x86-mont.pl 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. #!/usr/bin/env perl
  2. # ====================================================================
  3. # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
  4. # project. The module is, however, dual licensed under OpenSSL and
  5. # CRYPTOGAMS licenses depending on where you obtain it. For further
  6. # details see http://www.openssl.org/~appro/cryptogams/.
  7. # ====================================================================
  8. # October 2005
  9. #
  10. # This is a "teaser" code, as it can be improved in several ways...
  11. # First of all non-SSE2 path should be implemented (yes, for now it
  12. # performs Montgomery multiplication/convolution only on SSE2-capable
  13. # CPUs such as P4, others fall down to original code). Then inner loop
  14. # can be unrolled and modulo-scheduled to improve ILP and possibly
  15. # moved to 128-bit XMM register bank (though it would require input
  16. # rearrangement and/or increase bus bandwidth utilization). Dedicated
  17. # squaring procedure should give further performance improvement...
  18. # Yet, for being draft, the code improves rsa512 *sign* benchmark by
  19. # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-)
  20. # December 2006
  21. #
  22. # Modulo-scheduling SSE2 loops results in further 15-20% improvement.
  23. # Integer-only code [being equipped with dedicated squaring procedure]
  24. # gives ~40% on rsa512 sign benchmark...
  25. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
  26. push(@INC,"${dir}","${dir}../../perlasm");
  27. require "x86asm.pl";
  28. &asm_init($ARGV[0],$0);
  29. $sse2=0;
  30. for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
  31. &external_label("OPENSSL_ia32cap_P") if ($sse2);
  32. &function_begin("bn_mul_mont");
  33. $i="edx";
  34. $j="ecx";
  35. $ap="esi"; $tp="esi"; # overlapping variables!!!
  36. $rp="edi"; $bp="edi"; # overlapping variables!!!
  37. $np="ebp";
  38. $num="ebx";
  39. $_num=&DWP(4*0,"esp"); # stack top layout
  40. $_rp=&DWP(4*1,"esp");
  41. $_ap=&DWP(4*2,"esp");
  42. $_bp=&DWP(4*3,"esp");
  43. $_np=&DWP(4*4,"esp");
  44. $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp");
  45. $_sp=&DWP(4*6,"esp");
  46. $_bpend=&DWP(4*7,"esp");
  47. $frame=32; # size of above frame rounded up to 16n
  48. &xor ("eax","eax");
  49. &mov ("edi",&wparam(5)); # int num
  50. &cmp ("edi",4);
  51. &jl (&label("just_leave"));
  52. &lea ("esi",&wparam(0)); # put aside pointer to argument block
  53. &lea ("edx",&wparam(1)); # load ap
  54. &add ("edi",2); # extra two words on top of tp
  55. &neg ("edi");
  56. &lea ("ebp",&DWP(-$frame,"esp","edi",4)); # future alloca($frame+4*(num+2))
  57. &neg ("edi");
  58. # minimize cache contention by arraning 2K window between stack
  59. # pointer and ap argument [np is also position sensitive vector,
  60. # but it's assumed to be near ap, as it's allocated at ~same
  61. # time].
  62. &mov ("eax","ebp");
  63. &sub ("eax","edx");
  64. &and ("eax",2047);
  65. &sub ("ebp","eax"); # this aligns sp and ap modulo 2048
  66. &xor ("edx","ebp");
  67. &and ("edx",2048);
  68. &xor ("edx",2048);
  69. &sub ("ebp","edx"); # this splits them apart modulo 4096
  70. &and ("ebp",-64); # align to cache line
  71. # Some OSes, *cough*-dows, insist on stack being "wired" to
  72. # physical memory in strictly sequential manner, i.e. if stack
  73. # allocation spans two pages, then reference to farmost one can
  74. # be punishable by SEGV. But page walking can do good even on
  75. # other OSes, because it guarantees that villain thread hits
  76. # the guard page before it can make damage to innocent one...
  77. &mov ("eax","esp");
  78. &sub ("eax","ebp");
  79. &and ("eax",-4096);
  80. &mov ("edx","esp"); # saved stack pointer!
  81. &lea ("esp",&DWP(0,"ebp","eax"));
  82. &mov ("eax",&DWP(0,"esp"));
  83. &cmp ("esp","ebp");
  84. &ja (&label("page_walk"));
  85. &jmp (&label("page_walk_done"));
  86. &set_label("page_walk",16);
  87. &lea ("esp",&DWP(-4096,"esp"));
  88. &mov ("eax",&DWP(0,"esp"));
  89. &cmp ("esp","ebp");
  90. &ja (&label("page_walk"));
  91. &set_label("page_walk_done");
  92. ################################# load argument block...
  93. &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp
  94. &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap
  95. &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp
  96. &mov ("ebp",&DWP(3*4,"esi"));# const BN_ULONG *np
  97. &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0
  98. #&mov ("edi",&DWP(5*4,"esi"));# int num
  99. &mov ("esi",&DWP(0,"esi")); # pull n0[0]
  100. &mov ($_rp,"eax"); # ... save a copy of argument block
  101. &mov ($_ap,"ebx");
  102. &mov ($_bp,"ecx");
  103. &mov ($_np,"ebp");
  104. &mov ($_n0,"esi");
  105. &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling
  106. #&mov ($_num,$num); # redundant as $num is not reused
  107. &mov ($_sp,"edx"); # saved stack pointer!
  108. if($sse2) {
  109. $acc0="mm0"; # mmx register bank layout
  110. $acc1="mm1";
  111. $car0="mm2";
  112. $car1="mm3";
  113. $mul0="mm4";
  114. $mul1="mm5";
  115. $temp="mm6";
  116. $mask="mm7";
  117. &picmeup("eax","OPENSSL_ia32cap_P");
  118. &bt (&DWP(0,"eax"),26);
  119. &jnc (&label("non_sse2"));
  120. &mov ("eax",-1);
  121. &movd ($mask,"eax"); # mask 32 lower bits
  122. &mov ($ap,$_ap); # load input pointers
  123. &mov ($bp,$_bp);
  124. &mov ($np,$_np);
  125. &xor ($i,$i); # i=0
  126. &xor ($j,$j); # j=0
  127. &movd ($mul0,&DWP(0,$bp)); # bp[0]
  128. &movd ($mul1,&DWP(0,$ap)); # ap[0]
  129. &movd ($car1,&DWP(0,$np)); # np[0]
  130. &pmuludq($mul1,$mul0); # ap[0]*bp[0]
  131. &movq ($car0,$mul1);
  132. &movq ($acc0,$mul1); # I wish movd worked for
  133. &pand ($acc0,$mask); # inter-register transfers
  134. &pmuludq($mul1,$_n0q); # *=n0
  135. &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0
  136. &paddq ($car1,$acc0);
  137. &movd ($acc1,&DWP(4,$np)); # np[1]
  138. &movd ($acc0,&DWP(4,$ap)); # ap[1]
  139. &psrlq ($car0,32);
  140. &psrlq ($car1,32);
  141. &inc ($j); # j++
  142. &set_label("1st",16);
  143. &pmuludq($acc0,$mul0); # ap[j]*bp[0]
  144. &pmuludq($acc1,$mul1); # np[j]*m1
  145. &paddq ($car0,$acc0); # +=c0
  146. &paddq ($car1,$acc1); # +=c1
  147. &movq ($acc0,$car0);
  148. &pand ($acc0,$mask);
  149. &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
  150. &paddq ($car1,$acc0); # +=ap[j]*bp[0];
  151. &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
  152. &psrlq ($car0,32);
  153. &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]=
  154. &psrlq ($car1,32);
  155. &lea ($j,&DWP(1,$j));
  156. &cmp ($j,$num);
  157. &jl (&label("1st"));
  158. &pmuludq($acc0,$mul0); # ap[num-1]*bp[0]
  159. &pmuludq($acc1,$mul1); # np[num-1]*m1
  160. &paddq ($car0,$acc0); # +=c0
  161. &paddq ($car1,$acc1); # +=c1
  162. &movq ($acc0,$car0);
  163. &pand ($acc0,$mask);
  164. &paddq ($car1,$acc0); # +=ap[num-1]*bp[0];
  165. &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
  166. &psrlq ($car0,32);
  167. &psrlq ($car1,32);
  168. &paddq ($car1,$car0);
  169. &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]
  170. &inc ($i); # i++
  171. &set_label("outer");
  172. &xor ($j,$j); # j=0
  173. &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i]
  174. &movd ($mul1,&DWP(0,$ap)); # ap[0]
  175. &movd ($temp,&DWP($frame,"esp")); # tp[0]
  176. &movd ($car1,&DWP(0,$np)); # np[0]
  177. &pmuludq($mul1,$mul0); # ap[0]*bp[i]
  178. &paddq ($mul1,$temp); # +=tp[0]
  179. &movq ($acc0,$mul1);
  180. &movq ($car0,$mul1);
  181. &pand ($acc0,$mask);
  182. &pmuludq($mul1,$_n0q); # *=n0
  183. &pmuludq($car1,$mul1);
  184. &paddq ($car1,$acc0);
  185. &movd ($temp,&DWP($frame+4,"esp")); # tp[1]
  186. &movd ($acc1,&DWP(4,$np)); # np[1]
  187. &movd ($acc0,&DWP(4,$ap)); # ap[1]
  188. &psrlq ($car0,32);
  189. &psrlq ($car1,32);
  190. &paddq ($car0,$temp); # +=tp[1]
  191. &inc ($j); # j++
  192. &dec ($num);
  193. &set_label("inner");
  194. &pmuludq($acc0,$mul0); # ap[j]*bp[i]
  195. &pmuludq($acc1,$mul1); # np[j]*m1
  196. &paddq ($car0,$acc0); # +=c0
  197. &paddq ($car1,$acc1); # +=c1
  198. &movq ($acc0,$car0);
  199. &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1]
  200. &pand ($acc0,$mask);
  201. &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
  202. &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j]
  203. &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
  204. &psrlq ($car0,32);
  205. &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]=
  206. &psrlq ($car1,32);
  207. &paddq ($car0,$temp); # +=tp[j+1]
  208. &dec ($num);
  209. &lea ($j,&DWP(1,$j)); # j++
  210. &jnz (&label("inner"));
  211. &mov ($num,$j);
  212. &pmuludq($acc0,$mul0); # ap[num-1]*bp[i]
  213. &pmuludq($acc1,$mul1); # np[num-1]*m1
  214. &paddq ($car0,$acc0); # +=c0
  215. &paddq ($car1,$acc1); # +=c1
  216. &movq ($acc0,$car0);
  217. &pand ($acc0,$mask);
  218. &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1]
  219. &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
  220. &psrlq ($car0,32);
  221. &psrlq ($car1,32);
  222. &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num]
  223. &paddq ($car1,$car0);
  224. &paddq ($car1,$temp);
  225. &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]
  226. &lea ($i,&DWP(1,$i)); # i++
  227. &cmp ($i,$num);
  228. &jle (&label("outer"));
  229. &emms (); # done with mmx bank
  230. &jmp (&label("common_tail"));
  231. &set_label("non_sse2",16);
  232. }
  233. if (0) {
  234. &mov ("esp",$_sp);
  235. &xor ("eax","eax"); # signal "not fast enough [yet]"
  236. &jmp (&label("just_leave"));
  237. # While the below code provides competitive performance for
  238. # all key lengthes on modern Intel cores, it's still more
  239. # than 10% slower for 4096-bit key elsewhere:-( "Competitive"
  240. # means compared to the original integer-only assembler.
  241. # 512-bit RSA sign is better by ~40%, but that's about all
  242. # one can say about all CPUs...
  243. } else {
  244. $inp="esi"; # integer path uses these registers differently
  245. $word="edi";
  246. $carry="ebp";
  247. &mov ($inp,$_ap);
  248. &lea ($carry,&DWP(1,$num));
  249. &mov ($word,$_bp);
  250. &xor ($j,$j); # j=0
  251. &mov ("edx",$inp);
  252. &and ($carry,1); # see if num is even
  253. &sub ("edx",$word); # see if ap==bp
  254. &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num]
  255. &or ($carry,"edx");
  256. &mov ($word,&DWP(0,$word)); # bp[0]
  257. &jz (&label("bn_sqr_mont"));
  258. &mov ($_bpend,"eax");
  259. &mov ("eax",&DWP(0,$inp));
  260. &xor ("edx","edx");
  261. &set_label("mull",16);
  262. &mov ($carry,"edx");
  263. &mul ($word); # ap[j]*bp[0]
  264. &add ($carry,"eax");
  265. &lea ($j,&DWP(1,$j));
  266. &adc ("edx",0);
  267. &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
  268. &cmp ($j,$num);
  269. &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
  270. &jl (&label("mull"));
  271. &mov ($carry,"edx");
  272. &mul ($word); # ap[num-1]*bp[0]
  273. &mov ($word,$_n0);
  274. &add ("eax",$carry);
  275. &mov ($inp,$_np);
  276. &adc ("edx",0);
  277. &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
  278. &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]=
  279. &xor ($j,$j);
  280. &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
  281. &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
  282. &mov ("eax",&DWP(0,$inp)); # np[0]
  283. &mul ($word); # np[0]*m
  284. &add ("eax",&DWP($frame,"esp")); # +=tp[0]
  285. &mov ("eax",&DWP(4,$inp)); # np[1]
  286. &adc ("edx",0);
  287. &inc ($j);
  288. &jmp (&label("2ndmadd"));
  289. &set_label("1stmadd",16);
  290. &mov ($carry,"edx");
  291. &mul ($word); # ap[j]*bp[i]
  292. &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
  293. &lea ($j,&DWP(1,$j));
  294. &adc ("edx",0);
  295. &add ($carry,"eax");
  296. &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
  297. &adc ("edx",0);
  298. &cmp ($j,$num);
  299. &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
  300. &jl (&label("1stmadd"));
  301. &mov ($carry,"edx");
  302. &mul ($word); # ap[num-1]*bp[i]
  303. &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1]
  304. &mov ($word,$_n0);
  305. &adc ("edx",0);
  306. &mov ($inp,$_np);
  307. &add ($carry,"eax");
  308. &adc ("edx",0);
  309. &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
  310. &xor ($j,$j);
  311. &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
  312. &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]=
  313. &adc ($j,0);
  314. &mov ("eax",&DWP(0,$inp)); # np[0]
  315. &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
  316. &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
  317. &mul ($word); # np[0]*m
  318. &add ("eax",&DWP($frame,"esp")); # +=tp[0]
  319. &mov ("eax",&DWP(4,$inp)); # np[1]
  320. &adc ("edx",0);
  321. &mov ($j,1);
  322. &set_label("2ndmadd",16);
  323. &mov ($carry,"edx");
  324. &mul ($word); # np[j]*m
  325. &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
  326. &lea ($j,&DWP(1,$j));
  327. &adc ("edx",0);
  328. &add ($carry,"eax");
  329. &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1]
  330. &adc ("edx",0);
  331. &cmp ($j,$num);
  332. &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]=
  333. &jl (&label("2ndmadd"));
  334. &mov ($carry,"edx");
  335. &mul ($word); # np[j]*m
  336. &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
  337. &adc ("edx",0);
  338. &add ($carry,"eax");
  339. &adc ("edx",0);
  340. &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=
  341. &xor ("eax","eax");
  342. &mov ($j,$_bp); # &bp[i]
  343. &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
  344. &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
  345. &lea ($j,&DWP(4,$j));
  346. &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
  347. &cmp ($j,$_bpend);
  348. &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
  349. &je (&label("common_tail"));
  350. &mov ($word,&DWP(0,$j)); # bp[i+1]
  351. &mov ($inp,$_ap);
  352. &mov ($_bp,$j); # &bp[++i]
  353. &xor ($j,$j);
  354. &xor ("edx","edx");
  355. &mov ("eax",&DWP(0,$inp));
  356. &jmp (&label("1stmadd"));
  357. &set_label("bn_sqr_mont",16);
  358. $sbit=$num;
  359. &mov ($_num,$num);
  360. &mov ($_bp,$j); # i=0
  361. &mov ("eax",$word); # ap[0]
  362. &mul ($word); # ap[0]*ap[0]
  363. &mov (&DWP($frame,"esp"),"eax"); # tp[0]=
  364. &mov ($sbit,"edx");
  365. &shr ("edx",1);
  366. &and ($sbit,1);
  367. &inc ($j);
  368. &set_label("sqr",16);
  369. &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
  370. &mov ($carry,"edx");
  371. &mul ($word); # ap[j]*ap[0]
  372. &add ("eax",$carry);
  373. &lea ($j,&DWP(1,$j));
  374. &adc ("edx",0);
  375. &lea ($carry,&DWP(0,$sbit,"eax",2));
  376. &shr ("eax",31);
  377. &cmp ($j,$_num);
  378. &mov ($sbit,"eax");
  379. &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
  380. &jl (&label("sqr"));
  381. &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1]
  382. &mov ($carry,"edx");
  383. &mul ($word); # ap[num-1]*ap[0]
  384. &add ("eax",$carry);
  385. &mov ($word,$_n0);
  386. &adc ("edx",0);
  387. &mov ($inp,$_np);
  388. &lea ($carry,&DWP(0,$sbit,"eax",2));
  389. &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
  390. &shr ("eax",31);
  391. &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]=
  392. &lea ($carry,&DWP(0,"eax","edx",2));
  393. &mov ("eax",&DWP(0,$inp)); # np[0]
  394. &shr ("edx",31);
  395. &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]=
  396. &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]=
  397. &mul ($word); # np[0]*m
  398. &add ("eax",&DWP($frame,"esp")); # +=tp[0]
  399. &mov ($num,$j);
  400. &adc ("edx",0);
  401. &mov ("eax",&DWP(4,$inp)); # np[1]
  402. &mov ($j,1);
  403. &set_label("3rdmadd",16);
  404. &mov ($carry,"edx");
  405. &mul ($word); # np[j]*m
  406. &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
  407. &adc ("edx",0);
  408. &add ($carry,"eax");
  409. &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1]
  410. &adc ("edx",0);
  411. &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]=
  412. &mov ($carry,"edx");
  413. &mul ($word); # np[j+1]*m
  414. &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1]
  415. &lea ($j,&DWP(2,$j));
  416. &adc ("edx",0);
  417. &add ($carry,"eax");
  418. &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2]
  419. &adc ("edx",0);
  420. &cmp ($j,$num);
  421. &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]=
  422. &jl (&label("3rdmadd"));
  423. &mov ($carry,"edx");
  424. &mul ($word); # np[j]*m
  425. &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
  426. &adc ("edx",0);
  427. &add ($carry,"eax");
  428. &adc ("edx",0);
  429. &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=
  430. &mov ($j,$_bp); # i
  431. &xor ("eax","eax");
  432. &mov ($inp,$_ap);
  433. &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
  434. &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
  435. &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
  436. &cmp ($j,$num);
  437. &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
  438. &je (&label("common_tail"));
  439. &mov ($word,&DWP(4,$inp,$j,4)); # ap[i]
  440. &lea ($j,&DWP(1,$j));
  441. &mov ("eax",$word);
  442. &mov ($_bp,$j); # ++i
  443. &mul ($word); # ap[i]*ap[i]
  444. &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i]
  445. &adc ("edx",0);
  446. &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]=
  447. &xor ($carry,$carry);
  448. &cmp ($j,$num);
  449. &lea ($j,&DWP(1,$j));
  450. &je (&label("sqrlast"));
  451. &mov ($sbit,"edx"); # zaps $num
  452. &shr ("edx",1);
  453. &and ($sbit,1);
  454. &set_label("sqradd",16);
  455. &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
  456. &mov ($carry,"edx");
  457. &mul ($word); # ap[j]*ap[i]
  458. &add ("eax",$carry);
  459. &lea ($carry,&DWP(0,"eax","eax"));
  460. &adc ("edx",0);
  461. &shr ("eax",31);
  462. &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
  463. &lea ($j,&DWP(1,$j));
  464. &adc ("eax",0);
  465. &add ($carry,$sbit);
  466. &adc ("eax",0);
  467. &cmp ($j,$_num);
  468. &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
  469. &mov ($sbit,"eax");
  470. &jle (&label("sqradd"));
  471. &mov ($carry,"edx");
  472. &add ("edx","edx");
  473. &shr ($carry,31);
  474. &add ("edx",$sbit);
  475. &adc ($carry,0);
  476. &set_label("sqrlast");
  477. &mov ($word,$_n0);
  478. &mov ($inp,$_np);
  479. &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
  480. &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num]
  481. &mov ("eax",&DWP(0,$inp)); # np[0]
  482. &adc ($carry,0);
  483. &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]=
  484. &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]=
  485. &mul ($word); # np[0]*m
  486. &add ("eax",&DWP($frame,"esp")); # +=tp[0]
  487. &lea ($num,&DWP(-1,$j));
  488. &adc ("edx",0);
  489. &mov ($j,1);
  490. &mov ("eax",&DWP(4,$inp)); # np[1]
  491. &jmp (&label("3rdmadd"));
  492. }
  493. &set_label("common_tail",16);
  494. &mov ($np,$_np); # load modulus pointer
  495. &mov ($rp,$_rp); # load result pointer
  496. &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped]
  497. &mov ("eax",&DWP(0,$tp)); # tp[0]
  498. &mov ($j,$num); # j=num-1
  499. &xor ($i,$i); # i=0 and clear CF!
  500. &set_label("sub",16);
  501. &sbb ("eax",&DWP(0,$np,$i,4));
  502. &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i]
  503. &dec ($j); # doesn't affect CF!
  504. &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1]
  505. &lea ($i,&DWP(1,$i)); # i++
  506. &jge (&label("sub"));
  507. &sbb ("eax",0); # handle upmost overflow bit
  508. &and ($tp,"eax");
  509. &not ("eax");
  510. &mov ($np,$rp);
  511. &and ($np,"eax");
  512. &or ($tp,$np); # tp=carry?tp:rp
  513. &set_label("copy",16); # copy or in-place refresh
  514. &mov ("eax",&DWP(0,$tp,$num,4));
  515. &mov (&DWP(0,$rp,$num,4),"eax"); # rp[i]=tp[i]
  516. &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector
  517. &dec ($num);
  518. &jge (&label("copy"));
  519. &mov ("esp",$_sp); # pull saved stack pointer
  520. &mov ("eax",1);
  521. &set_label("just_leave");
  522. &function_end("bn_mul_mont");
  523. &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
  524. &asm_finish();