eng_rsax.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666
  1. /* crypto/engine/eng_rsax.c */
  2. /* Copyright (c) 2010-2010 Intel Corp.
  3. * Author: Vinodh.Gopal@intel.com
  4. * Jim Guilford
  5. * Erdinc.Ozturk@intel.com
  6. * Maxim.Perminov@intel.com
  7. * Ying.Huang@intel.com
  8. *
  9. * More information about algorithm used can be found at:
  10. * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
  11. */
  12. /* ====================================================================
  13. * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
  14. *
  15. * Redistribution and use in source and binary forms, with or without
  16. * modification, are permitted provided that the following conditions
  17. * are met:
  18. *
  19. * 1. Redistributions of source code must retain the above copyright
  20. * notice, this list of conditions and the following disclaimer.
  21. *
  22. * 2. Redistributions in binary form must reproduce the above copyright
  23. * notice, this list of conditions and the following disclaimer in
  24. * the documentation and/or other materials provided with the
  25. * distribution.
  26. *
  27. * 3. All advertising materials mentioning features or use of this
  28. * software must display the following acknowledgment:
  29. * "This product includes software developed by the OpenSSL Project
  30. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  31. *
  32. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  33. * endorse or promote products derived from this software without
  34. * prior written permission. For written permission, please contact
  35. * licensing@OpenSSL.org.
  36. *
  37. * 5. Products derived from this software may not be called "OpenSSL"
  38. * nor may "OpenSSL" appear in their names without prior written
  39. * permission of the OpenSSL Project.
  40. *
  41. * 6. Redistributions of any form whatsoever must retain the following
  42. * acknowledgment:
  43. * "This product includes software developed by the OpenSSL Project
  44. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  45. *
  46. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  47. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  48. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  49. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  50. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  51. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  52. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  53. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  54. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  55. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  56. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  57. * OF THE POSSIBILITY OF SUCH DAMAGE.
  58. * ====================================================================
  59. *
  60. * This product includes cryptographic software written by Eric Young
  61. * (eay@cryptsoft.com). This product includes software written by Tim
  62. * Hudson (tjh@cryptsoft.com).
  63. */
  64. #include <openssl/opensslconf.h>
  65. #include <stdio.h>
  66. #include <string.h>
  67. #include <openssl/crypto.h>
  68. #include <openssl/buffer.h>
  69. #include <openssl/engine.h>
  70. #ifndef OPENSSL_NO_RSA
  71. #include <openssl/rsa.h>
  72. #endif
  73. #include <openssl/bn.h>
  74. #include <openssl/err.h>
  75. /* RSAX is available **ONLY* on x86_64 CPUs */
  76. #undef COMPILE_RSAX
  77. #if (defined(__x86_64) || defined(__x86_64__) || \
  78. defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
  79. #define COMPILE_RSAX
  80. static ENGINE *ENGINE_rsax (void);
  81. #endif
  82. void ENGINE_load_rsax (void)
  83. {
  84. /* On non-x86 CPUs it just returns. */
  85. #ifdef COMPILE_RSAX
  86. ENGINE *toadd = ENGINE_rsax();
  87. if(!toadd) return;
  88. ENGINE_add(toadd);
  89. ENGINE_free(toadd);
  90. ERR_clear_error();
  91. #endif
  92. }
  93. #ifdef COMPILE_RSAX
  94. #define E_RSAX_LIB_NAME "rsax engine"
  95. static int e_rsax_destroy(ENGINE *e);
  96. static int e_rsax_init(ENGINE *e);
  97. static int e_rsax_finish(ENGINE *e);
  98. static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));
  99. #ifndef OPENSSL_NO_RSA
  100. /* RSA stuff */
  101. static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
  102. static int e_rsax_rsa_finish(RSA *r);
  103. #endif
  104. static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
  105. {0, NULL, NULL, 0}
  106. };
  107. #ifndef OPENSSL_NO_RSA
  108. /* Our internal RSA_METHOD that we provide pointers to */
  109. static RSA_METHOD e_rsax_rsa =
  110. {
  111. "Intel RSA-X method",
  112. NULL,
  113. NULL,
  114. NULL,
  115. NULL,
  116. e_rsax_rsa_mod_exp,
  117. NULL,
  118. NULL,
  119. e_rsax_rsa_finish,
  120. RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE,
  121. NULL,
  122. NULL,
  123. NULL
  124. };
  125. #endif
  126. /* Constants used when creating the ENGINE */
  127. static const char *engine_e_rsax_id = "rsax";
  128. static const char *engine_e_rsax_name = "RSAX engine support";
  129. /* This internal function is used by ENGINE_rsax() */
  130. static int bind_helper(ENGINE *e)
  131. {
  132. #ifndef OPENSSL_NO_RSA
  133. const RSA_METHOD *meth1;
  134. #endif
  135. if(!ENGINE_set_id(e, engine_e_rsax_id) ||
  136. !ENGINE_set_name(e, engine_e_rsax_name) ||
  137. #ifndef OPENSSL_NO_RSA
  138. !ENGINE_set_RSA(e, &e_rsax_rsa) ||
  139. #endif
  140. !ENGINE_set_destroy_function(e, e_rsax_destroy) ||
  141. !ENGINE_set_init_function(e, e_rsax_init) ||
  142. !ENGINE_set_finish_function(e, e_rsax_finish) ||
  143. !ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
  144. !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
  145. return 0;
  146. #ifndef OPENSSL_NO_RSA
  147. meth1 = RSA_PKCS1_SSLeay();
  148. e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
  149. e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
  150. e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
  151. e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
  152. e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
  153. #endif
  154. return 1;
  155. }
  156. static ENGINE *ENGINE_rsax(void)
  157. {
  158. ENGINE *ret = ENGINE_new();
  159. if(!ret)
  160. return NULL;
  161. if(!bind_helper(ret))
  162. {
  163. ENGINE_free(ret);
  164. return NULL;
  165. }
  166. return ret;
  167. }
  168. #ifndef OPENSSL_NO_RSA
  169. /* Used to attach our own key-data to an RSA structure */
  170. static int rsax_ex_data_idx = -1;
  171. #endif
  172. static int e_rsax_destroy(ENGINE *e)
  173. {
  174. return 1;
  175. }
  176. /* (de)initialisation functions. */
  177. static int e_rsax_init(ENGINE *e)
  178. {
  179. #ifndef OPENSSL_NO_RSA
  180. if (rsax_ex_data_idx == -1)
  181. rsax_ex_data_idx = RSA_get_ex_new_index(0,
  182. NULL,
  183. NULL, NULL, NULL);
  184. #endif
  185. if (rsax_ex_data_idx == -1)
  186. return 0;
  187. return 1;
  188. }
  189. static int e_rsax_finish(ENGINE *e)
  190. {
  191. return 1;
  192. }
  193. static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
  194. {
  195. int to_return = 1;
  196. switch(cmd)
  197. {
  198. /* The command isn't understood by this engine */
  199. default:
  200. to_return = 0;
  201. break;
  202. }
  203. return to_return;
  204. }
  205. #ifndef OPENSSL_NO_RSA
  206. #ifdef _WIN32
  207. typedef unsigned __int64 UINT64;
  208. #else
  209. typedef unsigned long long UINT64;
  210. #endif
  211. typedef unsigned short UINT16;
  212. /* Table t is interleaved in the following manner:
  213. * The order in memory is t[0][0], t[0][1], ..., t[0][7], t[1][0], ...
  214. * A particular 512-bit value is stored in t[][index] rather than the more
  215. * normal t[index][]; i.e. the qwords of a particular entry in t are not
  216. * adjacent in memory
  217. */
  218. /* Init BIGNUM b from the interleaved UINT64 array */
  219. static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array);
  220. /* Extract array elements from BIGNUM b
  221. * To set the whole array from b, call with n=8
  222. */
  223. static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array);
  224. struct mod_ctx_512 {
  225. UINT64 t[8][8];
  226. UINT64 m[8];
  227. UINT64 m1[8]; /* 2^278 % m */
  228. UINT64 m2[8]; /* 2^640 % m */
  229. UINT64 k1[2]; /* (- 1/m) % 2^128 */
  230. };
  231. static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);
  232. void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
  233. UINT64 *g, /* 512 bits, 8 qwords */
  234. UINT64 *exp, /* 512 bits, 8 qwords */
  235. struct mod_ctx_512 *data);
  236. typedef struct st_e_rsax_mod_ctx
  237. {
  238. UINT64 type;
  239. union {
  240. struct mod_ctx_512 b512;
  241. } ctx;
  242. } E_RSAX_MOD_CTX;
  243. static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM* m)
  244. {
  245. E_RSAX_MOD_CTX *hptr;
  246. if (idx < 0 || idx > 2)
  247. return NULL;
  248. hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
  249. if (!hptr) {
  250. hptr = OPENSSL_malloc(3*sizeof(E_RSAX_MOD_CTX));
  251. if (!hptr) return NULL;
  252. hptr[2].type = hptr[1].type= hptr[0].type = 0;
  253. RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
  254. }
  255. if (hptr[idx].type == (UINT64)BN_num_bits(m))
  256. return hptr+idx;
  257. if (BN_num_bits(m) == 512) {
  258. UINT64 _m[8];
  259. bn_extract_to_array_512(m, 8, _m);
  260. memset( &hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
  261. mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
  262. }
  263. hptr[idx].type = BN_num_bits(m);
  264. return hptr+idx;
  265. }
  266. static int e_rsax_rsa_finish(RSA *rsa)
  267. {
  268. E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
  269. if(hptr)
  270. {
  271. OPENSSL_free(hptr);
  272. RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
  273. }
  274. if (rsa->_method_mod_n)
  275. BN_MONT_CTX_free(rsa->_method_mod_n);
  276. if (rsa->_method_mod_p)
  277. BN_MONT_CTX_free(rsa->_method_mod_p);
  278. if (rsa->_method_mod_q)
  279. BN_MONT_CTX_free(rsa->_method_mod_q);
  280. return 1;
  281. }
  282. static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e,
  283. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont, E_RSAX_MOD_CTX* rsax_mod_ctx )
  284. {
  285. if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
  286. if (BN_num_bits(m) == 512) {
  287. UINT64 _r[8];
  288. UINT64 _g[8];
  289. UINT64 _e[8];
  290. /* Init the arrays from the BIGNUMs */
  291. bn_extract_to_array_512(g, 8, _g);
  292. bn_extract_to_array_512(e, 8, _e);
  293. mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
  294. /* Return the result in the BIGNUM */
  295. interleaved_array_to_bn_512(r, _r);
  296. return 1;
  297. }
  298. }
  299. return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
  300. }
  301. /* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
  302. * exponentiation routine precalculations and a structure to hold the
  303. * necessary values. These files are meant to live in crypto/rsa/ in
  304. * the target openssl.
  305. */
  306. /*
  307. * Local method: extracts a piece from a BIGNUM, to fit it into
  308. * an array. Call with n=8 to extract an entire 512-bit BIGNUM
  309. */
  310. static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array)
  311. {
  312. int i;
  313. UINT64 tmp;
  314. unsigned char bn_buff[64];
  315. memset(bn_buff, 0, 64);
  316. if (BN_num_bytes(b) > 64) {
  317. printf ("Can't support this byte size\n");
  318. return 0; }
  319. if (BN_num_bytes(b)!=0) {
  320. if (!BN_bn2bin(b, bn_buff+(64-BN_num_bytes(b)))) {
  321. printf ("Error's in bn2bin\n");
  322. /* We have to error, here */
  323. return 0; } }
  324. while (n-- > 0) {
  325. array[n] = 0;
  326. for (i=7; i>=0; i--) {
  327. tmp = bn_buff[63-(n*8+i)];
  328. array[n] |= tmp << (8*i); } }
  329. return 1;
  330. }
  331. /* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
  332. static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array)
  333. {
  334. unsigned char tmp[64];
  335. int n=8;
  336. int i;
  337. while (n-- > 0) {
  338. for (i = 7; i>=0; i--) {
  339. tmp[63-(n*8+i)] = (unsigned char)(array[n]>>(8*i)); } }
  340. BN_bin2bn(tmp, 64, b);
  341. return 0;
  342. }
  343. /* The main 512bit precompute call */
  344. static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
  345. {
  346. BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;
  347. /* We need a BN_CTX for the modulo functions */
  348. BN_CTX* ctx;
  349. /* Some tmps */
  350. UINT64 _t[8];
  351. int i, j, ret = 0;
  352. /* Init _m with m */
  353. BN_init(&_m);
  354. interleaved_array_to_bn_512(&_m, m);
  355. memset(_t, 0, 64);
  356. /* Inits */
  357. BN_init(&two_768);
  358. BN_init(&two_640);
  359. BN_init(&two_128);
  360. BN_init(&two_512);
  361. BN_init(&tmp);
  362. BN_init(&tmp2);
  363. /* Create our context */
  364. if ((ctx=BN_CTX_new()) == NULL) { goto err; }
  365. BN_CTX_start(ctx);
  366. /*
  367. * For production, if you care, these only need to be set once,
  368. * and may be made constants.
  369. */
  370. BN_lshift(&two_768, BN_value_one(), 768);
  371. BN_lshift(&two_640, BN_value_one(), 640);
  372. BN_lshift(&two_128, BN_value_one(), 128);
  373. BN_lshift(&two_512, BN_value_one(), 512);
  374. if (0 == (m[7] & 0x8000000000000000)) {
  375. exit(1);
  376. }
  377. if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */
  378. exit(1);
  379. }
  380. /* Precompute m1 */
  381. BN_mod(&tmp, &two_768, &_m, ctx);
  382. if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
  383. goto err; }
  384. /* Precompute m2 */
  385. BN_mod(&tmp, &two_640, &_m, ctx);
  386. if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
  387. goto err;
  388. }
  389. /*
  390. * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should
  391. * be non-negative.
  392. */
  393. BN_mod_inverse(&tmp, &_m, &two_128, ctx);
  394. if (!BN_is_zero(&tmp)) { BN_sub(&tmp, &two_128, &tmp); }
  395. if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
  396. goto err; }
  397. /* Precompute t */
  398. for (i=0; i<8; i++) {
  399. BN_zero(&tmp);
  400. if (i & 1) { BN_add(&tmp, &two_512, &tmp); }
  401. if (i & 2) { BN_add(&tmp, &two_512, &tmp); }
  402. if (i & 4) { BN_add(&tmp, &two_640, &tmp); }
  403. BN_nnmod(&tmp2, &tmp, &_m, ctx);
  404. if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
  405. goto err; }
  406. for (j=0; j<8; j++) data->t[j][i] = _t[j]; }
  407. /* Precompute m */
  408. for (i=0; i<8; i++) {
  409. data->m[i] = m[i]; }
  410. ret = 1;
  411. err:
  412. /* Cleanup */
  413. if (ctx != NULL) {
  414. BN_CTX_end(ctx); BN_CTX_free(ctx); }
  415. BN_free(&two_768);
  416. BN_free(&two_640);
  417. BN_free(&two_128);
  418. BN_free(&two_512);
  419. BN_free(&tmp);
  420. BN_free(&tmp2);
  421. BN_free(&_m);
  422. return ret;
  423. }
  424. static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
  425. {
  426. BIGNUM *r1,*m1,*vrfy;
  427. BIGNUM local_dmp1,local_dmq1,local_c,local_r1;
  428. BIGNUM *dmp1,*dmq1,*c,*pr1;
  429. int ret=0;
  430. BN_CTX_start(ctx);
  431. r1 = BN_CTX_get(ctx);
  432. m1 = BN_CTX_get(ctx);
  433. vrfy = BN_CTX_get(ctx);
  434. {
  435. BIGNUM local_p, local_q;
  436. BIGNUM *p = NULL, *q = NULL;
  437. int error = 0;
  438. /* Make sure BN_mod_inverse in Montgomery
  439. * intialization uses the BN_FLG_CONSTTIME flag
  440. * (unless RSA_FLAG_NO_CONSTTIME is set)
  441. */
  442. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  443. {
  444. BN_init(&local_p);
  445. p = &local_p;
  446. BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
  447. BN_init(&local_q);
  448. q = &local_q;
  449. BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
  450. }
  451. else
  452. {
  453. p = rsa->p;
  454. q = rsa->q;
  455. }
  456. if (rsa->flags & RSA_FLAG_CACHE_PRIVATE)
  457. {
  458. if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx))
  459. error = 1;
  460. if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx))
  461. error = 1;
  462. }
  463. /* clean up */
  464. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  465. {
  466. BN_free(&local_p);
  467. BN_free(&local_q);
  468. }
  469. if ( error )
  470. goto err;
  471. }
  472. if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
  473. if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx))
  474. goto err;
  475. /* compute I mod q */
  476. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  477. {
  478. c = &local_c;
  479. BN_with_flags(c, I, BN_FLG_CONSTTIME);
  480. if (!BN_mod(r1,c,rsa->q,ctx)) goto err;
  481. }
  482. else
  483. {
  484. if (!BN_mod(r1,I,rsa->q,ctx)) goto err;
  485. }
  486. /* compute r1^dmq1 mod q */
  487. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  488. {
  489. dmq1 = &local_dmq1;
  490. BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
  491. }
  492. else
  493. dmq1 = rsa->dmq1;
  494. if (!e_rsax_bn_mod_exp(m1,r1,dmq1,rsa->q,ctx,
  495. rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0, rsa->q) )) goto err;
  496. /* compute I mod p */
  497. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  498. {
  499. c = &local_c;
  500. BN_with_flags(c, I, BN_FLG_CONSTTIME);
  501. if (!BN_mod(r1,c,rsa->p,ctx)) goto err;
  502. }
  503. else
  504. {
  505. if (!BN_mod(r1,I,rsa->p,ctx)) goto err;
  506. }
  507. /* compute r1^dmp1 mod p */
  508. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  509. {
  510. dmp1 = &local_dmp1;
  511. BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
  512. }
  513. else
  514. dmp1 = rsa->dmp1;
  515. if (!e_rsax_bn_mod_exp(r0,r1,dmp1,rsa->p,ctx,
  516. rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1, rsa->p) )) goto err;
  517. if (!BN_sub(r0,r0,m1)) goto err;
  518. /* This will help stop the size of r0 increasing, which does
  519. * affect the multiply if it optimised for a power of 2 size */
  520. if (BN_is_negative(r0))
  521. if (!BN_add(r0,r0,rsa->p)) goto err;
  522. if (!BN_mul(r1,r0,rsa->iqmp,ctx)) goto err;
  523. /* Turn BN_FLG_CONSTTIME flag on before division operation */
  524. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  525. {
  526. pr1 = &local_r1;
  527. BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
  528. }
  529. else
  530. pr1 = r1;
  531. if (!BN_mod(r0,pr1,rsa->p,ctx)) goto err;
  532. /* If p < q it is occasionally possible for the correction of
  533. * adding 'p' if r0 is negative above to leave the result still
  534. * negative. This can break the private key operations: the following
  535. * second correction should *always* correct this rare occurrence.
  536. * This will *never* happen with OpenSSL generated keys because
  537. * they ensure p > q [steve]
  538. */
  539. if (BN_is_negative(r0))
  540. if (!BN_add(r0,r0,rsa->p)) goto err;
  541. if (!BN_mul(r1,r0,rsa->q,ctx)) goto err;
  542. if (!BN_add(r0,r1,m1)) goto err;
  543. if (rsa->e && rsa->n)
  544. {
  545. if (!e_rsax_bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) ))
  546. goto err;
  547. /* If 'I' was greater than (or equal to) rsa->n, the operation
  548. * will be equivalent to using 'I mod n'. However, the result of
  549. * the verify will *always* be less than 'n' so we don't check
  550. * for absolute equality, just congruency. */
  551. if (!BN_sub(vrfy, vrfy, I)) goto err;
  552. if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err;
  553. if (BN_is_negative(vrfy))
  554. if (!BN_add(vrfy, vrfy, rsa->n)) goto err;
  555. if (!BN_is_zero(vrfy))
  556. {
  557. /* 'I' and 'vrfy' aren't congruent mod n. Don't leak
  558. * miscalculated CRT output, just do a raw (slower)
  559. * mod_exp and return that instead. */
  560. BIGNUM local_d;
  561. BIGNUM *d = NULL;
  562. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  563. {
  564. d = &local_d;
  565. BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
  566. }
  567. else
  568. d = rsa->d;
  569. if (!e_rsax_bn_mod_exp(r0,I,d,rsa->n,ctx,
  570. rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) goto err;
  571. }
  572. }
  573. ret=1;
  574. err:
  575. BN_CTX_end(ctx);
  576. return ret;
  577. }
  578. #endif /* !OPENSSL_NO_RSA */
  579. #endif /* !COMPILE_RSAX */