bn_lcl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. /* crypto/bn/bn_lcl.h */
  2. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  3. * All rights reserved.
  4. *
  5. * This package is an SSL implementation written
  6. * by Eric Young (eay@cryptsoft.com).
  7. * The implementation was written so as to conform with Netscapes SSL.
  8. *
  9. * This library is free for commercial and non-commercial use as long as
  10. * the following conditions are aheared to. The following conditions
  11. * apply to all code found in this distribution, be it the RC4, RSA,
  12. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  13. * included with this distribution is covered by the same copyright terms
  14. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  15. *
  16. * Copyright remains Eric Young's, and as such any Copyright notices in
  17. * the code are not to be removed.
  18. * If this package is used in a product, Eric Young should be given attribution
  19. * as the author of the parts of the library used.
  20. * This can be in the form of a textual message at program startup or
  21. * in documentation (online or textual) provided with the package.
  22. *
  23. * Redistribution and use in source and binary forms, with or without
  24. * modification, are permitted provided that the following conditions
  25. * are met:
  26. * 1. Redistributions of source code must retain the copyright
  27. * notice, this list of conditions and the following disclaimer.
  28. * 2. Redistributions in binary form must reproduce the above copyright
  29. * notice, this list of conditions and the following disclaimer in the
  30. * documentation and/or other materials provided with the distribution.
  31. * 3. All advertising materials mentioning features or use of this software
  32. * must display the following acknowledgement:
  33. * "This product includes cryptographic software written by
  34. * Eric Young (eay@cryptsoft.com)"
  35. * The word 'cryptographic' can be left out if the rouines from the library
  36. * being used are not cryptographic related :-).
  37. * 4. If you include any Windows specific code (or a derivative thereof) from
  38. * the apps directory (application code) you must include an acknowledgement:
  39. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  40. *
  41. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  42. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  43. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  44. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  45. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  46. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  47. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  49. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  50. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  51. * SUCH DAMAGE.
  52. *
  53. * The licence and distribution terms for any publically available version or
  54. * derivative of this code cannot be changed. i.e. this code cannot simply be
  55. * copied and put under another distribution licence
  56. * [including the GNU Public Licence.]
  57. */
  58. /* ====================================================================
  59. * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
  60. *
  61. * Redistribution and use in source and binary forms, with or without
  62. * modification, are permitted provided that the following conditions
  63. * are met:
  64. *
  65. * 1. Redistributions of source code must retain the above copyright
  66. * notice, this list of conditions and the following disclaimer.
  67. *
  68. * 2. Redistributions in binary form must reproduce the above copyright
  69. * notice, this list of conditions and the following disclaimer in
  70. * the documentation and/or other materials provided with the
  71. * distribution.
  72. *
  73. * 3. All advertising materials mentioning features or use of this
  74. * software must display the following acknowledgment:
  75. * "This product includes software developed by the OpenSSL Project
  76. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  77. *
  78. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  79. * endorse or promote products derived from this software without
  80. * prior written permission. For written permission, please contact
  81. * openssl-core@openssl.org.
  82. *
  83. * 5. Products derived from this software may not be called "OpenSSL"
  84. * nor may "OpenSSL" appear in their names without prior written
  85. * permission of the OpenSSL Project.
  86. *
  87. * 6. Redistributions of any form whatsoever must retain the following
  88. * acknowledgment:
  89. * "This product includes software developed by the OpenSSL Project
  90. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  91. *
  92. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  93. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  94. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  95. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  96. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  97. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  98. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  99. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  100. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  101. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  102. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  103. * OF THE POSSIBILITY OF SUCH DAMAGE.
  104. * ====================================================================
  105. *
  106. * This product includes cryptographic software written by Eric Young
  107. * (eay@cryptsoft.com). This product includes software written by Tim
  108. * Hudson (tjh@cryptsoft.com).
  109. *
  110. */
  111. #ifndef HEADER_BN_LCL_H
  112. # define HEADER_BN_LCL_H
  113. # include <openssl/bn.h>
  114. #ifdef __cplusplus
  115. extern "C" {
  116. #endif
  117. /*-
  118. * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
  119. *
  120. *
  121. * For window size 'w' (w >= 2) and a random 'b' bits exponent,
  122. * the number of multiplications is a constant plus on average
  123. *
  124. * 2^(w-1) + (b-w)/(w+1);
  125. *
  126. * here 2^(w-1) is for precomputing the table (we actually need
  127. * entries only for windows that have the lowest bit set), and
  128. * (b-w)/(w+1) is an approximation for the expected number of
  129. * w-bit windows, not counting the first one.
  130. *
  131. * Thus we should use
  132. *
  133. * w >= 6 if b > 671
  134. * w = 5 if 671 > b > 239
  135. * w = 4 if 239 > b > 79
  136. * w = 3 if 79 > b > 23
  137. * w <= 2 if 23 > b
  138. *
  139. * (with draws in between). Very small exponents are often selected
  140. * with low Hamming weight, so we use w = 1 for b <= 23.
  141. */
  142. # if 1
  143. # define BN_window_bits_for_exponent_size(b) \
  144. ((b) > 671 ? 6 : \
  145. (b) > 239 ? 5 : \
  146. (b) > 79 ? 4 : \
  147. (b) > 23 ? 3 : 1)
  148. # else
  149. /*
  150. * Old SSLeay/OpenSSL table. Maximum window size was 5, so this table differs
  151. * for b==1024; but it coincides for other interesting values (b==160,
  152. * b==512).
  153. */
  154. # define BN_window_bits_for_exponent_size(b) \
  155. ((b) > 255 ? 5 : \
  156. (b) > 127 ? 4 : \
  157. (b) > 17 ? 3 : 1)
  158. # endif
  159. /*
  160. * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
  161. * line width of the target processor is at least the following value.
  162. */
  163. # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
  164. # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
  165. /*
  166. * Window sizes optimized for fixed window size modular exponentiation
  167. * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
  168. * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
  169. * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
  170. * defined for cache line sizes of 32 and 64, cache line sizes where
  171. * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
  172. * used on processors that have a 128 byte or greater cache line size.
  173. */
  174. # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
  175. # define BN_window_bits_for_ctime_exponent_size(b) \
  176. ((b) > 937 ? 6 : \
  177. (b) > 306 ? 5 : \
  178. (b) > 89 ? 4 : \
  179. (b) > 22 ? 3 : 1)
  180. # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
  181. # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
  182. # define BN_window_bits_for_ctime_exponent_size(b) \
  183. ((b) > 306 ? 5 : \
  184. (b) > 89 ? 4 : \
  185. (b) > 22 ? 3 : 1)
  186. # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
  187. # endif
  188. /* Pentium pro 16,16,16,32,64 */
  189. /* Alpha 16,16,16,16.64 */
  190. # define BN_MULL_SIZE_NORMAL (16)/* 32 */
  191. # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
  192. # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
  193. # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
  194. # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
  195. /*
  196. * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
  197. * size_t was used to perform integer-only operations on pointers. This
  198. * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
  199. * is still only 32 bits. What's needed in these cases is an integer type
  200. * with the same size as a pointer, which size_t is not certain to be. The
  201. * only fix here is VMS-specific.
  202. */
  203. # if defined(OPENSSL_SYS_VMS)
  204. # if __INITIAL_POINTER_SIZE == 64
  205. # define PTR_SIZE_INT long long
  206. # else /* __INITIAL_POINTER_SIZE == 64 */
  207. # define PTR_SIZE_INT int
  208. # endif /* __INITIAL_POINTER_SIZE == 64 [else] */
  209. # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
  210. # define PTR_SIZE_INT size_t
  211. # endif /* defined(OPENSSL_SYS_VMS) [else] */
  212. # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
  213. /*
  214. * BN_UMULT_HIGH section.
  215. *
  216. * No, I'm not trying to overwhelm you when stating that the
  217. * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
  218. * you to be impressed when I say that if the compiler doesn't
  219. * support 2*N integer type, then you have to replace every N*N
  220. * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
  221. * and additions which unavoidably results in severe performance
  222. * penalties. Of course provided that the hardware is capable of
  223. * producing 2*N result... That's when you normally start
  224. * considering assembler implementation. However! It should be
  225. * pointed out that some CPUs (most notably Alpha, PowerPC and
  226. * upcoming IA-64 family:-) provide *separate* instruction
  227. * calculating the upper half of the product placing the result
  228. * into a general purpose register. Now *if* the compiler supports
  229. * inline assembler, then it's not impossible to implement the
  230. * "bignum" routines (and have the compiler optimize 'em)
  231. * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
  232. * macro is about:-)
  233. *
  234. * <appro@fy.chalmers.se>
  235. */
  236. # if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
  237. # if defined(__DECC)
  238. # include <c_asm.h>
  239. # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
  240. # elif defined(__GNUC__) && __GNUC__>=2
  241. # define BN_UMULT_HIGH(a,b) ({ \
  242. register BN_ULONG ret; \
  243. asm ("umulh %1,%2,%0" \
  244. : "=r"(ret) \
  245. : "r"(a), "r"(b)); \
  246. ret; })
  247. # endif /* compiler */
  248. # elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
  249. # if defined(__GNUC__) && __GNUC__>=2
  250. # define BN_UMULT_HIGH(a,b) ({ \
  251. register BN_ULONG ret; \
  252. asm ("mulhdu %0,%1,%2" \
  253. : "=r"(ret) \
  254. : "r"(a), "r"(b)); \
  255. ret; })
  256. # endif /* compiler */
  257. # elif (defined(__x86_64) || defined(__x86_64__)) && \
  258. (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
  259. # if defined(__GNUC__) && __GNUC__>=2
  260. # define BN_UMULT_HIGH(a,b) ({ \
  261. register BN_ULONG ret,discard; \
  262. asm ("mulq %3" \
  263. : "=a"(discard),"=d"(ret) \
  264. : "a"(a), "g"(b) \
  265. : "cc"); \
  266. ret; })
  267. # define BN_UMULT_LOHI(low,high,a,b) \
  268. asm ("mulq %3" \
  269. : "=a"(low),"=d"(high) \
  270. : "a"(a),"g"(b) \
  271. : "cc");
  272. # endif
  273. # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
  274. # if defined(_MSC_VER) && _MSC_VER>=1400
  275. unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
  276. unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
  277. unsigned __int64 *h);
  278. # pragma intrinsic(__umulh,_umul128)
  279. # define BN_UMULT_HIGH(a,b) __umulh((a),(b))
  280. # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
  281. # endif
  282. # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
  283. # if defined(__GNUC__) && __GNUC__>=2
  284. # if __GNUC__>4 || (__GNUC__>=4 && __GNUC_MINOR__>=4)
  285. /* "h" constraint is no more since 4.4 */
  286. # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
  287. # define BN_UMULT_LOHI(low,high,a,b) ({ \
  288. __uint128_t ret=(__uint128_t)(a)*(b); \
  289. (high)=ret>>64; (low)=ret; })
  290. # else
  291. # define BN_UMULT_HIGH(a,b) ({ \
  292. register BN_ULONG ret; \
  293. asm ("dmultu %1,%2" \
  294. : "=h"(ret) \
  295. : "r"(a), "r"(b) : "l"); \
  296. ret; })
  297. # define BN_UMULT_LOHI(low,high,a,b)\
  298. asm ("dmultu %2,%3" \
  299. : "=l"(low),"=h"(high) \
  300. : "r"(a), "r"(b));
  301. # endif
  302. # endif
  303. # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
  304. # if defined(__GNUC__) && __GNUC__>=2
  305. # define BN_UMULT_HIGH(a,b) ({ \
  306. register BN_ULONG ret; \
  307. asm ("umulh %0,%1,%2" \
  308. : "=r"(ret) \
  309. : "r"(a), "r"(b)); \
  310. ret; })
  311. # endif
  312. # endif /* cpu */
  313. # endif /* OPENSSL_NO_ASM */
  314. /*************************************************************
  315. * Using the long long type
  316. */
  317. # define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
  318. # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
  319. # ifdef BN_DEBUG_RAND
  320. # define bn_clear_top2max(a) \
  321. { \
  322. int ind = (a)->dmax - (a)->top; \
  323. BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
  324. for (; ind != 0; ind--) \
  325. *(++ftl) = 0x0; \
  326. }
  327. # else
  328. # define bn_clear_top2max(a)
  329. # endif
  330. # ifdef BN_LLONG
  331. # define mul_add(r,a,w,c) { \
  332. BN_ULLONG t; \
  333. t=(BN_ULLONG)w * (a) + (r) + (c); \
  334. (r)= Lw(t); \
  335. (c)= Hw(t); \
  336. }
  337. # define mul(r,a,w,c) { \
  338. BN_ULLONG t; \
  339. t=(BN_ULLONG)w * (a) + (c); \
  340. (r)= Lw(t); \
  341. (c)= Hw(t); \
  342. }
  343. # define sqr(r0,r1,a) { \
  344. BN_ULLONG t; \
  345. t=(BN_ULLONG)(a)*(a); \
  346. (r0)=Lw(t); \
  347. (r1)=Hw(t); \
  348. }
  349. # elif defined(BN_UMULT_LOHI)
  350. # define mul_add(r,a,w,c) { \
  351. BN_ULONG high,low,ret,tmp=(a); \
  352. ret = (r); \
  353. BN_UMULT_LOHI(low,high,w,tmp); \
  354. ret += (c); \
  355. (c) = (ret<(c))?1:0; \
  356. (c) += high; \
  357. ret += low; \
  358. (c) += (ret<low)?1:0; \
  359. (r) = ret; \
  360. }
  361. # define mul(r,a,w,c) { \
  362. BN_ULONG high,low,ret,ta=(a); \
  363. BN_UMULT_LOHI(low,high,w,ta); \
  364. ret = low + (c); \
  365. (c) = high; \
  366. (c) += (ret<low)?1:0; \
  367. (r) = ret; \
  368. }
  369. # define sqr(r0,r1,a) { \
  370. BN_ULONG tmp=(a); \
  371. BN_UMULT_LOHI(r0,r1,tmp,tmp); \
  372. }
  373. # elif defined(BN_UMULT_HIGH)
  374. # define mul_add(r,a,w,c) { \
  375. BN_ULONG high,low,ret,tmp=(a); \
  376. ret = (r); \
  377. high= BN_UMULT_HIGH(w,tmp); \
  378. ret += (c); \
  379. low = (w) * tmp; \
  380. (c) = (ret<(c))?1:0; \
  381. (c) += high; \
  382. ret += low; \
  383. (c) += (ret<low)?1:0; \
  384. (r) = ret; \
  385. }
  386. # define mul(r,a,w,c) { \
  387. BN_ULONG high,low,ret,ta=(a); \
  388. low = (w) * ta; \
  389. high= BN_UMULT_HIGH(w,ta); \
  390. ret = low + (c); \
  391. (c) = high; \
  392. (c) += (ret<low)?1:0; \
  393. (r) = ret; \
  394. }
  395. # define sqr(r0,r1,a) { \
  396. BN_ULONG tmp=(a); \
  397. (r0) = tmp * tmp; \
  398. (r1) = BN_UMULT_HIGH(tmp,tmp); \
  399. }
  400. # else
  401. /*************************************************************
  402. * No long long type
  403. */
  404. # define LBITS(a) ((a)&BN_MASK2l)
  405. # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
  406. # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
  407. # define LLBITS(a) ((a)&BN_MASKl)
  408. # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
  409. # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
  410. # define mul64(l,h,bl,bh) \
  411. { \
  412. BN_ULONG m,m1,lt,ht; \
  413. \
  414. lt=l; \
  415. ht=h; \
  416. m =(bh)*(lt); \
  417. lt=(bl)*(lt); \
  418. m1=(bl)*(ht); \
  419. ht =(bh)*(ht); \
  420. m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
  421. ht+=HBITS(m); \
  422. m1=L2HBITS(m); \
  423. lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
  424. (l)=lt; \
  425. (h)=ht; \
  426. }
  427. # define sqr64(lo,ho,in) \
  428. { \
  429. BN_ULONG l,h,m; \
  430. \
  431. h=(in); \
  432. l=LBITS(h); \
  433. h=HBITS(h); \
  434. m =(l)*(h); \
  435. l*=l; \
  436. h*=h; \
  437. h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
  438. m =(m&BN_MASK2l)<<(BN_BITS4+1); \
  439. l=(l+m)&BN_MASK2; if (l < m) h++; \
  440. (lo)=l; \
  441. (ho)=h; \
  442. }
  443. # define mul_add(r,a,bl,bh,c) { \
  444. BN_ULONG l,h; \
  445. \
  446. h= (a); \
  447. l=LBITS(h); \
  448. h=HBITS(h); \
  449. mul64(l,h,(bl),(bh)); \
  450. \
  451. /* non-multiply part */ \
  452. l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
  453. (c)=(r); \
  454. l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
  455. (c)=h&BN_MASK2; \
  456. (r)=l; \
  457. }
  458. # define mul(r,a,bl,bh,c) { \
  459. BN_ULONG l,h; \
  460. \
  461. h= (a); \
  462. l=LBITS(h); \
  463. h=HBITS(h); \
  464. mul64(l,h,(bl),(bh)); \
  465. \
  466. /* non-multiply part */ \
  467. l+=(c); if ((l&BN_MASK2) < (c)) h++; \
  468. (c)=h&BN_MASK2; \
  469. (r)=l&BN_MASK2; \
  470. }
  471. # endif /* !BN_LLONG */
  472. # if defined(OPENSSL_DOING_MAKEDEPEND) && defined(OPENSSL_FIPS)
  473. # undef bn_div_words
  474. # endif
  475. void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
  476. void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  477. void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  478. void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
  479. void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
  480. void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
  481. int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
  482. int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
  483. void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
  484. int dna, int dnb, BN_ULONG *t);
  485. void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
  486. int n, int tna, int tnb, BN_ULONG *t);
  487. void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
  488. void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
  489. void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
  490. BN_ULONG *t);
  491. void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
  492. BN_ULONG *t);
  493. BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
  494. int cl, int dl);
  495. BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
  496. int cl, int dl);
  497. int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  498. const BN_ULONG *np, const BN_ULONG *n0, int num);
  499. #ifdef __cplusplus
  500. }
  501. #endif
  502. #endif