evp_kdf_test.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. /*
  2. * Copyright 2018-2020 The OpenSSL Project Authors. All Rights Reserved.
  3. * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
  4. *
  5. * Licensed under the Apache License 2.0 (the "License"). You may not use
  6. * this file except in compliance with the License. You can obtain a copy
  7. * in the file LICENSE in the source distribution or at
  8. * https://www.openssl.org/source/license.html
  9. */
  10. /* Tests of the EVP_KDF_CTX APIs */
  11. #include <stdio.h>
  12. #include <string.h>
  13. #include <openssl/evp.h>
  14. #include <openssl/kdf.h>
  15. #include <openssl/core_names.h>
  16. #include "testutil.h"
  17. static EVP_KDF_CTX *get_kdfbyname(const char *name)
  18. {
  19. EVP_KDF *kdf = EVP_KDF_fetch(NULL, name, NULL);
  20. EVP_KDF_CTX *kctx = EVP_KDF_new_ctx(kdf);
  21. EVP_KDF_free(kdf);
  22. return kctx;
  23. }
  24. static int test_kdf_tls1_prf(void)
  25. {
  26. int ret;
  27. EVP_KDF_CTX *kctx = NULL;
  28. unsigned char out[16];
  29. OSSL_PARAM params[4], *p = params;
  30. static const unsigned char expected[sizeof(out)] = {
  31. 0x8e, 0x4d, 0x93, 0x25, 0x30, 0xd7, 0x65, 0xa0,
  32. 0xaa, 0xe9, 0x74, 0xc3, 0x04, 0x73, 0x5e, 0xcc
  33. };
  34. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  35. (char *)"sha256", sizeof("sha256"));
  36. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SECRET,
  37. (unsigned char *)"secret",
  38. (size_t)6);
  39. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
  40. (unsigned char *)"seed",
  41. (size_t)4);
  42. *p = OSSL_PARAM_construct_end();
  43. ret =
  44. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_TLS1_PRF))
  45. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  46. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  47. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  48. EVP_KDF_free_ctx(kctx);
  49. return ret;
  50. }
  51. static int test_kdf_hkdf(void)
  52. {
  53. int ret;
  54. EVP_KDF_CTX *kctx;
  55. unsigned char out[10];
  56. OSSL_PARAM params[5], *p = params;
  57. static const unsigned char expected[sizeof(out)] = {
  58. 0x2a, 0xc4, 0x36, 0x9f, 0x52, 0x59, 0x96, 0xf8, 0xde, 0x13
  59. };
  60. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  61. (char *)"sha256", sizeof("sha256"));
  62. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT,
  63. (unsigned char *)"salt", 4);
  64. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY,
  65. (unsigned char *)"secret", 6);
  66. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO,
  67. (unsigned char *)"label", 5);
  68. *p = OSSL_PARAM_construct_end();
  69. ret =
  70. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_HKDF))
  71. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  72. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  73. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  74. EVP_KDF_free_ctx(kctx);
  75. return ret;
  76. }
  77. static int test_kdf_pbkdf2(void)
  78. {
  79. int ret = 0;
  80. EVP_KDF_CTX *kctx;
  81. unsigned char out[25];
  82. size_t len = 0;
  83. unsigned int iterations = 4096;
  84. int mode = 0;
  85. OSSL_PARAM params[6], *p = params;
  86. const unsigned char expected[sizeof(out)] = {
  87. 0x34, 0x8c, 0x89, 0xdb, 0xcb, 0xd3, 0x2b, 0x2f,
  88. 0x32, 0xd8, 0x14, 0xb8, 0x11, 0x6e, 0x84, 0xcf,
  89. 0x2b, 0x17, 0x34, 0x7e, 0xbc, 0x18, 0x00, 0x18,
  90. 0x1c
  91. };
  92. if (sizeof(len) > 32)
  93. len = SIZE_MAX;
  94. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_PASSWORD,
  95. (unsigned char *)
  96. "passwordPASSWORDpassword", 24);
  97. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT,
  98. (unsigned char *)
  99. "saltSALTsaltSALTsaltSALTsaltSALTsalt",
  100. 36);
  101. *p++ = OSSL_PARAM_construct_uint(OSSL_KDF_PARAM_ITER, &iterations);
  102. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  103. (char *)"sha256", 7);
  104. *p++ = OSSL_PARAM_construct_int(OSSL_KDF_PARAM_PKCS5, &mode);
  105. *p = OSSL_PARAM_construct_end();
  106. if (!TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_PBKDF2))
  107. || !TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  108. || !TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  109. || !TEST_mem_eq(out, sizeof(out), expected, sizeof(expected))
  110. || !TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  111. /* A key length that is too small should fail */
  112. || !TEST_int_eq(EVP_KDF_derive(kctx, out, 112 / 8 - 1), 0)
  113. /* A key length that is too large should fail */
  114. || (len != 0 && !TEST_int_eq(EVP_KDF_derive(kctx, out, len), 0)))
  115. goto err;
  116. #if 0
  117. /* TODO */
  118. /* Salt length less than 128 bits should fail */
  119. || TEST_int_eq(EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT,
  120. "123456781234567",
  121. (size_t)15), 0)
  122. /* A small iteration count should fail */
  123. || TEST_int_eq(EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_ITER, 1), 0)
  124. || TEST_int_gt(EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_PBKDF2_PKCS5_MODE,
  125. 1), 0)
  126. /* Small salts will pass if the "pkcs5" mode is enabled */
  127. || TEST_int_gt(EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT,
  128. "123456781234567",
  129. (size_t)15), 0)
  130. /* A small iteration count will pass if "pkcs5" mode is enabled */
  131. || TEST_int_gt(EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_ITER, 1), 0)
  132. /*
  133. * If the "pkcs5" mode is disabled then the small salt and iter will
  134. * fail when the derive gets called.
  135. */
  136. || TEST_int_gt(EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_PBKDF2_PKCS5_MODE,
  137. 0), 0)
  138. || TEST_int_eq(EVP_KDF_derive(kctx, out, sizeof(out)), 0);
  139. #endif
  140. ret = 1;
  141. err:
  142. EVP_KDF_free_ctx(kctx);
  143. return ret;
  144. }
  145. #ifndef OPENSSL_NO_SCRYPT
  146. static int test_kdf_scrypt(void)
  147. {
  148. int ret;
  149. EVP_KDF_CTX *kctx;
  150. OSSL_PARAM params[7], *p = params;
  151. unsigned char out[64];
  152. unsigned int nu = 1024, ru = 8, pu = 16, maxmem = 16;
  153. static const unsigned char expected[sizeof(out)] = {
  154. 0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
  155. 0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
  156. 0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
  157. 0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
  158. 0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
  159. 0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
  160. 0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
  161. 0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40
  162. };
  163. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_PASSWORD,
  164. (char *)"password", 8);
  165. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT,
  166. (char *)"NaCl", 4);
  167. *p++ = OSSL_PARAM_construct_uint(OSSL_KDF_PARAM_SCRYPT_N, &nu);
  168. *p++ = OSSL_PARAM_construct_uint(OSSL_KDF_PARAM_SCRYPT_R, &ru);
  169. *p++ = OSSL_PARAM_construct_uint(OSSL_KDF_PARAM_SCRYPT_P, &pu);
  170. *p++ = OSSL_PARAM_construct_uint(OSSL_KDF_PARAM_SCRYPT_MAXMEM, &maxmem);
  171. *p = OSSL_PARAM_construct_end();
  172. ret =
  173. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_SCRYPT))
  174. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  175. /* failure test *//*
  176. && TEST_int_le(EVP_KDF_derive(kctx, out, sizeof(out)), 0)*/
  177. && TEST_true(OSSL_PARAM_set_uint(p - 1, 10 * 1024 * 1024))
  178. && TEST_true(EVP_KDF_set_ctx_params(kctx, p - 1))
  179. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  180. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  181. EVP_KDF_free_ctx(kctx);
  182. return ret;
  183. }
  184. #endif /* OPENSSL_NO_SCRYPT */
  185. static int test_kdf_ss_hash(void)
  186. {
  187. int ret;
  188. EVP_KDF_CTX *kctx;
  189. OSSL_PARAM params[4], *p = params;
  190. unsigned char out[14];
  191. static unsigned char z[] = {
  192. 0x6d,0xbd,0xc2,0x3f,0x04,0x54,0x88,0xe4,0x06,0x27,0x57,0xb0,0x6b,0x9e,
  193. 0xba,0xe1,0x83,0xfc,0x5a,0x59,0x46,0xd8,0x0d,0xb9,0x3f,0xec,0x6f,0x62,
  194. 0xec,0x07,0xe3,0x72,0x7f,0x01,0x26,0xae,0xd1,0x2c,0xe4,0xb2,0x62,0xf4,
  195. 0x7d,0x48,0xd5,0x42,0x87,0xf8,0x1d,0x47,0x4c,0x7c,0x3b,0x18,0x50,0xe9
  196. };
  197. static unsigned char other[] = {
  198. 0xa1,0xb2,0xc3,0xd4,0xe5,0x43,0x41,0x56,0x53,0x69,0x64,0x3c,0x83,0x2e,
  199. 0x98,0x49,0xdc,0xdb,0xa7,0x1e,0x9a,0x31,0x39,0xe6,0x06,0xe0,0x95,0xde,
  200. 0x3c,0x26,0x4a,0x66,0xe9,0x8a,0x16,0x58,0x54,0xcd,0x07,0x98,0x9b,0x1e,
  201. 0xe0,0xec,0x3f,0x8d,0xbe
  202. };
  203. static const unsigned char expected[sizeof(out)] = {
  204. 0xa4,0x62,0xde,0x16,0xa8,0x9d,0xe8,0x46,0x6e,0xf5,0x46,0x0b,0x47,0xb8
  205. };
  206. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  207. (char *)"sha224", sizeof("sha224"));
  208. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, z, sizeof(z));
  209. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, other,
  210. sizeof(other));
  211. *p = OSSL_PARAM_construct_end();
  212. ret =
  213. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_SSKDF))
  214. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  215. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  216. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  217. EVP_KDF_free_ctx(kctx);
  218. return ret;
  219. }
  220. static int test_kdf_x963(void)
  221. {
  222. int ret;
  223. EVP_KDF_CTX *kctx;
  224. OSSL_PARAM params[4], *p = params;
  225. unsigned char out[1024 / 8];
  226. /*
  227. * Test data from https://csrc.nist.gov/CSRC/media/Projects/
  228. * Cryptographic-Algorithm-Validation-Program/documents/components/
  229. * 800-135testvectors/ansx963_2001.zip
  230. */
  231. static unsigned char z[] = {
  232. 0x00, 0xaa, 0x5b, 0xb7, 0x9b, 0x33, 0xe3, 0x89, 0xfa, 0x58, 0xce, 0xad,
  233. 0xc0, 0x47, 0x19, 0x7f, 0x14, 0xe7, 0x37, 0x12, 0xf4, 0x52, 0xca, 0xa9,
  234. 0xfc, 0x4c, 0x9a, 0xdb, 0x36, 0x93, 0x48, 0xb8, 0x15, 0x07, 0x39, 0x2f,
  235. 0x1a, 0x86, 0xdd, 0xfd, 0xb7, 0xc4, 0xff, 0x82, 0x31, 0xc4, 0xbd, 0x0f,
  236. 0x44, 0xe4, 0x4a, 0x1b, 0x55, 0xb1, 0x40, 0x47, 0x47, 0xa9, 0xe2, 0xe7,
  237. 0x53, 0xf5, 0x5e, 0xf0, 0x5a, 0x2d
  238. };
  239. static unsigned char shared[] = {
  240. 0xe3, 0xb5, 0xb4, 0xc1, 0xb0, 0xd5, 0xcf, 0x1d, 0x2b, 0x3a, 0x2f, 0x99,
  241. 0x37, 0x89, 0x5d, 0x31
  242. };
  243. static const unsigned char expected[sizeof(out)] = {
  244. 0x44, 0x63, 0xf8, 0x69, 0xf3, 0xcc, 0x18, 0x76, 0x9b, 0x52, 0x26, 0x4b,
  245. 0x01, 0x12, 0xb5, 0x85, 0x8f, 0x7a, 0xd3, 0x2a, 0x5a, 0x2d, 0x96, 0xd8,
  246. 0xcf, 0xfa, 0xbf, 0x7f, 0xa7, 0x33, 0x63, 0x3d, 0x6e, 0x4d, 0xd2, 0xa5,
  247. 0x99, 0xac, 0xce, 0xb3, 0xea, 0x54, 0xa6, 0x21, 0x7c, 0xe0, 0xb5, 0x0e,
  248. 0xef, 0x4f, 0x6b, 0x40, 0xa5, 0xc3, 0x02, 0x50, 0xa5, 0xa8, 0xee, 0xee,
  249. 0x20, 0x80, 0x02, 0x26, 0x70, 0x89, 0xdb, 0xf3, 0x51, 0xf3, 0xf5, 0x02,
  250. 0x2a, 0xa9, 0x63, 0x8b, 0xf1, 0xee, 0x41, 0x9d, 0xea, 0x9c, 0x4f, 0xf7,
  251. 0x45, 0xa2, 0x5a, 0xc2, 0x7b, 0xda, 0x33, 0xca, 0x08, 0xbd, 0x56, 0xdd,
  252. 0x1a, 0x59, 0xb4, 0x10, 0x6c, 0xf2, 0xdb, 0xbc, 0x0a, 0xb2, 0xaa, 0x8e,
  253. 0x2e, 0xfa, 0x7b, 0x17, 0x90, 0x2d, 0x34, 0x27, 0x69, 0x51, 0xce, 0xcc,
  254. 0xab, 0x87, 0xf9, 0x66, 0x1c, 0x3e, 0x88, 0x16
  255. };
  256. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  257. (char *)"sha512", sizeof("sha512"));
  258. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, z, sizeof(z));
  259. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, shared,
  260. sizeof(shared));
  261. *p = OSSL_PARAM_construct_end();
  262. ret =
  263. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_X963KDF))
  264. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  265. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  266. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  267. EVP_KDF_free_ctx(kctx);
  268. return ret;
  269. }
  270. #if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_CAMELLIA)
  271. /*
  272. * KBKDF test vectors from RFC 6803 (Camellia Encryption for Kerberos 5)
  273. * section 10.
  274. */
  275. static int test_kdf_kbkdf_6803_128(void)
  276. {
  277. int ret = 0, i, p;
  278. EVP_KDF_CTX *kctx;
  279. OSSL_PARAM params[7];
  280. static unsigned char input_key[] = {
  281. 0x57, 0xD0, 0x29, 0x72, 0x98, 0xFF, 0xD9, 0xD3,
  282. 0x5D, 0xE5, 0xA4, 0x7F, 0xB4, 0xBD, 0xE2, 0x4B,
  283. };
  284. static unsigned char constants[][5] = {
  285. { 0x00, 0x00, 0x00, 0x02, 0x99 },
  286. { 0x00, 0x00, 0x00, 0x02, 0xaa },
  287. { 0x00, 0x00, 0x00, 0x02, 0x55 },
  288. };
  289. static unsigned char outputs[][16] = {
  290. {0xD1, 0x55, 0x77, 0x5A, 0x20, 0x9D, 0x05, 0xF0,
  291. 0x2B, 0x38, 0xD4, 0x2A, 0x38, 0x9E, 0x5A, 0x56},
  292. {0x64, 0xDF, 0x83, 0xF8, 0x5A, 0x53, 0x2F, 0x17,
  293. 0x57, 0x7D, 0x8C, 0x37, 0x03, 0x57, 0x96, 0xAB},
  294. {0x3E, 0x4F, 0xBD, 0xF3, 0x0F, 0xB8, 0x25, 0x9C,
  295. 0x42, 0x5C, 0xB6, 0xC9, 0x6F, 0x1F, 0x46, 0x35}
  296. };
  297. static unsigned char iv[16] = { 0 };
  298. unsigned char result[16] = { 0 };
  299. for (i = 0; i < 3; i++) {
  300. p = 0;
  301. params[p++] = OSSL_PARAM_construct_utf8_string(
  302. OSSL_KDF_PARAM_CIPHER, "CAMELLIA-128-CBC", 0);
  303. params[p++] = OSSL_PARAM_construct_utf8_string(
  304. OSSL_KDF_PARAM_MAC, "CMAC", 0);
  305. params[p++] = OSSL_PARAM_construct_utf8_string(
  306. OSSL_KDF_PARAM_MODE, "FEEDBACK", 0);
  307. params[p++] = OSSL_PARAM_construct_octet_string(
  308. OSSL_KDF_PARAM_KEY, input_key, sizeof(input_key));
  309. params[p++] = OSSL_PARAM_construct_octet_string(
  310. OSSL_KDF_PARAM_SALT, constants[i], sizeof(constants[i]));
  311. params[p++] = OSSL_PARAM_construct_octet_string(
  312. OSSL_KDF_PARAM_SEED, iv, sizeof(iv));
  313. params[p] = OSSL_PARAM_construct_end();
  314. kctx = get_kdfbyname("KBKDF");
  315. ret = TEST_ptr(kctx)
  316. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  317. && TEST_int_gt(EVP_KDF_derive(kctx, result, sizeof(result)), 0)
  318. && TEST_mem_eq(result, sizeof(result), outputs[i],
  319. sizeof(outputs[i]));
  320. EVP_KDF_free_ctx(kctx);
  321. if (ret != 1)
  322. return ret;
  323. }
  324. return ret;
  325. }
  326. static int test_kdf_kbkdf_6803_256(void)
  327. {
  328. int ret = 0, i, p;
  329. EVP_KDF_CTX *kctx;
  330. OSSL_PARAM params[7];
  331. static unsigned char input_key[] = {
  332. 0xB9, 0xD6, 0x82, 0x8B, 0x20, 0x56, 0xB7, 0xBE,
  333. 0x65, 0x6D, 0x88, 0xA1, 0x23, 0xB1, 0xFA, 0xC6,
  334. 0x82, 0x14, 0xAC, 0x2B, 0x72, 0x7E, 0xCF, 0x5F,
  335. 0x69, 0xAF, 0xE0, 0xC4, 0xDF, 0x2A, 0x6D, 0x2C,
  336. };
  337. static unsigned char constants[][5] = {
  338. { 0x00, 0x00, 0x00, 0x02, 0x99 },
  339. { 0x00, 0x00, 0x00, 0x02, 0xaa },
  340. { 0x00, 0x00, 0x00, 0x02, 0x55 },
  341. };
  342. static unsigned char outputs[][32] = {
  343. {0xE4, 0x67, 0xF9, 0xA9, 0x55, 0x2B, 0xC7, 0xD3,
  344. 0x15, 0x5A, 0x62, 0x20, 0xAF, 0x9C, 0x19, 0x22,
  345. 0x0E, 0xEE, 0xD4, 0xFF, 0x78, 0xB0, 0xD1, 0xE6,
  346. 0xA1, 0x54, 0x49, 0x91, 0x46, 0x1A, 0x9E, 0x50,
  347. },
  348. {0x41, 0x2A, 0xEF, 0xC3, 0x62, 0xA7, 0x28, 0x5F,
  349. 0xC3, 0x96, 0x6C, 0x6A, 0x51, 0x81, 0xE7, 0x60,
  350. 0x5A, 0xE6, 0x75, 0x23, 0x5B, 0x6D, 0x54, 0x9F,
  351. 0xBF, 0xC9, 0xAB, 0x66, 0x30, 0xA4, 0xC6, 0x04,
  352. },
  353. {0xFA, 0x62, 0x4F, 0xA0, 0xE5, 0x23, 0x99, 0x3F,
  354. 0xA3, 0x88, 0xAE, 0xFD, 0xC6, 0x7E, 0x67, 0xEB,
  355. 0xCD, 0x8C, 0x08, 0xE8, 0xA0, 0x24, 0x6B, 0x1D,
  356. 0x73, 0xB0, 0xD1, 0xDD, 0x9F, 0xC5, 0x82, 0xB0,
  357. },
  358. };
  359. static unsigned char iv[16] = { 0 };
  360. unsigned char result[32] = { 0 };
  361. for (i = 0; i < 3; i++) {
  362. p = 0;
  363. params[p++] = OSSL_PARAM_construct_utf8_string(
  364. OSSL_KDF_PARAM_CIPHER, "CAMELLIA-256-CBC", 0);
  365. params[p++] = OSSL_PARAM_construct_utf8_string(
  366. OSSL_KDF_PARAM_MAC, "CMAC", 0);
  367. params[p++] = OSSL_PARAM_construct_utf8_string(
  368. OSSL_KDF_PARAM_MODE, "FEEDBACK", 0);
  369. params[p++] = OSSL_PARAM_construct_octet_string(
  370. OSSL_KDF_PARAM_KEY, input_key, sizeof(input_key));
  371. params[p++] = OSSL_PARAM_construct_octet_string(
  372. OSSL_KDF_PARAM_SALT, constants[i], sizeof(constants[i]));
  373. params[p++] = OSSL_PARAM_construct_octet_string(
  374. OSSL_KDF_PARAM_SEED, iv, sizeof(iv));
  375. params[p] = OSSL_PARAM_construct_end();
  376. kctx = get_kdfbyname("KBKDF");
  377. ret = TEST_ptr(kctx)
  378. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  379. && TEST_int_gt(EVP_KDF_derive(kctx, result, sizeof(result)), 0)
  380. && TEST_mem_eq(result, sizeof(result), outputs[i],
  381. sizeof(outputs[i]));
  382. EVP_KDF_free_ctx(kctx);
  383. if (ret != 1)
  384. return ret;
  385. }
  386. return ret;
  387. }
  388. #endif
  389. /* Two test vectors from RFC 8009 (AES Encryption with HMAC-SHA2 for Kerberos
  390. * 5) appendix A. */
  391. static int test_kdf_kbkdf_8009_prf1(void)
  392. {
  393. int ret, i = 0;
  394. EVP_KDF_CTX *kctx;
  395. OSSL_PARAM params[6];
  396. char *label = "prf", *digest = "sha256", *prf_input = "test",
  397. *mac = "HMAC";
  398. static unsigned char input_key[] = {
  399. 0x37, 0x05, 0xD9, 0x60, 0x80, 0xC1, 0x77, 0x28,
  400. 0xA0, 0xE8, 0x00, 0xEA, 0xB6, 0xE0, 0xD2, 0x3C,
  401. };
  402. static unsigned char output[] = {
  403. 0x9D, 0x18, 0x86, 0x16, 0xF6, 0x38, 0x52, 0xFE,
  404. 0x86, 0x91, 0x5B, 0xB8, 0x40, 0xB4, 0xA8, 0x86,
  405. 0xFF, 0x3E, 0x6B, 0xB0, 0xF8, 0x19, 0xB4, 0x9B,
  406. 0x89, 0x33, 0x93, 0xD3, 0x93, 0x85, 0x42, 0x95,
  407. };
  408. unsigned char result[sizeof(output)] = { 0 };
  409. params[i++] = OSSL_PARAM_construct_utf8_string(
  410. OSSL_KDF_PARAM_DIGEST, digest, strlen(digest) + 1);
  411. params[i++] = OSSL_PARAM_construct_utf8_string(
  412. OSSL_KDF_PARAM_MAC, mac, strlen(mac) + 1);
  413. params[i++] = OSSL_PARAM_construct_octet_string(
  414. OSSL_KDF_PARAM_KEY, input_key, sizeof(input_key));
  415. params[i++] = OSSL_PARAM_construct_octet_string(
  416. OSSL_KDF_PARAM_SALT, label, strlen(label));
  417. params[i++] = OSSL_PARAM_construct_octet_string(
  418. OSSL_KDF_PARAM_INFO, prf_input, strlen(prf_input));
  419. params[i] = OSSL_PARAM_construct_end();
  420. kctx = get_kdfbyname("KBKDF");
  421. ret = TEST_ptr(kctx)
  422. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  423. && TEST_int_gt(EVP_KDF_derive(kctx, result, sizeof(result)), 0)
  424. && TEST_mem_eq(result, sizeof(result), output, sizeof(output));
  425. EVP_KDF_free_ctx(kctx);
  426. return ret;
  427. }
  428. static int test_kdf_kbkdf_8009_prf2(void)
  429. {
  430. int ret, i = 0;
  431. EVP_KDF_CTX *kctx;
  432. OSSL_PARAM params[6];
  433. char *label = "prf", *digest = "sha384", *prf_input = "test",
  434. *mac = "HMAC";
  435. static unsigned char input_key[] = {
  436. 0x6D, 0x40, 0x4D, 0x37, 0xFA, 0xF7, 0x9F, 0x9D,
  437. 0xF0, 0xD3, 0x35, 0x68, 0xD3, 0x20, 0x66, 0x98,
  438. 0x00, 0xEB, 0x48, 0x36, 0x47, 0x2E, 0xA8, 0xA0,
  439. 0x26, 0xD1, 0x6B, 0x71, 0x82, 0x46, 0x0C, 0x52,
  440. };
  441. static unsigned char output[] = {
  442. 0x98, 0x01, 0xF6, 0x9A, 0x36, 0x8C, 0x2B, 0xF6,
  443. 0x75, 0xE5, 0x95, 0x21, 0xE1, 0x77, 0xD9, 0xA0,
  444. 0x7F, 0x67, 0xEF, 0xE1, 0xCF, 0xDE, 0x8D, 0x3C,
  445. 0x8D, 0x6F, 0x6A, 0x02, 0x56, 0xE3, 0xB1, 0x7D,
  446. 0xB3, 0xC1, 0xB6, 0x2A, 0xD1, 0xB8, 0x55, 0x33,
  447. 0x60, 0xD1, 0x73, 0x67, 0xEB, 0x15, 0x14, 0xD2,
  448. };
  449. unsigned char result[sizeof(output)] = { 0 };
  450. params[i++] = OSSL_PARAM_construct_utf8_string(
  451. OSSL_KDF_PARAM_DIGEST, digest, strlen(digest) + 1);
  452. params[i++] = OSSL_PARAM_construct_utf8_string(
  453. OSSL_KDF_PARAM_MAC, mac, strlen(mac) + 1);
  454. params[i++] = OSSL_PARAM_construct_octet_string(
  455. OSSL_KDF_PARAM_KEY, input_key, sizeof(input_key));
  456. params[i++] = OSSL_PARAM_construct_octet_string(
  457. OSSL_KDF_PARAM_SALT, label, strlen(label));
  458. params[i++] = OSSL_PARAM_construct_octet_string(
  459. OSSL_KDF_PARAM_INFO, prf_input, strlen(prf_input));
  460. params[i] = OSSL_PARAM_construct_end();
  461. kctx = get_kdfbyname("KBKDF");
  462. ret = TEST_ptr(kctx)
  463. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  464. && TEST_int_gt(EVP_KDF_derive(kctx, result, sizeof(result)), 0)
  465. && TEST_mem_eq(result, sizeof(result), output, sizeof(output));
  466. EVP_KDF_free_ctx(kctx);
  467. return ret;
  468. }
  469. static int test_kdf_ss_hmac(void)
  470. {
  471. int ret;
  472. EVP_KDF_CTX *kctx;
  473. OSSL_PARAM params[6], *p = params;
  474. unsigned char out[16];
  475. static unsigned char z[] = {
  476. 0xb7,0x4a,0x14,0x9a,0x16,0x15,0x46,0xf8,0xc2,0x0b,0x06,0xac,0x4e,0xd4
  477. };
  478. static unsigned char other[] = {
  479. 0x34,0x8a,0x37,0xa2,0x7e,0xf1,0x28,0x2f,0x5f,0x02,0x0d,0xcc
  480. };
  481. static unsigned char salt[] = {
  482. 0x36,0x38,0x27,0x1c,0xcd,0x68,0xa2,0x5d,0xc2,0x4e,0xcd,0xdd,0x39,0xef,
  483. 0x3f,0x89
  484. };
  485. static const unsigned char expected[sizeof(out)] = {
  486. 0x44,0xf6,0x76,0xe8,0x5c,0x1b,0x1a,0x8b,0xbc,0x3d,0x31,0x92,0x18,0x63,
  487. 0x1c,0xa3
  488. };
  489. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_MAC,
  490. (char *)OSSL_MAC_NAME_HMAC,
  491. sizeof(OSSL_MAC_NAME_HMAC));
  492. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  493. (char *)"sha256", sizeof("sha256"));
  494. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, z, sizeof(z));
  495. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, other,
  496. sizeof(other));
  497. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT, salt,
  498. sizeof(salt));
  499. *p = OSSL_PARAM_construct_end();
  500. ret =
  501. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_SSKDF))
  502. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  503. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  504. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  505. EVP_KDF_free_ctx(kctx);
  506. return ret;
  507. }
  508. static int test_kdf_ss_kmac(void)
  509. {
  510. int ret;
  511. EVP_KDF_CTX *kctx;
  512. OSSL_PARAM params[6], *p = params;
  513. unsigned char out[64];
  514. size_t mac_size = 20;
  515. static unsigned char z[] = {
  516. 0xb7,0x4a,0x14,0x9a,0x16,0x15,0x46,0xf8,0xc2,0x0b,0x06,0xac,0x4e,0xd4
  517. };
  518. static unsigned char other[] = {
  519. 0x34,0x8a,0x37,0xa2,0x7e,0xf1,0x28,0x2f,0x5f,0x02,0x0d,0xcc
  520. };
  521. static unsigned char salt[] = {
  522. 0x36,0x38,0x27,0x1c,0xcd,0x68,0xa2,0x5d,0xc2,0x4e,0xcd,0xdd,0x39,0xef,
  523. 0x3f,0x89
  524. };
  525. static const unsigned char expected[sizeof(out)] = {
  526. 0xe9,0xc1,0x84,0x53,0xa0,0x62,0xb5,0x3b,0xdb,0xfc,0xbb,0x5a,0x34,0xbd,
  527. 0xb8,0xe5,0xe7,0x07,0xee,0xbb,0x5d,0xd1,0x34,0x42,0x43,0xd8,0xcf,0xc2,
  528. 0xc2,0xe6,0x33,0x2f,0x91,0xbd,0xa5,0x86,0xf3,0x7d,0xe4,0x8a,0x65,0xd4,
  529. 0xc5,0x14,0xfd,0xef,0xaa,0x1e,0x67,0x54,0xf3,0x73,0xd2,0x38,0xe1,0x95,
  530. 0xae,0x15,0x7e,0x1d,0xe8,0x14,0x98,0x03
  531. };
  532. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_MAC,
  533. (char *)OSSL_MAC_NAME_KMAC128,
  534. sizeof(OSSL_MAC_NAME_KMAC128));
  535. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, z, sizeof(z));
  536. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, other,
  537. sizeof(other));
  538. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT, salt,
  539. sizeof(salt));
  540. *p++ = OSSL_PARAM_construct_size_t(OSSL_KDF_PARAM_MAC_SIZE, &mac_size);
  541. *p = OSSL_PARAM_construct_end();
  542. ret =
  543. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_SSKDF))
  544. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  545. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  546. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  547. EVP_KDF_free_ctx(kctx);
  548. return ret;
  549. }
  550. static int test_kdf_sshkdf(void)
  551. {
  552. int ret;
  553. EVP_KDF_CTX *kctx;
  554. OSSL_PARAM params[6], *p = params;
  555. char kdftype = EVP_KDF_SSHKDF_TYPE_INITIAL_IV_CLI_TO_SRV;
  556. unsigned char out[8];
  557. /* Test data from NIST CAVS 14.1 test vectors */
  558. static unsigned char key[] = {
  559. 0x00, 0x00, 0x00, 0x81, 0x00, 0x87, 0x5c, 0x55, 0x1c, 0xef, 0x52, 0x6a,
  560. 0x4a, 0x8b, 0xe1, 0xa7, 0xdf, 0x27, 0xe9, 0xed, 0x35, 0x4b, 0xac, 0x9a,
  561. 0xfb, 0x71, 0xf5, 0x3d, 0xba, 0xe9, 0x05, 0x67, 0x9d, 0x14, 0xf9, 0xfa,
  562. 0xf2, 0x46, 0x9c, 0x53, 0x45, 0x7c, 0xf8, 0x0a, 0x36, 0x6b, 0xe2, 0x78,
  563. 0x96, 0x5b, 0xa6, 0x25, 0x52, 0x76, 0xca, 0x2d, 0x9f, 0x4a, 0x97, 0xd2,
  564. 0x71, 0xf7, 0x1e, 0x50, 0xd8, 0xa9, 0xec, 0x46, 0x25, 0x3a, 0x6a, 0x90,
  565. 0x6a, 0xc2, 0xc5, 0xe4, 0xf4, 0x8b, 0x27, 0xa6, 0x3c, 0xe0, 0x8d, 0x80,
  566. 0x39, 0x0a, 0x49, 0x2a, 0xa4, 0x3b, 0xad, 0x9d, 0x88, 0x2c, 0xca, 0xc2,
  567. 0x3d, 0xac, 0x88, 0xbc, 0xad, 0xa4, 0xb4, 0xd4, 0x26, 0xa3, 0x62, 0x08,
  568. 0x3d, 0xab, 0x65, 0x69, 0xc5, 0x4c, 0x22, 0x4d, 0xd2, 0xd8, 0x76, 0x43,
  569. 0xaa, 0x22, 0x76, 0x93, 0xe1, 0x41, 0xad, 0x16, 0x30, 0xce, 0x13, 0x14,
  570. 0x4e
  571. };
  572. static unsigned char xcghash[] = {
  573. 0x0e, 0x68, 0x3f, 0xc8, 0xa9, 0xed, 0x7c, 0x2f, 0xf0, 0x2d, 0xef, 0x23,
  574. 0xb2, 0x74, 0x5e, 0xbc, 0x99, 0xb2, 0x67, 0xda, 0xa8, 0x6a, 0x4a, 0xa7,
  575. 0x69, 0x72, 0x39, 0x08, 0x82, 0x53, 0xf6, 0x42
  576. };
  577. static unsigned char sessid[] = {
  578. 0x0e, 0x68, 0x3f, 0xc8, 0xa9, 0xed, 0x7c, 0x2f, 0xf0, 0x2d, 0xef, 0x23,
  579. 0xb2, 0x74, 0x5e, 0xbc, 0x99, 0xb2, 0x67, 0xda, 0xa8, 0x6a, 0x4a, 0xa7,
  580. 0x69, 0x72, 0x39, 0x08, 0x82, 0x53, 0xf6, 0x42
  581. };
  582. static const unsigned char expected[sizeof(out)] = {
  583. 0x41, 0xff, 0x2e, 0xad, 0x16, 0x83, 0xf1, 0xe6
  584. };
  585. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  586. (char *)"sha256", sizeof("sha256"));
  587. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key,
  588. sizeof(key));
  589. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SSHKDF_XCGHASH,
  590. xcghash, sizeof(xcghash));
  591. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SSHKDF_SESSION_ID,
  592. sessid, sizeof(sessid));
  593. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_SSHKDF_TYPE,
  594. &kdftype, sizeof(kdftype));
  595. *p = OSSL_PARAM_construct_end();
  596. ret =
  597. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_SSHKDF))
  598. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  599. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  600. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  601. EVP_KDF_free_ctx(kctx);
  602. return ret;
  603. }
  604. static int test_kdf_get_kdf(void)
  605. {
  606. EVP_KDF *kdf1 = NULL, *kdf2 = NULL;
  607. ASN1_OBJECT *obj;
  608. int ok = 1;
  609. if (!TEST_ptr(obj = OBJ_nid2obj(NID_id_pbkdf2))
  610. || !TEST_ptr(kdf1 = EVP_KDF_fetch(NULL, OSSL_KDF_NAME_PBKDF2, NULL))
  611. || !TEST_ptr(kdf2 = EVP_KDF_fetch(NULL, OBJ_nid2sn(OBJ_obj2nid(obj)),
  612. NULL))
  613. || !TEST_ptr_eq(kdf1, kdf2))
  614. ok = 0;
  615. EVP_KDF_free(kdf1);
  616. kdf1 = NULL;
  617. EVP_KDF_free(kdf2);
  618. kdf2 = NULL;
  619. if (!TEST_ptr(kdf1 = EVP_KDF_fetch(NULL, SN_tls1_prf, NULL))
  620. || !TEST_ptr(kdf2 = EVP_KDF_fetch(NULL, LN_tls1_prf, NULL))
  621. || !TEST_ptr_eq(kdf1, kdf2))
  622. ok = 0;
  623. /* kdf1 is re-used below, so don't free it here */
  624. EVP_KDF_free(kdf2);
  625. kdf2 = NULL;
  626. if (!TEST_ptr(kdf2 = EVP_KDF_fetch(NULL, OBJ_nid2sn(NID_tls1_prf), NULL))
  627. || !TEST_ptr_eq(kdf1, kdf2))
  628. ok = 0;
  629. EVP_KDF_free(kdf1);
  630. kdf1 = NULL;
  631. EVP_KDF_free(kdf2);
  632. kdf2 = NULL;
  633. return ok;
  634. }
  635. #ifndef OPENSSL_NO_CMS
  636. static int test_kdf_x942_asn1(void)
  637. {
  638. int ret;
  639. EVP_KDF_CTX *kctx = NULL;
  640. OSSL_PARAM params[4], *p = params;
  641. const char *cek_alg = SN_id_smime_alg_CMS3DESwrap;
  642. unsigned char out[24];
  643. /* RFC2631 Section 2.1.6 Test data */
  644. static unsigned char z[] = {
  645. 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,
  646. 0x0e,0x0f,0x10,0x11,0x12,0x13
  647. };
  648. static const unsigned char expected[sizeof(out)] = {
  649. 0xa0,0x96,0x61,0x39,0x23,0x76,0xf7,0x04,
  650. 0x4d,0x90,0x52,0xa3,0x97,0x88,0x32,0x46,
  651. 0xb6,0x7f,0x5f,0x1e,0xf6,0x3e,0xb5,0xfb
  652. };
  653. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  654. (char *)"sha1", sizeof("sha1"));
  655. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, z,
  656. sizeof(z));
  657. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_CEK_ALG,
  658. (char *)cek_alg,
  659. strlen(cek_alg) + 1);
  660. *p = OSSL_PARAM_construct_end();
  661. ret =
  662. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_X942KDF))
  663. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  664. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  665. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  666. EVP_KDF_free_ctx(kctx);
  667. return ret;
  668. }
  669. #endif /* OPENSSL_NO_CMS */
  670. static int test_kdf_krb5kdf(void)
  671. {
  672. int ret;
  673. EVP_KDF_CTX *kctx;
  674. OSSL_PARAM params[4], *p = params;
  675. unsigned char out[16];
  676. static unsigned char key[] = {
  677. 0x42, 0x26, 0x3C, 0x6E, 0x89, 0xF4, 0xFC, 0x28,
  678. 0xB8, 0xDF, 0x68, 0xEE, 0x09, 0x79, 0x9F, 0x15
  679. };
  680. static unsigned char constant[] = {
  681. 0x00, 0x00, 0x00, 0x02, 0x99
  682. };
  683. static const unsigned char expected[sizeof(out)] = {
  684. 0x34, 0x28, 0x0A, 0x38, 0x2B, 0xC9, 0x27, 0x69,
  685. 0xB2, 0xDA, 0x2F, 0x9E, 0xF0, 0x66, 0x85, 0x4B
  686. };
  687. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_CIPHER,
  688. (char *)"AES-128-CBC",
  689. sizeof("AES-128-CBC"));
  690. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key,
  691. sizeof(key));
  692. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_CONSTANT,
  693. constant, sizeof(constant));
  694. *p = OSSL_PARAM_construct_end();
  695. ret =
  696. TEST_ptr(kctx = get_kdfbyname(OSSL_KDF_NAME_KRB5KDF))
  697. && TEST_true(EVP_KDF_set_ctx_params(kctx, params))
  698. && TEST_int_gt(EVP_KDF_derive(kctx, out, sizeof(out)), 0)
  699. && TEST_mem_eq(out, sizeof(out), expected, sizeof(expected));
  700. EVP_KDF_free_ctx(kctx);
  701. return ret;
  702. }
  703. int setup_tests(void)
  704. {
  705. #if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_CAMELLIA)
  706. ADD_TEST(test_kdf_kbkdf_6803_128);
  707. ADD_TEST(test_kdf_kbkdf_6803_256);
  708. #endif
  709. ADD_TEST(test_kdf_kbkdf_8009_prf1);
  710. ADD_TEST(test_kdf_kbkdf_8009_prf2);
  711. ADD_TEST(test_kdf_get_kdf);
  712. ADD_TEST(test_kdf_tls1_prf);
  713. ADD_TEST(test_kdf_hkdf);
  714. ADD_TEST(test_kdf_pbkdf2);
  715. #ifndef OPENSSL_NO_SCRYPT
  716. ADD_TEST(test_kdf_scrypt);
  717. #endif
  718. ADD_TEST(test_kdf_ss_hash);
  719. ADD_TEST(test_kdf_ss_hmac);
  720. ADD_TEST(test_kdf_ss_kmac);
  721. ADD_TEST(test_kdf_sshkdf);
  722. ADD_TEST(test_kdf_x963);
  723. #ifndef OPENSSL_NO_CMS
  724. ADD_TEST(test_kdf_x942_asn1);
  725. #endif
  726. ADD_TEST(test_kdf_krb5kdf);
  727. return 1;
  728. }