des.pod 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. =pod
  2. =head1 NAME
  3. DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
  4. DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
  5. DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
  6. DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
  7. DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
  8. DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
  9. DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
  10. DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
  11. DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption
  12. =head1 SYNOPSIS
  13. #include <openssl/des.h>
  14. void DES_random_key(DES_cblock *ret);
  15. int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
  16. int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
  17. int DES_set_key_checked(const_DES_cblock *key,
  18. DES_key_schedule *schedule);
  19. void DES_set_key_unchecked(const_DES_cblock *key,
  20. DES_key_schedule *schedule);
  21. void DES_set_odd_parity(DES_cblock *key);
  22. int DES_is_weak_key(const_DES_cblock *key);
  23. void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
  24. DES_key_schedule *ks, int enc);
  25. void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
  26. DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
  27. void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
  28. DES_key_schedule *ks1, DES_key_schedule *ks2,
  29. DES_key_schedule *ks3, int enc);
  30. void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
  31. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  32. int enc);
  33. void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
  34. int numbits, long length, DES_key_schedule *schedule,
  35. DES_cblock *ivec, int enc);
  36. void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
  37. int numbits, long length, DES_key_schedule *schedule,
  38. DES_cblock *ivec);
  39. void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
  40. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  41. int enc);
  42. void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
  43. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  44. int *num, int enc);
  45. void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
  46. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  47. int *num);
  48. void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
  49. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  50. const_DES_cblock *inw, const_DES_cblock *outw, int enc);
  51. void DES_ede2_cbc_encrypt(const unsigned char *input,
  52. unsigned char *output, long length, DES_key_schedule *ks1,
  53. DES_key_schedule *ks2, DES_cblock *ivec, int enc);
  54. void DES_ede2_cfb64_encrypt(const unsigned char *in,
  55. unsigned char *out, long length, DES_key_schedule *ks1,
  56. DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
  57. void DES_ede2_ofb64_encrypt(const unsigned char *in,
  58. unsigned char *out, long length, DES_key_schedule *ks1,
  59. DES_key_schedule *ks2, DES_cblock *ivec, int *num);
  60. void DES_ede3_cbc_encrypt(const unsigned char *input,
  61. unsigned char *output, long length, DES_key_schedule *ks1,
  62. DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
  63. int enc);
  64. void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
  65. long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
  66. DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
  67. int enc);
  68. void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
  69. long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
  70. DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
  71. void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
  72. long length, DES_key_schedule *ks1,
  73. DES_key_schedule *ks2, DES_key_schedule *ks3,
  74. DES_cblock *ivec, int *num);
  75. DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
  76. long length, DES_key_schedule *schedule,
  77. const_DES_cblock *ivec);
  78. DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
  79. long length, int out_count, DES_cblock *seed);
  80. void DES_string_to_key(const char *str, DES_cblock *key);
  81. void DES_string_to_2keys(const char *str, DES_cblock *key1,
  82. DES_cblock *key2);
  83. char *DES_fcrypt(const char *buf, const char *salt, char *ret);
  84. char *DES_crypt(const char *buf, const char *salt);
  85. int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
  86. DES_cblock *iv);
  87. int DES_enc_write(int fd, const void *buf, int len,
  88. DES_key_schedule *sched, DES_cblock *iv);
  89. =head1 DESCRIPTION
  90. This library contains a fast implementation of the DES encryption
  91. algorithm.
  92. There are two phases to the use of DES encryption. The first is the
  93. generation of a I<DES_key_schedule> from a key, the second is the
  94. actual encryption. A DES key is of type I<DES_cblock>. This type is
  95. consists of 8 bytes with odd parity. The least significant bit in
  96. each byte is the parity bit. The key schedule is an expanded form of
  97. the key; it is used to speed the encryption process.
  98. DES_random_key() generates a random key. The PRNG must be seeded
  99. prior to using this function (see L<rand(3)|rand(3)>). If the PRNG
  100. could not generate a secure key, 0 is returned.
  101. Before a DES key can be used, it must be converted into the
  102. architecture dependent I<DES_key_schedule> via the
  103. DES_set_key_checked() or DES_set_key_unchecked() function.
  104. DES_set_key_checked() will check that the key passed is of odd parity
  105. and is not a weak or semi-weak key. If the parity is wrong, then -1
  106. is returned. If the key is a weak key, then -2 is returned. If an
  107. error is returned, the key schedule is not generated.
  108. DES_set_key() works like
  109. DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
  110. otherwise like DES_set_key_unchecked(). These functions are available
  111. for compatibility; it is recommended to use a function that does not
  112. depend on a global variable.
  113. DES_set_odd_parity() sets the parity of the passed I<key> to odd.
  114. DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it
  115. is ok.
  116. The following routines mostly operate on an input and output stream of
  117. I<DES_cblock>s.
  118. DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
  119. decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
  120. (ECB) mode. It always transforms the input data, pointed to by
  121. I<input>, into the output data, pointed to by the I<output> argument.
  122. If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
  123. (cleartext) is encrypted in to the I<output> (ciphertext) using the
  124. key_schedule specified by the I<schedule> argument, previously set via
  125. I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
  126. ciphertext) is decrypted into the I<output> (now cleartext). Input
  127. and output may overlap. DES_ecb_encrypt() does not return a value.
  128. DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
  129. three-key Triple-DES encryption in ECB mode. This involves encrypting
  130. the input with I<ks1>, decrypting with the key schedule I<ks2>, and
  131. then encrypting with I<ks3>. This routine greatly reduces the chances
  132. of brute force breaking of DES and has the advantage of if I<ks1>,
  133. I<ks2> and I<ks3> are the same, it is equivalent to just encryption
  134. using ECB mode and I<ks1> as the key.
  135. The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
  136. encryption by using I<ks1> for the final encryption.
  137. DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
  138. (CBC) mode of DES. If the I<encrypt> argument is non-zero, the
  139. routine cipher-block-chain encrypts the cleartext data pointed to by
  140. the I<input> argument into the ciphertext pointed to by the I<output>
  141. argument, using the key schedule provided by the I<schedule> argument,
  142. and initialization vector provided by the I<ivec> argument. If the
  143. I<length> argument is not an integral multiple of eight bytes, the
  144. last block is copied to a temporary area and zero filled. The output
  145. is always an integral multiple of eight bytes.
  146. DES_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and
  147. I<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret
  148. (unlike the iv) and are as such, part of the key. So the key is sort
  149. of 24 bytes. This is much better than CBC DES.
  150. DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
  151. three keys. This means that each DES operation inside the CBC mode is
  152. an C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL.
  153. The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
  154. reusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>.
  155. This form of Triple-DES is used by the RSAREF library.
  156. DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
  157. chaining mode used by Kerberos v4. Its parameters are the same as
  158. DES_ncbc_encrypt().
  159. DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This
  160. method takes an array of characters as input and outputs and array of
  161. characters. It does not require any padding to 8 character groups.
  162. Note: the I<ivec> variable is changed and the new changed value needs to
  163. be passed to the next call to this function. Since this function runs
  164. a complete DES ECB encryption per I<numbits>, this function is only
  165. suggested for use when sending small numbers of characters.
  166. DES_cfb64_encrypt()
  167. implements CFB mode of DES with 64bit feedback. Why is this
  168. useful you ask? Because this routine will allow you to encrypt an
  169. arbitrary number of bytes, no 8 byte padding. Each call to this
  170. routine will encrypt the input bytes to output and then update ivec
  171. and num. num contains 'how far' we are though ivec. If this does
  172. not make much sense, read more about cfb mode of DES :-).
  173. DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
  174. DES_cfb64_encrypt() except that Triple-DES is used.
  175. DES_ofb_encrypt() encrypts using output feedback mode. This method
  176. takes an array of characters as input and outputs and array of
  177. characters. It does not require any padding to 8 character groups.
  178. Note: the I<ivec> variable is changed and the new changed value needs to
  179. be passed to the next call to this function. Since this function runs
  180. a complete DES ECB encryption per numbits, this function is only
  181. suggested for use when sending small numbers of characters.
  182. DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
  183. Feed Back mode.
  184. DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
  185. DES_ofb64_encrypt(), using Triple-DES.
  186. The following functions are included in the DES library for
  187. compatibility with the MIT Kerberos library.
  188. DES_cbc_cksum() produces an 8 byte checksum based on the input stream
  189. (via CBC encryption). The last 4 bytes of the checksum are returned
  190. and the complete 8 bytes are placed in I<output>. This function is
  191. used by Kerberos v4. Other applications should use
  192. L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead.
  193. DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte
  194. checksum from the input bytes. The algorithm can be iterated over the
  195. input, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is
  196. non-NULL, the 8 bytes generated by each pass are written into
  197. I<output>.
  198. The following are DES-based transformations:
  199. DES_fcrypt() is a fast version of the Unix crypt(3) function. This
  200. version takes only a small amount of space relative to other fast
  201. crypt() implementations. This is different to the normal crypt in
  202. that the third parameter is the buffer that the return value is
  203. written into. It needs to be at least 14 bytes long. This function
  204. is thread safe, unlike the normal crypt.
  205. DES_crypt() is a faster replacement for the normal system crypt().
  206. This function calls DES_fcrypt() with a static array passed as the
  207. third parameter. This emulates the normal non-thread safe semantics
  208. of crypt(3).
  209. DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
  210. buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
  211. using I<sched> for the key and I<iv> as a starting vector. The actual
  212. data send down I<fd> consists of 4 bytes (in network byte order)
  213. containing the length of the following encrypted data. The encrypted
  214. data then follows, padded with random data out to a multiple of 8
  215. bytes.
  216. DES_enc_read() is used to read I<len> bytes from file descriptor
  217. I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to
  218. have come from DES_enc_write() and is decrypted using I<sched> for
  219. the key schedule and I<iv> for the initial vector.
  220. B<Warning:> The data format used by DES_enc_write() and DES_enc_read()
  221. has a cryptographic weakness: When asked to write more than MAXWRITE
  222. bytes, DES_enc_write() will split the data into several chunks that
  223. are all encrypted using the same IV. So don't use these functions
  224. unless you are sure you know what you do (in which case you might not
  225. want to use them anyway). They cannot handle non-blocking sockets.
  226. DES_enc_read() uses an internal state and thus cannot be used on
  227. multiple files.
  228. I<DES_rw_mode> is used to specify the encryption mode to use with
  229. DES_enc_read() and DES_end_write(). If set to I<DES_PCBC_MODE> (the
  230. default), DES_pcbc_encrypt is used. If set to I<DES_CBC_MODE>
  231. DES_cbc_encrypt is used.
  232. =head1 NOTES
  233. Single-key DES is insecure due to its short key size. ECB mode is
  234. not suitable for most applications; see L<des_modes(7)|des_modes(7)>.
  235. The L<evp(3)|evp(3)> library provides higher-level encryption functions.
  236. =head1 BUGS
  237. DES_3cbc_encrypt() is flawed and must not be used in applications.
  238. DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
  239. instead.
  240. DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
  241. What this means is that if you set numbits to 12, and length to 2, the
  242. first 12 bits will come from the 1st input byte and the low half of
  243. the second input byte. The second 12 bits will have the low 8 bits
  244. taken from the 3rd input byte and the top 4 bits taken from the 4th
  245. input byte. The same holds for output. This function has been
  246. implemented this way because most people will be using a multiple of 8
  247. and because once you get into pulling bytes input bytes apart things
  248. get ugly!
  249. DES_string_to_key() is available for backward compatibility with the
  250. MIT library. New applications should use a cryptographic hash function.
  251. The same applies for DES_string_to_2key().
  252. =head1 CONFORMING TO
  253. ANSI X3.106
  254. The B<des> library was written to be source code compatible with
  255. the MIT Kerberos library.
  256. =head1 SEE ALSO
  257. crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)>
  258. =head1 HISTORY
  259. In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid
  260. clashes with older versions of libdes. Compatibility des_ functions
  261. are provided for a short while, as well as crypt().
  262. Declarations for these are in <openssl/des_old.h>. There is no DES_
  263. variant for des_random_seed().
  264. This will happen to other functions
  265. as well if they are deemed redundant (des_random_seed() just calls
  266. RAND_seed() and is present for backward compatibility only), buggy or
  267. already scheduled for removal.
  268. des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(),
  269. des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
  270. des_quad_cksum(), des_random_key() and des_string_to_key()
  271. are available in the MIT Kerberos library;
  272. des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
  273. are available in newer versions of that library.
  274. des_set_key_checked() and des_set_key_unchecked() were added in
  275. OpenSSL 0.9.5.
  276. des_generate_random_block(), des_init_random_number_generator(),
  277. des_new_random_key(), des_set_random_generator_seed() and
  278. des_set_sequence_number() and des_rand_data() are used in newer
  279. versions of Kerberos but are not implemented here.
  280. des_random_key() generated cryptographically weak random data in
  281. SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
  282. MIT library.
  283. =head1 AUTHOR
  284. Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
  285. (http://www.openssl.org).
  286. =cut