BN_add.pod 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. =pod
  2. =head1 NAME
  3. BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
  4. BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd -
  5. arithmetic operations on BIGNUMs
  6. =head1 SYNOPSIS
  7. #include <openssl/bn.h>
  8. int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  9. int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  10. int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
  11. int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
  12. int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
  13. BN_CTX *ctx);
  14. int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  15. int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  16. int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  17. BN_CTX *ctx);
  18. int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  19. BN_CTX *ctx);
  20. int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  21. BN_CTX *ctx);
  22. int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  23. int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
  24. int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
  25. const BIGNUM *m, BN_CTX *ctx);
  26. int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
  27. =head1 DESCRIPTION
  28. BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
  29. I<r> may be the same B<BIGNUM> as I<a> or I<b>.
  30. BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
  31. BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
  32. I<r> may be the same B<BIGNUM> as I<a> or I<b>.
  33. For multiplication by powers of 2, use L<BN_lshift(3)|BN_lshift(3)>.
  34. BN_sqr() takes the square of I<a> and places the result in I<r>
  35. (C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
  36. This function is faster than BN_mul(r,a,a).
  37. BN_div() divides I<a> by I<d> and places the result in I<dv> and the
  38. remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
  39. be B<NULL>, in which case the respective value is not returned.
  40. The result is rounded towards zero; thus if I<a> is negative, the
  41. remainder will be zero or negative.
  42. For division by powers of 2, use BN_rshift(3).
  43. BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
  44. BN_nnmod() reduces I<a> modulo I<m> and places the non-negative
  45. remainder in I<r>.
  46. BN_mod_add() adds I<a> to I<b> modulo I<m> and places the non-negative
  47. result in I<r>.
  48. BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
  49. non-negative result in I<r>.
  50. BN_mod_mul() multiplies I<a> by I<b> and finds the non-negative
  51. remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
  52. the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
  53. repeated computations using the same modulus, see
  54. L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)> and
  55. L<BN_mod_mul_reciprocal(3)|BN_mod_mul_reciprocal(3)>.
  56. BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
  57. result in I<r>.
  58. BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
  59. (C<r=a^p>). This function is faster than repeated applications of
  60. BN_mul().
  61. BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
  62. m>). This function uses less time and space than BN_exp().
  63. BN_gcd() computes the greatest common divisor of I<a> and I<b> and
  64. places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
  65. I<b>.
  66. For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
  67. temporary variables; see L<BN_CTX_new(3)|BN_CTX_new(3)>.
  68. Unless noted otherwise, the result B<BIGNUM> must be different from
  69. the arguments.
  70. =head1 RETURN VALUES
  71. For all functions, 1 is returned for success, 0 on error. The return
  72. value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
  73. The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>.
  74. =head1 SEE ALSO
  75. L<bn(3)|bn(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<BN_CTX_new(3)|BN_CTX_new(3)>,
  76. L<BN_add_word(3)|BN_add_word(3)>, L<BN_set_bit(3)|BN_set_bit(3)>
  77. =head1 HISTORY
  78. BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(),
  79. BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and
  80. OpenSSL. The I<ctx> argument to BN_mul() was added in SSLeay
  81. 0.9.1b. BN_exp() appeared in SSLeay 0.9.0.
  82. BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr() were added in
  83. OpenSSL 0.9.7.
  84. =cut