_CTX_free(ctx);
- return ret;
- }
- static int create_peer(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
- {
- int ret = 0;
- EVP_PKEY_CTX *ctx = NULL;
- OSSL_PARAM params[2];
- params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
- (char *)peer->curvename, 0);
- params[1] = OSSL_PARAM_construct_end();
- ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
- if (ctx == NULL)
- return 0;
- if (EVP_PKEY_keygen_init(ctx) <= 0
- || !EVP_PKEY_CTX_set_params(ctx, params)
- || EVP_PKEY_generate(ctx, &peer->priv) <= 0
- || !get_peer_public_key(peer, libctx)) {
- EVP_PKEY_free(peer->priv);
- peer->priv = NULL;
- goto err;
- }
- ret = 1;
- err:
- EVP_PKEY_CTX_free(ctx);
- return ret;
- }
- static void destroy_peer(PEER_DATA *peer)
- {
- EVP_PKEY_free(peer->priv);
- EVP_PKEY_free(peer->pub);
- }
- static int generate_secret(PEER_DATA *peerA, EVP_PKEY *peerBpub,
- OSSL_LIB_CTX *libctx)
- {
- unsigned char *secret = NULL;
- size_t secretlen = 0;
- EVP_PKEY_CTX *derivectx;
- /* Create an EVP_PKEY_CTX that contains peerA's private key */
- derivectx = EVP_PKEY_CTX_new_from_pkey(libctx, peerA->priv, NULL);
- if (derivectx == NULL)
- return 0;
- if (EVP_PKEY_derive_init(derivectx) <= 0)
- goto cleanup;
- /* Set up peerB's public key */
- if (EVP_PKEY_derive_set_peer(derivectx, peerBpub) <= 0)
- goto cleanup;
- /*
- * For backwards compatibility purposes the OpenSSL ECDH provider supports
- * optionally using a X963KDF to expand the secret data. This can be done
- * with code similar to the following.
- *
- * OSSL_PARAM params[5];
- * size_t outlen = 128;
- * unsigned char ukm[] = { 1, 2, 3, 4 };
- * params[0] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_TYPE,
- * "X963KDF", 0);
- * params[1] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_DIGEST,
- * "SHA256", 0);
- * params[2] = OSSL_PARAM_construct_size_t(OSSL_EXCHANGE_PARAM_KDF_OUTLEN,
- * &outlen);
- * params[3] = OSSL_PARAM_construct_octet_string(OSSL_EXCHANGE_PARAM_KDF_UKM,
- * ukm, sizeof(ukm));
- * params[4] = OSSL_PARAM_construct_end();
- * if (!EVP_PKEY_CTX_set_params(derivectx, params))
- * goto cleanup;
- *
- * Note: After the secret is generated below, the peer could alternatively
- * pass the secret to a KDF to derive additional key data from the secret.
- * See demos/kdf/hkdf.c for an example (where ikm is the secret key)
- */
- /* Calculate the size of the secret and allocate space */
- if (EVP_PKEY_derive(derivectx, NULL, &secretlen) <= 0)
- goto cleanup;
- secret = (unsigned char *)OPENSSL_malloc(secretlen);
- if (secret == NULL)
- goto cleanup;
- /*
- * Derive the shared secret. In this example 32 bytes are generated.
- * For EC curves the secret size is related to the degree of the curve
- * which is 256 bits for P-256.
- */
- if (EVP_PKEY_derive(derivectx, secret, &secretlen) <= 0)
- goto cleanup;
- peerA->secret = secret;
- peerA->secretlen = secretlen;
- printf("Shared secret (%s):\n", peerA->name);
- BIO_dump_indent_fp(stdout, peerA->secret, peerA->secretlen, 2);
- putchar('\n');
- return 1;
- cleanup:
- OPENSSL_free(secret);
- EVP_PKEY_CTX_free(derivectx);
- return 0;
- }
- int main(void)
- {
- int ret = EXIT_FAILURE;
- /* Initialise the 2 peers that will share a secret */
- PEER_DATA peer1 = {"peer 1", "P-256"};
- PEER_DATA peer2 = {"peer 2", "P-256"};
- /*
- * Setting libctx to NULL uses the default library context
- * Use OSSL_LIB_CTX_new() to create a non default library context
- */
- OSSL_LIB_CTX *libctx = NULL;
- /* Each peer creates a (Ephemeral) keypair */
- if (!create_peer(&peer1, libctx)
- || !create_peer(&peer2, libctx)) {
- fprintf(stderr, "Create peer failed\n");
- goto cleanup;
- }
- /*
- * Each peer uses its private key and the other peers public key to
- * derive a shared secret
- */
- if (!generate_secret(&peer1, peer2.pub, libctx)
- || !generate_secret(&peer2, peer1.pub, libctx)) {
- fprintf(stderr, "Generate secrets failed\n");
- goto cleanup;
- }
- /* For illustrative purposes demonstrate that the derived secrets are equal */
- if (peer1.secretlen != peer2.secretlen
- || CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secretlen) != 0) {
- fprintf(stderr, "Derived secrets do not match\n");
- goto cleanup;
- } else {
- fprintf(stdout, "Derived secrets match\n");
- }
- ret = EXIT_SUCCESS;
- cleanup:
- if (ret != EXIT_SUCCESS)
- ERR_print_errors_fp(stderr);
- destroy_peer(&peer2);
- destroy_peer(&peer1);
- return ret;
- }
|