123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707 |
- =pod
- =head1 NAME
- EVP_PKEY_CTX_ctrl,
- EVP_PKEY_CTX_ctrl_str,
- EVP_PKEY_CTX_ctrl_uint64,
- EVP_PKEY_CTX_md,
- EVP_PKEY_CTX_set_signature_md,
- EVP_PKEY_CTX_get_signature_md,
- EVP_PKEY_CTX_set_mac_key,
- EVP_PKEY_CTX_set_group_name,
- EVP_PKEY_CTX_get_group_name,
- EVP_PKEY_CTX_set_rsa_padding,
- EVP_PKEY_CTX_get_rsa_padding,
- EVP_PKEY_CTX_set_rsa_pss_saltlen,
- EVP_PKEY_CTX_get_rsa_pss_saltlen,
- EVP_PKEY_CTX_set_rsa_keygen_bits,
- EVP_PKEY_CTX_set_rsa_keygen_pubexp,
- EVP_PKEY_CTX_set1_rsa_keygen_pubexp,
- EVP_PKEY_CTX_set_rsa_keygen_primes,
- EVP_PKEY_CTX_set_rsa_mgf1_md_name,
- EVP_PKEY_CTX_set_rsa_mgf1_md,
- EVP_PKEY_CTX_get_rsa_mgf1_md,
- EVP_PKEY_CTX_get_rsa_mgf1_md_name,
- EVP_PKEY_CTX_set_rsa_oaep_md_name,
- EVP_PKEY_CTX_set_rsa_oaep_md,
- EVP_PKEY_CTX_get_rsa_oaep_md,
- EVP_PKEY_CTX_get_rsa_oaep_md_name,
- EVP_PKEY_CTX_set0_rsa_oaep_label,
- EVP_PKEY_CTX_get0_rsa_oaep_label,
- EVP_PKEY_CTX_set_dsa_paramgen_bits,
- EVP_PKEY_CTX_set_dsa_paramgen_q_bits,
- EVP_PKEY_CTX_set_dsa_paramgen_md,
- EVP_PKEY_CTX_set_dsa_paramgen_md_props,
- EVP_PKEY_CTX_set_dsa_paramgen_gindex,
- EVP_PKEY_CTX_set_dsa_paramgen_type,
- EVP_PKEY_CTX_set_dsa_paramgen_seed,
- EVP_PKEY_CTX_set_dh_paramgen_prime_len,
- EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
- EVP_PKEY_CTX_set_dh_paramgen_generator,
- EVP_PKEY_CTX_set_dh_paramgen_type,
- EVP_PKEY_CTX_set_dh_paramgen_gindex,
- EVP_PKEY_CTX_set_dh_paramgen_seed,
- EVP_PKEY_CTX_set_dh_rfc5114,
- EVP_PKEY_CTX_set_dhx_rfc5114,
- EVP_PKEY_CTX_set_dh_pad,
- EVP_PKEY_CTX_set_dh_nid,
- EVP_PKEY_CTX_set_dh_kdf_type,
- EVP_PKEY_CTX_get_dh_kdf_type,
- EVP_PKEY_CTX_set0_dh_kdf_oid,
- EVP_PKEY_CTX_get0_dh_kdf_oid,
- EVP_PKEY_CTX_set_dh_kdf_md,
- EVP_PKEY_CTX_get_dh_kdf_md,
- EVP_PKEY_CTX_set_dh_kdf_outlen,
- EVP_PKEY_CTX_get_dh_kdf_outlen,
- EVP_PKEY_CTX_set0_dh_kdf_ukm,
- EVP_PKEY_CTX_get0_dh_kdf_ukm,
- EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
- EVP_PKEY_CTX_set_ec_param_enc,
- EVP_PKEY_CTX_set_ecdh_cofactor_mode,
- EVP_PKEY_CTX_get_ecdh_cofactor_mode,
- EVP_PKEY_CTX_set_ecdh_kdf_type,
- EVP_PKEY_CTX_get_ecdh_kdf_type,
- EVP_PKEY_CTX_set_ecdh_kdf_md,
- EVP_PKEY_CTX_get_ecdh_kdf_md,
- EVP_PKEY_CTX_set_ecdh_kdf_outlen,
- EVP_PKEY_CTX_get_ecdh_kdf_outlen,
- EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
- EVP_PKEY_CTX_get0_ecdh_kdf_ukm,
- EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len,
- EVP_PKEY_CTX_set_kem_op
- - algorithm specific control operations
- =head1 SYNOPSIS
- #include <openssl/evp.h>
- int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
- int cmd, int p1, void *p2);
- int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype,
- int cmd, uint64_t value);
- int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
- const char *value);
- int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);
- int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
- int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);
- int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, const unsigned char *key,
- int len);
- int EVP_PKEY_CTX_set_group_name(EVP_PKEY_CTX *ctx, const char *name);
- int EVP_PKEY_CTX_get_group_name(EVP_PKEY_CTX *ctx, char *name, size_t namelen);
- int EVP_PKEY_CTX_set_kem_op(EVP_PKEY_CTX *ctx, const char *op);
- #include <openssl/rsa.h>
- int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
- int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad);
- int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen);
- int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen);
- int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
- int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
- int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
- int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
- const char *mdprops);
- int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
- int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
- int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
- size_t namelen);
- int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
- const char *mdprops);
- int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
- int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
- int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
- size_t namelen);
- int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label,
- int len);
- int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label);
- #include <openssl/dsa.h>
- int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
- int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int qbits);
- int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
- int EVP_PKEY_CTX_set_dsa_paramgen_md_props(EVP_PKEY_CTX *ctx,
- const char *md_name,
- const char *md_properties);
- int EVP_PKEY_CTX_set_dsa_paramgen_type(EVP_PKEY_CTX *ctx, const char *name);
- int EVP_PKEY_CTX_set_dsa_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
- int EVP_PKEY_CTX_set_dsa_paramgen_seed(EVP_PKEY_CTX *ctx,
- const unsigned char *seed,
- size_t seedlen);
- #include <openssl/dh.h>
- int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
- int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
- int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);
- int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
- int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
- int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
- int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
- int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
- int EVP_PKEY_CTX_set_dh_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
- int EVP_PKEY_CTX_set_dh_paramgen_seed(EVP_PKEY_CTX *ctx,
- const unsigned char *seed,
- size_t seedlen);
- int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
- int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
- int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid);
- int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid);
- int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
- int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
- int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
- int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
- int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
- #include <openssl/ec.h>
- int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);
- int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
- int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
- int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
- int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
- int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx);
- int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
- int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
- int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
- int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
- int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
- int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
- int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
- int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len);
- The following functions have been deprecated since OpenSSL 3.0, and can be
- hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value,
- see L<openssl_user_macros(7)>:
- #include <openssl/rsa.h>
- int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
- #include <openssl/dh.h>
- int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
- #include <openssl/ec.h>
- int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
- =head1 DESCRIPTION
- EVP_PKEY_CTX_ctrl() sends a control operation to the context I<ctx>. The key
- type used must match I<keytype> if it is not -1. The parameter I<optype> is a
- mask indicating which operations the control can be applied to.
- The control command is indicated in I<cmd> and any additional arguments in
- I<p1> and I<p2>.
- For I<cmd> = B<EVP_PKEY_CTRL_SET_MAC_KEY>, I<p1> is the length of the MAC key,
- and I<p2> is the MAC key. This is used by Poly1305, SipHash, HMAC and CMAC.
- Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will
- instead call one of the algorithm specific functions below.
- EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly passes a
- uint64 value as I<p2> to EVP_PKEY_CTX_ctrl().
- EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm
- specific control operation to a context I<ctx> in string form. This is
- intended to be used for options specified on the command line or in text
- files. The commands supported are documented in the openssl utility
- command line pages for the option I<-pkeyopt> which is supported by the
- I<pkeyutl>, I<genpkey> and I<req> commands.
- EVP_PKEY_CTX_md() sends a message digest control operation to the context
- I<ctx>. The message digest is specified by its name I<md>.
- EVP_PKEY_CTX_set_signature_md() sets the message digest type used
- in a signature. It can be used in the RSA, DSA and ECDSA algorithms.
- EVP_PKEY_CTX_get_signature_md()gets the message digest type used
- in a signature. It can be used in the RSA, DSA and ECDSA algorithms.
- Key generation typically involves setting up parameters to be used and
- generating the private and public key data. Some algorithm implementations
- allow private key data to be set explicitly using EVP_PKEY_CTX_set_mac_key().
- In this case key generation is simply the process of setting up the
- parameters for the key and then setting the raw key data to the value explicitly.
- Normally applications would call L<EVP_PKEY_new_raw_private_key(3)> or similar
- functions instead.
- EVP_PKEY_CTX_set_mac_key() can be used with any of the algorithms supported by
- the L<EVP_PKEY_new_raw_private_key(3)> function.
- EVP_PKEY_CTX_set_group_name() sets the group name to I<name> for parameter and
- key generation. For example for EC keys this will set the curve name and for
- DH keys it will set the name of the finite field group.
- EVP_PKEY_CTX_get_group_name() finds the group name that's currently
- set with I<ctx>, and writes it to the location that I<name> points at, as long
- as its size I<namelen> is large enough to store that name, including a
- terminating NUL byte.
- =head2 RSA parameters
- EVP_PKEY_CTX_set_rsa_padding() sets the RSA padding mode for I<ctx>.
- The I<pad> parameter can take the value B<RSA_PKCS1_PADDING> for PKCS#1
- padding, B<RSA_NO_PADDING> for
- no padding, B<RSA_PKCS1_OAEP_PADDING> for OAEP padding (encrypt and
- decrypt only), B<RSA_X931_PADDING> for X9.31 padding (signature operations
- only), B<RSA_PKCS1_PSS_PADDING> (sign and verify only) and
- B<RSA_PKCS1_WITH_TLS_PADDING> for TLS RSA ClientKeyExchange message padding
- (decryption only).
- Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md()
- is used. If this function is called for PKCS#1 padding the plaintext buffer is
- an actual digest value and is encapsulated in a DigestInfo structure according
- to PKCS#1 when signing and this structure is expected (and stripped off) when
- verifying. If this control is not used with RSA and PKCS#1 padding then the
- supplied data is used directly and not encapsulated. In the case of X9.31
- padding for RSA the algorithm identifier byte is added or checked and removed
- if this control is called. If it is not called then the first byte of the plaintext
- buffer is expected to be the algorithm identifier byte.
- EVP_PKEY_CTX_get_rsa_padding() gets the RSA padding mode for I<ctx>.
- EVP_PKEY_CTX_set_rsa_pss_saltlen() sets the RSA PSS salt length to I<saltlen>.
- As its name implies it is only supported for PSS padding. If this function is
- not called then the salt length is maximized up to the digest length when
- signing and auto detection when verifying. Four special values are supported:
- =over 4
- =item B<RSA_PSS_SALTLEN_DIGEST>
- sets the salt length to the digest length.
- =item B<RSA_PSS_SALTLEN_MAX>
- sets the salt length to the maximum permissible value.
- =item B<RSA_PSS_SALTLEN_AUTO>
- causes the salt length to be automatically determined based on the
- B<PSS> block structure when verifying. When signing, it has the same
- meaning as B<RSA_PSS_SALTLEN_MAX>.
- =item B<RSA_PSS_SALTLEN_AUTO_DIGEST_MAX>
- causes the salt length to be automatically determined based on the B<PSS> block
- structure when verifying, like B<RSA_PSS_SALTLEN_AUTO>. When signing, the salt
- length is maximized up to a maximum of the digest length to comply with FIPS
- 186-4 section 5.5.
- =back
- EVP_PKEY_CTX_get_rsa_pss_saltlen() gets the RSA PSS salt length for I<ctx>.
- The padding mode must already have been set to B<RSA_PKCS1_PSS_PADDING>.
- EVP_PKEY_CTX_set_rsa_keygen_bits() sets the RSA key length for
- RSA key generation to I<bits>. If not specified 2048 bits is used.
- EVP_PKEY_CTX_set1_rsa_keygen_pubexp() sets the public exponent value for RSA key
- generation to the value stored in I<pubexp>. Currently it should be an odd
- integer. In accordance with the OpenSSL naming convention, the I<pubexp> pointer
- must be freed independently of the EVP_PKEY_CTX (ie, it is internally copied).
- If not specified 65537 is used.
- EVP_PKEY_CTX_set_rsa_keygen_pubexp() does the same as
- EVP_PKEY_CTX_set1_rsa_keygen_pubexp() except that there is no internal copy and
- therefore I<pubexp> should not be modified or freed after the call.
- EVP_PKEY_CTX_set_rsa_keygen_primes() sets the number of primes for
- RSA key generation to I<primes>. If not specified 2 is used.
- EVP_PKEY_CTX_set_rsa_mgf1_md_name() sets the MGF1 digest for RSA
- padding schemes to the digest named I<mdname>. If the RSA algorithm
- implementation for the selected provider supports it then the digest will be
- fetched using the properties I<mdprops>. If not explicitly set the signing
- digest is used. The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>
- or B<RSA_PKCS1_PSS_PADDING>.
- EVP_PKEY_CTX_set_rsa_mgf1_md() does the same as
- EVP_PKEY_CTX_set_rsa_mgf1_md_name() except that the name of the digest is
- inferred from the supplied I<md> and it is not possible to specify any
- properties.
- EVP_PKEY_CTX_get_rsa_mgf1_md_name() gets the name of the MGF1
- digest algorithm for I<ctx>. If not explicitly set the signing digest is used.
- The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING> or
- B<RSA_PKCS1_PSS_PADDING>.
- EVP_PKEY_CTX_get_rsa_mgf1_md() does the same as
- EVP_PKEY_CTX_get_rsa_mgf1_md_name() except that it returns a pointer to an
- EVP_MD object instead. Note that only known, built-in EVP_MD objects will be
- returned. The EVP_MD object may be NULL if the digest is not one of these (such
- as a digest only implemented in a third party provider).
- EVP_PKEY_CTX_set_rsa_oaep_md_name() sets the message digest type
- used in RSA OAEP to the digest named I<mdname>. If the RSA algorithm
- implementation for the selected provider supports it then the digest will be
- fetched using the properties I<mdprops>. The padding mode must have been set to
- B<RSA_PKCS1_OAEP_PADDING>.
- EVP_PKEY_CTX_set_rsa_oaep_md() does the same as
- EVP_PKEY_CTX_set_rsa_oaep_md_name() except that the name of the digest is
- inferred from the supplied I<md> and it is not possible to specify any
- properties.
- EVP_PKEY_CTX_get_rsa_oaep_md_name() gets the message digest
- algorithm name used in RSA OAEP and stores it in the buffer I<name> which is of
- size I<namelen>. The padding mode must have been set to
- B<RSA_PKCS1_OAEP_PADDING>. The buffer should be sufficiently large for any
- expected digest algorithm names or the function will fail.
- EVP_PKEY_CTX_get_rsa_oaep_md() does the same as
- EVP_PKEY_CTX_get_rsa_oaep_md_name() except that it returns a pointer to an
- EVP_MD object instead. Note that only known, built-in EVP_MD objects will be
- returned. The EVP_MD object may be NULL if the digest is not one of these (such
- as a digest only implemented in a third party provider).
- EVP_PKEY_CTX_set0_rsa_oaep_label() sets the RSA OAEP label to binary data
- I<label> and its length in bytes to I<len>. If I<label> is NULL or I<len> is 0,
- the label is cleared. The library takes ownership of the label so the
- caller should not free the original memory pointed to by I<label>.
- The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>.
- EVP_PKEY_CTX_get0_rsa_oaep_label() gets the RSA OAEP label to
- I<label>. The return value is the label length. The padding mode
- must have been set to B<RSA_PKCS1_OAEP_PADDING>. The resulting pointer is owned
- by the library and should not be freed by the caller.
- B<RSA_PKCS1_WITH_TLS_PADDING> is used when decrypting an RSA encrypted TLS
- pre-master secret in a TLS ClientKeyExchange message. It is the same as
- RSA_PKCS1_PADDING except that it additionally verifies that the result is the
- correct length and the first two bytes are the protocol version initially
- requested by the client. If the encrypted content is publicly invalid then the
- decryption will fail. However, if the padding checks fail then decryption will
- still appear to succeed but a random TLS premaster secret will be returned
- instead. This padding mode accepts two parameters which can be set using the
- L<EVP_PKEY_CTX_set_params(3)> function. These are
- OSSL_ASYM_CIPHER_PARAM_TLS_CLIENT_VERSION and
- OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION, both of which are expected to be
- unsigned integers. Normally only the first of these will be set and represents
- the TLS protocol version that was first requested by the client (e.g. 0x0303 for
- TLSv1.2, 0x0302 for TLSv1.1 etc). Historically some buggy clients would use the
- negotiated protocol version instead of the protocol version first requested. If
- this behaviour should be tolerated then
- OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION should be set to the actual
- negotiated protocol version. Otherwise it should be left unset.
- Similarly to the B<RSA_PKCS1_WITH_TLS_PADDING> above, since OpenSSL version
- 3.2.0, the use of B<RSA_PKCS1_PADDING> will return a randomly generated message
- instead of padding errors in case padding checks fail. Applications that
- want to remain secure while using earlier versions of OpenSSL, or a provider
- that doesn't implement the implicit rejection mechanism, still need to
- handle both the error code from the RSA decryption operation and the
- returned message in a side channel secure manner.
- This protection against Bleichenbacher attacks can be disabled by setting
- B<OSSL_ASYM_CIPHER_PARAM_IMPLICIT_REJECTION> (an unsigned integer) to 0.
- =head2 DSA parameters
- EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used for DSA
- parameter generation to B<nbits>. If not specified, 2048 is used.
- EVP_PKEY_CTX_set_dsa_paramgen_q_bits() sets the number of bits in the subprime
- parameter I<q> for DSA parameter generation to I<qbits>. If not specified, 224
- is used. If a digest function is specified below, this parameter is ignored and
- instead, the number of bits in I<q> matches the size of the digest.
- EVP_PKEY_CTX_set_dsa_paramgen_md() sets the digest function used for DSA
- parameter generation to I<md>. If not specified, one of SHA-1, SHA-224, or
- SHA-256 is selected to match the bit length of I<q> above.
- EVP_PKEY_CTX_set_dsa_paramgen_md_props() sets the digest function used for DSA
- parameter generation using I<md_name> and I<md_properties> to retrieve the
- digest from a provider.
- If not specified, I<md_name> will be set to one of SHA-1, SHA-224, or
- SHA-256 depending on the bit length of I<q> above. I<md_properties> is a
- property query string that has a default value of '' if not specified.
- EVP_PKEY_CTX_set_dsa_paramgen_gindex() sets the I<gindex> used by the generator
- G. The default value is -1 which uses unverifiable g, otherwise a positive value
- uses verifiable g. This value must be saved if key validation of g is required,
- since it is not part of a persisted key.
- EVP_PKEY_CTX_set_dsa_paramgen_seed() sets the I<seed> to use for generation
- rather than using a randomly generated value for the seed. This is useful for
- testing purposes only and can fail if the seed does not produce primes for both
- p & q on its first iteration. This value must be saved if key validation of
- p, q, and verifiable g are required, since it is not part of a persisted key.
- EVP_PKEY_CTX_set_dsa_paramgen_type() sets the generation type to use FIPS186-4
- generation if I<name> is "fips186_4", or FIPS186-2 generation if I<name> is
- "fips186_2". The default value for the default provider is "fips186_2". The
- default value for the FIPS provider is "fips186_4".
- =head2 DH parameters
- EVP_PKEY_CTX_set_dh_paramgen_prime_len() sets the length of the DH prime
- parameter I<p> for DH parameter generation. If this function is not called then
- 2048 is used. Only accepts lengths greater than or equal to 256.
- EVP_PKEY_CTX_set_dh_paramgen_subprime_len() sets the length of the DH
- optional subprime parameter I<q> for DH parameter generation. The default is
- 256 if the prime is at least 2048 bits long or 160 otherwise. The DH paramgen
- type must have been set to "fips186_4".
- EVP_PKEY_CTX_set_dh_paramgen_generator() sets DH generator to I<gen> for DH
- parameter generation. If not specified 2 is used.
- EVP_PKEY_CTX_set_dh_paramgen_type() sets the key type for DH parameter
- generation. The supported parameters are:
- =over 4
- =item B<DH_PARAMGEN_TYPE_GROUP>
- Use a named group. If only the safe prime parameter I<p> is set this can be
- used to select a ffdhe safe prime group of the correct size.
- =item B<DH_PARAMGEN_TYPE_FIPS_186_4>
- FIPS186-4 FFC parameter generator.
- =item B<DH_PARAMGEN_TYPE_FIPS_186_2>
- FIPS186-2 FFC parameter generator (X9.42 DH).
- =item B<DH_PARAMGEN_TYPE_GENERATOR>
- Uses a safe prime generator g (PKCS#3 format).
- =back
- The default in the default provider is B<DH_PARAMGEN_TYPE_GENERATOR> for the
- "DH" keytype, and B<DH_PARAMGEN_TYPE_FIPS_186_2> for the "DHX" keytype. In the
- FIPS provider the default value is B<DH_PARAMGEN_TYPE_GROUP> for the "DH"
- keytype and <B<DH_PARAMGEN_TYPE_FIPS_186_4> for the "DHX" keytype.
- EVP_PKEY_CTX_set_dh_paramgen_gindex() sets the I<gindex> used by the generator G.
- The default value is -1 which uses unverifiable g, otherwise a positive value
- uses verifiable g. This value must be saved if key validation of g is required,
- since it is not part of a persisted key.
- EVP_PKEY_CTX_set_dh_paramgen_seed() sets the I<seed> to use for generation
- rather than using a randomly generated value for the seed. This is useful for
- testing purposes only and can fail if the seed does not produce primes for both
- p & q on its first iteration. This value must be saved if key validation of p, q,
- and verifiable g are required, since it is not part of a persisted key.
- EVP_PKEY_CTX_set_dh_pad() sets the DH padding mode.
- If I<pad> is 1 the shared secret is padded with zeros up to the size of the DH
- prime I<p>.
- If I<pad> is zero (the default) then no padding is performed.
- EVP_PKEY_CTX_set_dh_nid() sets the DH parameters to values corresponding to
- I<nid> as defined in RFC7919 or RFC3526. The I<nid> parameter must be
- B<NID_ffdhe2048>, B<NID_ffdhe3072>, B<NID_ffdhe4096>, B<NID_ffdhe6144>,
- B<NID_ffdhe8192>, B<NID_modp_1536>, B<NID_modp_2048>, B<NID_modp_3072>,
- B<NID_modp_4096>, B<NID_modp_6144>, B<NID_modp_8192> or B<NID_undef> to clear
- the stored value. This function can be called during parameter or key generation.
- The nid parameter and the rfc5114 parameter are mutually exclusive.
- EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114() both set the
- DH parameters to the values defined in RFC5114. The I<rfc5114> parameter must
- be 1, 2 or 3 corresponding to RFC5114 sections 2.1, 2.2 and 2.3. or 0 to clear
- the stored value. This macro can be called during parameter generation. The
- I<ctx> must have a key type of B<EVP_PKEY_DHX>.
- The rfc5114 parameter and the nid parameter are mutually exclusive.
- =head2 DH key derivation function parameters
- Note that all of the following functions require that the I<ctx> parameter has
- a private key type of B<EVP_PKEY_DHX>. When using key derivation, the output of
- EVP_PKEY_derive() is the output of the KDF instead of the DH shared secret.
- The KDF output is typically used as a Key Encryption Key (KEK) that in turn
- encrypts a Content Encryption Key (CEK).
- EVP_PKEY_CTX_set_dh_kdf_type() sets the key derivation function type to I<kdf>
- for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> and
- B<EVP_PKEY_DH_KDF_X9_42> which uses the key derivation specified in RFC2631
- (based on the keying algorithm described in X9.42). When using key derivation,
- the I<kdf_oid>, I<kdf_md> and I<kdf_outlen> parameters must also be specified.
- EVP_PKEY_CTX_get_dh_kdf_type() gets the key derivation function type for I<ctx>
- used for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> and
- B<EVP_PKEY_DH_KDF_X9_42>.
- EVP_PKEY_CTX_set0_dh_kdf_oid() sets the key derivation function object
- identifier to I<oid> for DH key derivation. This OID should identify the
- algorithm to be used with the Content Encryption Key.
- The library takes ownership of the object identifier so the caller should not
- free the original memory pointed to by I<oid>.
- EVP_PKEY_CTX_get0_dh_kdf_oid() gets the key derivation function oid for I<ctx>
- used for DH key derivation. The resulting pointer is owned by the library and
- should not be freed by the caller.
- EVP_PKEY_CTX_set_dh_kdf_md() sets the key derivation function message digest to
- I<md> for DH key derivation. Note that RFC2631 specifies that this digest should
- be SHA1 but OpenSSL tolerates other digests.
- EVP_PKEY_CTX_get_dh_kdf_md() gets the key derivation function message digest for
- I<ctx> used for DH key derivation.
- EVP_PKEY_CTX_set_dh_kdf_outlen() sets the key derivation function output length
- to I<len> for DH key derivation.
- EVP_PKEY_CTX_get_dh_kdf_outlen() gets the key derivation function output length
- for I<ctx> used for DH key derivation.
- EVP_PKEY_CTX_set0_dh_kdf_ukm() sets the user key material to I<ukm> and its
- length to I<len> for DH key derivation. This parameter is optional and
- corresponds to the partyAInfo field in RFC2631 terms. The specification
- requires that it is 512 bits long but this is not enforced by OpenSSL.
- The library takes ownership of the user key material so the caller should not
- free the original memory pointed to by I<ukm>.
- EVP_PKEY_CTX_get0_dh_kdf_ukm() gets the user key material for I<ctx>.
- The return value is the user key material length. The resulting pointer is owned
- by the library and should not be freed by the caller.
- =head2 EC parameters
- Use EVP_PKEY_CTX_set_group_name() (described above) to set the curve name to
- I<name> for parameter and key generation.
- EVP_PKEY_CTX_set_ec_paramgen_curve_nid() does the same as
- EVP_PKEY_CTX_set_group_name(), but is specific to EC and uses a I<nid> rather
- than a name string.
- For EC parameter generation, one of EVP_PKEY_CTX_set_group_name()
- or EVP_PKEY_CTX_set_ec_paramgen_curve_nid() must be called or an error occurs
- because there is no default curve.
- These function can also be called to set the curve explicitly when
- generating an EC key.
- EVP_PKEY_CTX_get_group_name() (described above) can be used to obtain the curve
- name that's currently set with I<ctx>.
- EVP_PKEY_CTX_set_ec_param_enc() sets the EC parameter encoding to I<param_enc>
- when generating EC parameters or an EC key. The encoding can be
- B<OPENSSL_EC_EXPLICIT_CURVE> for explicit parameters (the default in versions
- of OpenSSL before 1.1.0) or B<OPENSSL_EC_NAMED_CURVE> to use named curve form.
- For maximum compatibility the named curve form should be used. Note: the
- B<OPENSSL_EC_NAMED_CURVE> value was added in OpenSSL 1.1.0; previous
- versions should use 0 instead.
- =head2 ECDH parameters
- EVP_PKEY_CTX_set_ecdh_cofactor_mode() sets the cofactor mode to I<cofactor_mode>
- for ECDH key derivation. Possible values are 1 to enable cofactor
- key derivation, 0 to disable it and -1 to clear the stored cofactor mode and
- fallback to the private key cofactor mode.
- EVP_PKEY_CTX_get_ecdh_cofactor_mode() returns the cofactor mode for I<ctx> used
- for ECDH key derivation. Possible values are 1 when cofactor key derivation is
- enabled and 0 otherwise.
- =head2 ECDH key derivation function parameters
- EVP_PKEY_CTX_set_ecdh_kdf_type() sets the key derivation function type to
- I<kdf> for ECDH key derivation. Possible values are B<EVP_PKEY_ECDH_KDF_NONE>
- and B<EVP_PKEY_ECDH_KDF_X9_63> which uses the key derivation specified in X9.63.
- When using key derivation, the I<kdf_md> and I<kdf_outlen> parameters must
- also be specified.
- EVP_PKEY_CTX_get_ecdh_kdf_type() returns the key derivation function type for
- I<ctx> used for ECDH key derivation. Possible values are
- B<EVP_PKEY_ECDH_KDF_NONE> and B<EVP_PKEY_ECDH_KDF_X9_63>.
- EVP_PKEY_CTX_set_ecdh_kdf_md() sets the key derivation function message digest
- to I<md> for ECDH key derivation. Note that X9.63 specifies that this digest
- should be SHA1 but OpenSSL tolerates other digests.
- EVP_PKEY_CTX_get_ecdh_kdf_md() gets the key derivation function message digest
- for I<ctx> used for ECDH key derivation.
- EVP_PKEY_CTX_set_ecdh_kdf_outlen() sets the key derivation function output
- length to I<len> for ECDH key derivation.
- EVP_PKEY_CTX_get_ecdh_kdf_outlen() gets the key derivation function output
- length for I<ctx> used for ECDH key derivation.
- EVP_PKEY_CTX_set0_ecdh_kdf_ukm() sets the user key material to I<ukm> for ECDH
- key derivation. This parameter is optional and corresponds to the shared info in
- X9.63 terms. The library takes ownership of the user key material so the caller
- should not free the original memory pointed to by I<ukm>.
- EVP_PKEY_CTX_get0_ecdh_kdf_ukm() gets the user key material for I<ctx>.
- The return value is the user key material length. The resulting pointer is owned
- by the library and should not be freed by the caller.
- =head2 Other parameters
- EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len()
- are used to manipulate the special identifier field for specific signature
- algorithms such as SM2. The EVP_PKEY_CTX_set1_id() sets an ID pointed by I<id> with
- the length I<id_len> to the library. The library takes a copy of the id so that
- the caller can safely free the original memory pointed to by I<id>.
- EVP_PKEY_CTX_get1_id_len() returns the length of the ID set via a previous call
- to EVP_PKEY_CTX_set1_id(). The length is usually used to allocate adequate
- memory for further calls to EVP_PKEY_CTX_get1_id(). EVP_PKEY_CTX_get1_id()
- returns the previously set ID value to caller in I<id>. The caller should
- allocate adequate memory space for the I<id> before calling EVP_PKEY_CTX_get1_id().
- EVP_PKEY_CTX_set_kem_op() sets the KEM operation to run. This can be set after
- EVP_PKEY_encapsulate_init() or EVP_PKEY_decapsulate_init() to select the
- kem operation. RSA is the only key type that supports encapsulation currently,
- and as there is no default operation for the RSA type, this function must be
- called before EVP_PKEY_encapsulate() or EVP_PKEY_decapsulate().
- =head1 RETURN VALUES
- All other functions described on this page return a positive value for success
- and 0 or a negative value for failure. In particular a return value of -2
- indicates the operation is not supported by the public key algorithm.
- =head1 SEE ALSO
- L<EVP_PKEY_CTX_set_params(3)>,
- L<EVP_PKEY_CTX_new(3)>,
- L<EVP_PKEY_encrypt(3)>,
- L<EVP_PKEY_decrypt(3)>,
- L<EVP_PKEY_sign(3)>,
- L<EVP_PKEY_verify(3)>,
- L<EVP_PKEY_verify_recover(3)>,
- L<EVP_PKEY_derive(3)>,
- L<EVP_PKEY_keygen(3)>
- L<EVP_PKEY_encapsulate(3)>
- L<EVP_PKEY_decapsulate(3)>
- =head1 HISTORY
- EVP_PKEY_CTX_get_rsa_oaep_md_name(), EVP_PKEY_CTX_get_rsa_mgf1_md_name(),
- EVP_PKEY_CTX_set_rsa_mgf1_md_name(), EVP_PKEY_CTX_set_rsa_oaep_md_name(),
- EVP_PKEY_CTX_set_dsa_paramgen_md_props(), EVP_PKEY_CTX_set_dsa_paramgen_gindex(),
- EVP_PKEY_CTX_set_dsa_paramgen_type(), EVP_PKEY_CTX_set_dsa_paramgen_seed(),
- EVP_PKEY_CTX_set_group_name() and EVP_PKEY_CTX_get_group_name()
- were added in OpenSSL 3.0.
- The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and
- EVP_PKEY_CTX_get1_id_len() macros were added in 1.1.1, other functions were
- added in OpenSSL 1.0.0.
- In OpenSSL 1.1.1 and below the functions were mostly macros.
- From OpenSSL 3.0 they are all functions.
- EVP_PKEY_CTX_set_rsa_keygen_pubexp(), EVP_PKEY_CTX_get0_dh_kdf_ukm(),
- and EVP_PKEY_CTX_get0_ecdh_kdf_ukm() were deprecated in OpenSSL 3.0.
- =head1 COPYRIGHT
- Copyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.
- Licensed under the Apache License 2.0 (the "License"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file LICENSE in the source distribution or at
- L<https://www.openssl.org/source/license.html>.
- =cut
|