123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484 |
- /*
- * WARNING: do not edit!
- * Generated by crypto/bn/bn_prime.pl
- * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <stdio.h>
- #include <time.h>
- #include "internal/cryptlib.h"
- #include "bn_lcl.h"
- /*
- * The quick sieve algorithm approach to weeding out primes is Philip
- * Zimmermann's, as implemented in PGP. I have had a read of his comments
- * and implemented my own version.
- */
- #include "bn_prime.h"
- static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
- const BIGNUM *a1_odd, int k, BN_CTX *ctx,
- BN_MONT_CTX *mont);
- static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods);
- static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
- const BIGNUM *add, const BIGNUM *rem,
- BN_CTX *ctx);
- int BN_GENCB_call(BN_GENCB *cb, int a, int b)
- {
- /* No callback means continue */
- if (!cb)
- return 1;
- switch (cb->ver) {
- case 1:
- /* Deprecated-style callbacks */
- if (!cb->cb.cb_1)
- return 1;
- cb->cb.cb_1(a, b, cb->arg);
- return 1;
- case 2:
- /* New-style callbacks */
- return cb->cb.cb_2(a, b, cb);
- default:
- break;
- }
- /* Unrecognised callback type */
- return 0;
- }
- int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
- const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
- {
- BIGNUM *t;
- int found = 0;
- int i, j, c1 = 0;
- BN_CTX *ctx = NULL;
- prime_t *mods = NULL;
- int checks = BN_prime_checks_for_size(bits);
- if (bits < 2) {
- /* There are no prime numbers this small. */
- BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
- return 0;
- } else if (bits == 2 && safe) {
- /* The smallest safe prime (7) is three bits. */
- BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
- return 0;
- }
- mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
- if (mods == NULL)
- goto err;
- ctx = BN_CTX_new();
- if (ctx == NULL)
- goto err;
- BN_CTX_start(ctx);
- t = BN_CTX_get(ctx);
- if (!t)
- goto err;
- loop:
- /* make a random number and set the top and bottom bits */
- if (add == NULL) {
- if (!probable_prime(ret, bits, mods))
- goto err;
- } else {
- if (safe) {
- if (!probable_prime_dh_safe(ret, bits, add, rem, ctx))
- goto err;
- } else {
- if (!bn_probable_prime_dh(ret, bits, add, rem, ctx))
- goto err;
- }
- }
- if (!BN_GENCB_call(cb, 0, c1++))
- /* aborted */
- goto err;
- if (!safe) {
- i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
- if (i == -1)
- goto err;
- if (i == 0)
- goto loop;
- } else {
- /*
- * for "safe prime" generation, check that (p-1)/2 is prime. Since a
- * prime is odd, We just need to divide by 2
- */
- if (!BN_rshift1(t, ret))
- goto err;
- for (i = 0; i < checks; i++) {
- j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
- if (j == -1)
- goto err;
- if (j == 0)
- goto loop;
- j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
- if (j == -1)
- goto err;
- if (j == 0)
- goto loop;
- if (!BN_GENCB_call(cb, 2, c1 - 1))
- goto err;
- /* We have a safe prime test pass */
- }
- }
- /* we have a prime :-) */
- found = 1;
- err:
- OPENSSL_free(mods);
- if (ctx != NULL)
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- bn_check_top(ret);
- return found;
- }
- int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
- BN_GENCB *cb)
- {
- return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
- }
- int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
- int do_trial_division, BN_GENCB *cb)
- {
- int i, j, ret = -1;
- int k;
- BN_CTX *ctx = NULL;
- BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
- BN_MONT_CTX *mont = NULL;
- const BIGNUM *A = NULL;
- if (BN_cmp(a, BN_value_one()) <= 0)
- return 0;
- if (checks == BN_prime_checks)
- checks = BN_prime_checks_for_size(BN_num_bits(a));
- /* first look for small factors */
- if (!BN_is_odd(a))
- /* a is even => a is prime if and only if a == 2 */
- return BN_is_word(a, 2);
- if (do_trial_division) {
- for (i = 1; i < NUMPRIMES; i++) {
- BN_ULONG mod = BN_mod_word(a, primes[i]);
- if (mod == (BN_ULONG)-1)
- goto err;
- if (mod == 0)
- return 0;
- }
- if (!BN_GENCB_call(cb, 1, -1))
- goto err;
- }
- if (ctx_passed != NULL)
- ctx = ctx_passed;
- else if ((ctx = BN_CTX_new()) == NULL)
- goto err;
- BN_CTX_start(ctx);
- /* A := abs(a) */
- if (a->neg) {
- BIGNUM *t;
- if ((t = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (BN_copy(t, a) == NULL)
- goto err;
- t->neg = 0;
- A = t;
- } else
- A = a;
- A1 = BN_CTX_get(ctx);
- A1_odd = BN_CTX_get(ctx);
- check = BN_CTX_get(ctx);
- if (check == NULL)
- goto err;
- /* compute A1 := A - 1 */
- if (!BN_copy(A1, A))
- goto err;
- if (!BN_sub_word(A1, 1))
- goto err;
- if (BN_is_zero(A1)) {
- ret = 0;
- goto err;
- }
- /* write A1 as A1_odd * 2^k */
- k = 1;
- while (!BN_is_bit_set(A1, k))
- k++;
- if (!BN_rshift(A1_odd, A1, k))
- goto err;
- /* Montgomery setup for computations mod A */
- mont = BN_MONT_CTX_new();
- if (mont == NULL)
- goto err;
- if (!BN_MONT_CTX_set(mont, A, ctx))
- goto err;
- for (i = 0; i < checks; i++) {
- if (!BN_pseudo_rand_range(check, A1))
- goto err;
- if (!BN_add_word(check, 1))
- goto err;
- /* now 1 <= check < A */
- j = witness(check, A, A1, A1_odd, k, ctx, mont);
- if (j == -1)
- goto err;
- if (j) {
- ret = 0;
- goto err;
- }
- if (!BN_GENCB_call(cb, 1, i))
- goto err;
- }
- ret = 1;
- err:
- if (ctx != NULL) {
- BN_CTX_end(ctx);
- if (ctx_passed == NULL)
- BN_CTX_free(ctx);
- }
- BN_MONT_CTX_free(mont);
- return (ret);
- }
- static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
- const BIGNUM *a1_odd, int k, BN_CTX *ctx,
- BN_MONT_CTX *mont)
- {
- if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
- return -1;
- if (BN_is_one(w))
- return 0; /* probably prime */
- if (BN_cmp(w, a1) == 0)
- return 0; /* w == -1 (mod a), 'a' is probably prime */
- while (--k) {
- if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
- return -1;
- if (BN_is_one(w))
- return 1; /* 'a' is composite, otherwise a previous 'w'
- * would have been == -1 (mod 'a') */
- if (BN_cmp(w, a1) == 0)
- return 0; /* w == -1 (mod a), 'a' is probably prime */
- }
- /*
- * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
- * it is neither -1 nor +1 -- so 'a' cannot be prime
- */
- bn_check_top(w);
- return 1;
- }
- static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods)
- {
- int i;
- BN_ULONG delta;
- BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
- char is_single_word = bits <= BN_BITS2;
- again:
- if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
- return (0);
- /* we now have a random number 'rnd' to test. */
- for (i = 1; i < NUMPRIMES; i++) {
- BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
- if (mod == (BN_ULONG)-1)
- return 0;
- mods[i] = (prime_t) mod;
- }
- /*
- * If bits is so small that it fits into a single word then we
- * additionally don't want to exceed that many bits.
- */
- if (is_single_word) {
- BN_ULONG size_limit;
- if (bits == BN_BITS2) {
- /*
- * Shifting by this much has undefined behaviour so we do it a
- * different way
- */
- size_limit = ~((BN_ULONG)0) - BN_get_word(rnd);
- } else {
- size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
- }
- if (size_limit < maxdelta)
- maxdelta = size_limit;
- }
- delta = 0;
- loop:
- if (is_single_word) {
- BN_ULONG rnd_word = BN_get_word(rnd);
- /*-
- * In the case that the candidate prime is a single word then
- * we check that:
- * 1) It's greater than primes[i] because we shouldn't reject
- * 3 as being a prime number because it's a multiple of
- * three.
- * 2) That it's not a multiple of a known prime. We don't
- * check that rnd-1 is also coprime to all the known
- * primes because there aren't many small primes where
- * that's true.
- */
- for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
- if ((mods[i] + delta) % primes[i] == 0) {
- delta += 2;
- if (delta > maxdelta)
- goto again;
- goto loop;
- }
- }
- } else {
- for (i = 1; i < NUMPRIMES; i++) {
- /*
- * check that rnd is not a prime and also that gcd(rnd-1,primes)
- * == 1 (except for 2)
- */
- if (((mods[i] + delta) % primes[i]) <= 1) {
- delta += 2;
- if (delta > maxdelta)
- goto again;
- goto loop;
- }
- }
- }
- if (!BN_add_word(rnd, delta))
- return (0);
- if (BN_num_bits(rnd) != bits)
- goto again;
- bn_check_top(rnd);
- return (1);
- }
- int bn_probable_prime_dh(BIGNUM *rnd, int bits,
- const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
- {
- int i, ret = 0;
- BIGNUM *t1;
- BN_CTX_start(ctx);
- if ((t1 = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
- goto err;
- /* we need ((rnd-rem) % add) == 0 */
- if (!BN_mod(t1, rnd, add, ctx))
- goto err;
- if (!BN_sub(rnd, rnd, t1))
- goto err;
- if (rem == NULL) {
- if (!BN_add_word(rnd, 1))
- goto err;
- } else {
- if (!BN_add(rnd, rnd, rem))
- goto err;
- }
- /* we now have a random number 'rand' to test. */
- loop:
- for (i = 1; i < NUMPRIMES; i++) {
- /* check that rnd is a prime */
- BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
- if (mod == (BN_ULONG)-1)
- goto err;
- if (mod <= 1) {
- if (!BN_add(rnd, rnd, add))
- goto err;
- goto loop;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- bn_check_top(rnd);
- return (ret);
- }
- static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
- const BIGNUM *rem, BN_CTX *ctx)
- {
- int i, ret = 0;
- BIGNUM *t1, *qadd, *q;
- bits--;
- BN_CTX_start(ctx);
- t1 = BN_CTX_get(ctx);
- q = BN_CTX_get(ctx);
- qadd = BN_CTX_get(ctx);
- if (qadd == NULL)
- goto err;
- if (!BN_rshift1(qadd, padd))
- goto err;
- if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
- goto err;
- /* we need ((rnd-rem) % add) == 0 */
- if (!BN_mod(t1, q, qadd, ctx))
- goto err;
- if (!BN_sub(q, q, t1))
- goto err;
- if (rem == NULL) {
- if (!BN_add_word(q, 1))
- goto err;
- } else {
- if (!BN_rshift1(t1, rem))
- goto err;
- if (!BN_add(q, q, t1))
- goto err;
- }
- /* we now have a random number 'rand' to test. */
- if (!BN_lshift1(p, q))
- goto err;
- if (!BN_add_word(p, 1))
- goto err;
- loop:
- for (i = 1; i < NUMPRIMES; i++) {
- /* check that p and q are prime */
- /*
- * check that for p and q gcd(p-1,primes) == 1 (except for 2)
- */
- BN_ULONG pmod = BN_mod_word(p, (BN_ULONG)primes[i]);
- BN_ULONG qmod = BN_mod_word(q, (BN_ULONG)primes[i]);
- if (pmod == (BN_ULONG)-1 || qmod == (BN_ULONG)-1)
- goto err;
- if (pmod == 0 || qmod == 0) {
- if (!BN_add(p, p, padd))
- goto err;
- if (!BN_add(q, q, qadd))
- goto err;
- goto loop;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- bn_check_top(p);
- return (ret);
- }
|