sha1-586.pl 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229
  1. #!/usr/bin/env perl
  2. # ====================================================================
  3. # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
  4. # project. The module is, however, dual licensed under OpenSSL and
  5. # CRYPTOGAMS licenses depending on where you obtain it. For further
  6. # details see http://www.openssl.org/~appro/cryptogams/.
  7. # ====================================================================
  8. # "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
  9. # functions were re-implemented to address P4 performance issue [see
  10. # commentary below], and in 2006 the rest was rewritten in order to
  11. # gain freedom to liberate licensing terms.
  12. # January, September 2004.
  13. #
  14. # It was noted that Intel IA-32 C compiler generates code which
  15. # performs ~30% *faster* on P4 CPU than original *hand-coded*
  16. # SHA1 assembler implementation. To address this problem (and
  17. # prove that humans are still better than machines:-), the
  18. # original code was overhauled, which resulted in following
  19. # performance changes:
  20. #
  21. # compared with original compared with Intel cc
  22. # assembler impl. generated code
  23. # Pentium -16% +48%
  24. # PIII/AMD +8% +16%
  25. # P4 +85%(!) +45%
  26. #
  27. # As you can see Pentium came out as looser:-( Yet I reckoned that
  28. # improvement on P4 outweights the loss and incorporate this
  29. # re-tuned code to 0.9.7 and later.
  30. # ----------------------------------------------------------------
  31. # <appro@fy.chalmers.se>
  32. # August 2009.
  33. #
  34. # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
  35. # '(c&d) + (b&(c^d))', which allows to accumulate partial results
  36. # and lighten "pressure" on scratch registers. This resulted in
  37. # >12% performance improvement on contemporary AMD cores (with no
  38. # degradation on other CPUs:-). Also, the code was revised to maximize
  39. # "distance" between instructions producing input to 'lea' instruction
  40. # and the 'lea' instruction itself, which is essential for Intel Atom
  41. # core and resulted in ~15% improvement.
  42. # October 2010.
  43. #
  44. # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
  45. # is to offload message schedule denoted by Wt in NIST specification,
  46. # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
  47. # and in SSE2 context was first explored by Dean Gaudet in 2004, see
  48. # http://arctic.org/~dean/crypto/sha1.html. Since then several things
  49. # have changed that made it interesting again:
  50. #
  51. # a) XMM units became faster and wider;
  52. # b) instruction set became more versatile;
  53. # c) an important observation was made by Max Locktykhin, which made
  54. # it possible to reduce amount of instructions required to perform
  55. # the operation in question, for further details see
  56. # http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
  57. # April 2011.
  58. #
  59. # Add AVX code path, probably most controversial... The thing is that
  60. # switch to AVX alone improves performance by as little as 4% in
  61. # comparison to SSSE3 code path. But below result doesn't look like
  62. # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
  63. # pair of µ-ops, and it's the additional µ-ops, two per round, that
  64. # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
  65. # as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
  66. # equivalent 'sh[rl]d' that is responsible for the impressive 5.1
  67. # cycles per processed byte. But 'sh[rl]d' is not something that used
  68. # to be fast, nor does it appear to be fast in upcoming Bulldozer
  69. # [according to its optimization manual]. Which is why AVX code path
  70. # is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
  71. # One can argue that it's unfair to AMD, but without 'sh[rl]d' it
  72. # makes no sense to keep the AVX code path. If somebody feels that
  73. # strongly, it's probably more appropriate to discuss possibility of
  74. # using vector rotate XOP on AMD...
  75. ######################################################################
  76. # Current performance is summarized in following table. Numbers are
  77. # CPU clock cycles spent to process single byte (less is better).
  78. #
  79. # x86 SSSE3 AVX
  80. # Pentium 15.7 -
  81. # PIII 11.5 -
  82. # P4 10.6 -
  83. # AMD K8 7.1 -
  84. # Core2 7.3 6.1/+20% -
  85. # Atom 12.5 9.5(*)/+32% -
  86. # Westmere 7.3 5.6/+30% -
  87. # Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70%
  88. #
  89. # (*) Loop is 1056 instructions long and expected result is ~8.25.
  90. # It remains mystery [to me] why ILP is limited to 1.7.
  91. #
  92. # (**) As per above comment, the result is for AVX *plus* sh[rl]d.
  93. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
  94. push(@INC,"${dir}","${dir}../../perlasm");
  95. require "x86asm.pl";
  96. &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
  97. $xmm=$ymm=0;
  98. for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
  99. $ymm=1 if ($xmm &&
  100. `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
  101. =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
  102. $1>=2.19); # first version supporting AVX
  103. $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
  104. `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
  105. $1>=2.03); # first version supporting AVX
  106. &external_label("OPENSSL_ia32cap_P") if ($xmm);
  107. $A="eax";
  108. $B="ebx";
  109. $C="ecx";
  110. $D="edx";
  111. $E="edi";
  112. $T="esi";
  113. $tmp1="ebp";
  114. @V=($A,$B,$C,$D,$E,$T);
  115. $alt=0; # 1 denotes alternative IALU implementation, which performs
  116. # 8% *worse* on P4, same on Westmere and Atom, 2% better on
  117. # Sandy Bridge...
  118. sub BODY_00_15
  119. {
  120. local($n,$a,$b,$c,$d,$e,$f)=@_;
  121. &comment("00_15 $n");
  122. &mov($f,$c); # f to hold F_00_19(b,c,d)
  123. if ($n==0) { &mov($tmp1,$a); }
  124. else { &mov($a,$tmp1); }
  125. &rotl($tmp1,5); # tmp1=ROTATE(a,5)
  126. &xor($f,$d);
  127. &add($tmp1,$e); # tmp1+=e;
  128. &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
  129. # with xi, also note that e becomes
  130. # f in next round...
  131. &and($f,$b);
  132. &rotr($b,2); # b=ROTATE(b,30)
  133. &xor($f,$d); # f holds F_00_19(b,c,d)
  134. &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
  135. if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
  136. &add($f,$tmp1); } # f+=tmp1
  137. else { &add($tmp1,$f); } # f becomes a in next round
  138. &mov($tmp1,$a) if ($alt && $n==15);
  139. }
  140. sub BODY_16_19
  141. {
  142. local($n,$a,$b,$c,$d,$e,$f)=@_;
  143. &comment("16_19 $n");
  144. if ($alt) {
  145. &xor($c,$d);
  146. &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
  147. &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
  148. &xor($f,&swtmp(($n+8)%16));
  149. &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
  150. &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
  151. &rotl($f,1); # f=ROTATE(f,1)
  152. &add($e,$tmp1); # e+=F_00_19(b,c,d)
  153. &xor($c,$d); # restore $c
  154. &mov($tmp1,$a); # b in next round
  155. &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
  156. &mov(&swtmp($n%16),$f); # xi=f
  157. &rotl($a,5); # ROTATE(a,5)
  158. &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
  159. &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
  160. &add($f,$a); # f+=ROTATE(a,5)
  161. } else {
  162. &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
  163. &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
  164. &xor($tmp1,$d);
  165. &xor($f,&swtmp(($n+8)%16));
  166. &and($tmp1,$b);
  167. &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
  168. &rotl($f,1); # f=ROTATE(f,1)
  169. &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
  170. &add($e,$tmp1); # e+=F_00_19(b,c,d)
  171. &mov($tmp1,$a);
  172. &rotr($b,2); # b=ROTATE(b,30)
  173. &mov(&swtmp($n%16),$f); # xi=f
  174. &rotl($tmp1,5); # ROTATE(a,5)
  175. &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
  176. &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
  177. &add($f,$tmp1); # f+=ROTATE(a,5)
  178. }
  179. }
  180. sub BODY_20_39
  181. {
  182. local($n,$a,$b,$c,$d,$e,$f)=@_;
  183. local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
  184. &comment("20_39 $n");
  185. if ($alt) {
  186. &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
  187. &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
  188. &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
  189. &xor($f,&swtmp(($n+8)%16));
  190. &add($e,$tmp1); # e+=F_20_39(b,c,d)
  191. &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
  192. &rotl($f,1); # f=ROTATE(f,1)
  193. &mov($tmp1,$a); # b in next round
  194. &rotr($b,7); # b=ROTATE(b,30)
  195. &mov(&swtmp($n%16),$f) if($n<77);# xi=f
  196. &rotl($a,5); # ROTATE(a,5)
  197. &xor($b,$c) if($n==39);# warm up for BODY_40_59
  198. &and($tmp1,$b) if($n==39);
  199. &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
  200. &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
  201. &add($f,$a); # f+=ROTATE(a,5)
  202. &rotr($a,5) if ($n==79);
  203. } else {
  204. &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
  205. &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
  206. &xor($tmp1,$c);
  207. &xor($f,&swtmp(($n+8)%16));
  208. &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
  209. &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
  210. &rotl($f,1); # f=ROTATE(f,1)
  211. &add($e,$tmp1); # e+=F_20_39(b,c,d)
  212. &rotr($b,2); # b=ROTATE(b,30)
  213. &mov($tmp1,$a);
  214. &rotl($tmp1,5); # ROTATE(a,5)
  215. &mov(&swtmp($n%16),$f) if($n<77);# xi=f
  216. &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
  217. &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
  218. &add($f,$tmp1); # f+=ROTATE(a,5)
  219. }
  220. }
  221. sub BODY_40_59
  222. {
  223. local($n,$a,$b,$c,$d,$e,$f)=@_;
  224. &comment("40_59 $n");
  225. if ($alt) {
  226. &add($e,$tmp1); # e+=b&(c^d)
  227. &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
  228. &mov($tmp1,$d);
  229. &xor($f,&swtmp(($n+8)%16));
  230. &xor($c,$d); # restore $c
  231. &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
  232. &rotl($f,1); # f=ROTATE(f,1)
  233. &and($tmp1,$c);
  234. &rotr($b,7); # b=ROTATE(b,30)
  235. &add($e,$tmp1); # e+=c&d
  236. &mov($tmp1,$a); # b in next round
  237. &mov(&swtmp($n%16),$f); # xi=f
  238. &rotl($a,5); # ROTATE(a,5)
  239. &xor($b,$c) if ($n<59);
  240. &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
  241. &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
  242. &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
  243. &add($f,$a); # f+=ROTATE(a,5)
  244. } else {
  245. &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
  246. &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
  247. &xor($tmp1,$d);
  248. &xor($f,&swtmp(($n+8)%16));
  249. &and($tmp1,$b);
  250. &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
  251. &rotl($f,1); # f=ROTATE(f,1)
  252. &add($tmp1,$e); # b&(c^d)+=e
  253. &rotr($b,2); # b=ROTATE(b,30)
  254. &mov($e,$a); # e becomes volatile
  255. &rotl($e,5); # ROTATE(a,5)
  256. &mov(&swtmp($n%16),$f); # xi=f
  257. &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
  258. &mov($tmp1,$c);
  259. &add($f,$e); # f+=ROTATE(a,5)
  260. &and($tmp1,$d);
  261. &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
  262. &add($f,$tmp1); # f+=c&d
  263. }
  264. }
  265. &function_begin("sha1_block_data_order");
  266. if ($xmm) {
  267. &static_label("ssse3_shortcut");
  268. &static_label("avx_shortcut") if ($ymm);
  269. &static_label("K_XX_XX");
  270. &call (&label("pic_point")); # make it PIC!
  271. &set_label("pic_point");
  272. &blindpop($tmp1);
  273. &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
  274. &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
  275. &mov ($A,&DWP(0,$T));
  276. &mov ($D,&DWP(4,$T));
  277. &test ($D,1<<9); # check SSSE3 bit
  278. &jz (&label("x86"));
  279. &test ($A,1<<24); # check FXSR bit
  280. &jz (&label("x86"));
  281. if ($ymm) {
  282. &and ($D,1<<28); # mask AVX bit
  283. &and ($A,1<<30); # mask "Intel CPU" bit
  284. &or ($A,$D);
  285. &cmp ($A,1<<28|1<<30);
  286. &je (&label("avx_shortcut"));
  287. }
  288. &jmp (&label("ssse3_shortcut"));
  289. &set_label("x86",16);
  290. }
  291. &mov($tmp1,&wparam(0)); # SHA_CTX *c
  292. &mov($T,&wparam(1)); # const void *input
  293. &mov($A,&wparam(2)); # size_t num
  294. &stack_push(16+3); # allocate X[16]
  295. &shl($A,6);
  296. &add($A,$T);
  297. &mov(&wparam(2),$A); # pointer beyond the end of input
  298. &mov($E,&DWP(16,$tmp1));# pre-load E
  299. &jmp(&label("loop"));
  300. &set_label("loop",16);
  301. # copy input chunk to X, but reversing byte order!
  302. for ($i=0; $i<16; $i+=4)
  303. {
  304. &mov($A,&DWP(4*($i+0),$T));
  305. &mov($B,&DWP(4*($i+1),$T));
  306. &mov($C,&DWP(4*($i+2),$T));
  307. &mov($D,&DWP(4*($i+3),$T));
  308. &bswap($A);
  309. &bswap($B);
  310. &bswap($C);
  311. &bswap($D);
  312. &mov(&swtmp($i+0),$A);
  313. &mov(&swtmp($i+1),$B);
  314. &mov(&swtmp($i+2),$C);
  315. &mov(&swtmp($i+3),$D);
  316. }
  317. &mov(&wparam(1),$T); # redundant in 1st spin
  318. &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
  319. &mov($B,&DWP(4,$tmp1));
  320. &mov($C,&DWP(8,$tmp1));
  321. &mov($D,&DWP(12,$tmp1));
  322. # E is pre-loaded
  323. for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
  324. for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
  325. for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
  326. for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
  327. for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
  328. (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
  329. &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
  330. &mov($D,&wparam(1)); # D is last "T" and is discarded
  331. &add($E,&DWP(0,$tmp1)); # E is last "A"...
  332. &add($T,&DWP(4,$tmp1));
  333. &add($A,&DWP(8,$tmp1));
  334. &add($B,&DWP(12,$tmp1));
  335. &add($C,&DWP(16,$tmp1));
  336. &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
  337. &add($D,64); # advance input pointer
  338. &mov(&DWP(4,$tmp1),$T);
  339. &cmp($D,&wparam(2)); # have we reached the end yet?
  340. &mov(&DWP(8,$tmp1),$A);
  341. &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
  342. &mov(&DWP(12,$tmp1),$B);
  343. &mov($T,$D); # input pointer
  344. &mov(&DWP(16,$tmp1),$C);
  345. &jb(&label("loop"));
  346. &stack_pop(16+3);
  347. &function_end("sha1_block_data_order");
  348. if ($xmm) {
  349. ######################################################################
  350. # The SSSE3 implementation.
  351. #
  352. # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
  353. # 32 elements of the message schedule or Xupdate outputs. First 4
  354. # quadruples are simply byte-swapped input, next 4 are calculated
  355. # according to method originally suggested by Dean Gaudet (modulo
  356. # being implemented in SSSE3). Once 8 quadruples or 32 elements are
  357. # collected, it switches to routine proposed by Max Locktyukhin.
  358. #
  359. # Calculations inevitably require temporary reqisters, and there are
  360. # no %xmm registers left to spare. For this reason part of the ring
  361. # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
  362. # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
  363. # X[-5], and X[4] - X[-4]...
  364. #
  365. # Another notable optimization is aggressive stack frame compression
  366. # aiming to minimize amount of 9-byte instructions...
  367. #
  368. # Yet another notable optimization is "jumping" $B variable. It means
  369. # that there is no register permanently allocated for $B value. This
  370. # allowed to eliminate one instruction from body_20_39...
  371. #
  372. my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
  373. my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
  374. my @V=($A,$B,$C,$D,$E);
  375. my $j=0; # hash round
  376. my @T=($T,$tmp1);
  377. my $inp;
  378. my $_rol=sub { &rol(@_) };
  379. my $_ror=sub { &ror(@_) };
  380. &function_begin("_sha1_block_data_order_ssse3");
  381. &call (&label("pic_point")); # make it PIC!
  382. &set_label("pic_point");
  383. &blindpop($tmp1);
  384. &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
  385. &set_label("ssse3_shortcut");
  386. &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
  387. &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
  388. &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
  389. &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
  390. &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
  391. &mov ($E,&wparam(0)); # load argument block
  392. &mov ($inp=@T[1],&wparam(1));
  393. &mov ($D,&wparam(2));
  394. &mov (@T[0],"esp");
  395. # stack frame layout
  396. #
  397. # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
  398. # X[4]+K X[5]+K X[6]+K X[7]+K
  399. # X[8]+K X[9]+K X[10]+K X[11]+K
  400. # X[12]+K X[13]+K X[14]+K X[15]+K
  401. #
  402. # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
  403. # X[4] X[5] X[6] X[7]
  404. # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
  405. #
  406. # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
  407. # K_40_59 K_40_59 K_40_59 K_40_59
  408. # K_60_79 K_60_79 K_60_79 K_60_79
  409. # K_00_19 K_00_19 K_00_19 K_00_19
  410. # pbswap mask
  411. #
  412. # +192 ctx # argument block
  413. # +196 inp
  414. # +200 end
  415. # +204 esp
  416. &sub ("esp",208);
  417. &and ("esp",-64);
  418. &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
  419. &movdqa (&QWP(112+16,"esp"),@X[5]);
  420. &movdqa (&QWP(112+32,"esp"),@X[6]);
  421. &shl ($D,6); # len*64
  422. &movdqa (&QWP(112+48,"esp"),@X[3]);
  423. &add ($D,$inp); # end of input
  424. &movdqa (&QWP(112+64,"esp"),@X[2]);
  425. &add ($inp,64);
  426. &mov (&DWP(192+0,"esp"),$E); # save argument block
  427. &mov (&DWP(192+4,"esp"),$inp);
  428. &mov (&DWP(192+8,"esp"),$D);
  429. &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
  430. &mov ($A,&DWP(0,$E)); # load context
  431. &mov ($B,&DWP(4,$E));
  432. &mov ($C,&DWP(8,$E));
  433. &mov ($D,&DWP(12,$E));
  434. &mov ($E,&DWP(16,$E));
  435. &mov (@T[0],$B); # magic seed
  436. &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
  437. &movdqu (@X[-3&7],&QWP(-48,$inp));
  438. &movdqu (@X[-2&7],&QWP(-32,$inp));
  439. &movdqu (@X[-1&7],&QWP(-16,$inp));
  440. &pshufb (@X[-4&7],@X[2]); # byte swap
  441. &pshufb (@X[-3&7],@X[2]);
  442. &pshufb (@X[-2&7],@X[2]);
  443. &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
  444. &pshufb (@X[-1&7],@X[2]);
  445. &paddd (@X[-4&7],@X[3]); # add K_00_19
  446. &paddd (@X[-3&7],@X[3]);
  447. &paddd (@X[-2&7],@X[3]);
  448. &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
  449. &psubd (@X[-4&7],@X[3]); # restore X[]
  450. &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
  451. &psubd (@X[-3&7],@X[3]);
  452. &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
  453. &psubd (@X[-2&7],@X[3]);
  454. &movdqa (@X[0],@X[-3&7]);
  455. &jmp (&label("loop"));
  456. ######################################################################
  457. # SSE instruction sequence is first broken to groups of indepentent
  458. # instructions, independent in respect to their inputs and shifter
  459. # (not all architectures have more than one). Then IALU instructions
  460. # are "knitted in" between the SSE groups. Distance is maintained for
  461. # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
  462. # [which allegedly also implements SSSE3]...
  463. #
  464. # Temporary registers usage. X[2] is volatile at the entry and at the
  465. # end is restored from backtrace ring buffer. X[3] is expected to
  466. # contain current K_XX_XX constant and is used to caclulate X[-1]+K
  467. # from previous round, it becomes volatile the moment the value is
  468. # saved to stack for transfer to IALU. X[4] becomes volatile whenever
  469. # X[-4] is accumulated and offloaded to backtrace ring buffer, at the
  470. # end it is loaded with next K_XX_XX [which becomes X[3] in next
  471. # round]...
  472. #
  473. sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
  474. { use integer;
  475. my $body = shift;
  476. my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
  477. my ($a,$b,$c,$d,$e);
  478. eval(shift(@insns));
  479. eval(shift(@insns));
  480. &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
  481. &movdqa (@X[2],@X[-1&7]);
  482. eval(shift(@insns));
  483. eval(shift(@insns));
  484. &paddd (@X[3],@X[-1&7]);
  485. &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
  486. eval(shift(@insns));
  487. eval(shift(@insns));
  488. &psrldq (@X[2],4); # "X[-3]", 3 dwords
  489. eval(shift(@insns));
  490. eval(shift(@insns));
  491. &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
  492. eval(shift(@insns));
  493. eval(shift(@insns));
  494. &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
  495. eval(shift(@insns));
  496. eval(shift(@insns));
  497. eval(shift(@insns));
  498. eval(shift(@insns));
  499. &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
  500. eval(shift(@insns));
  501. eval(shift(@insns));
  502. &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
  503. eval(shift(@insns));
  504. eval(shift(@insns));
  505. &movdqa (@X[4],@X[0]);
  506. &movdqa (@X[2],@X[0]);
  507. eval(shift(@insns));
  508. eval(shift(@insns));
  509. eval(shift(@insns));
  510. eval(shift(@insns));
  511. &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
  512. &paddd (@X[0],@X[0]);
  513. eval(shift(@insns));
  514. eval(shift(@insns));
  515. eval(shift(@insns));
  516. eval(shift(@insns));
  517. &psrld (@X[2],31);
  518. eval(shift(@insns));
  519. eval(shift(@insns));
  520. &movdqa (@X[3],@X[4]);
  521. eval(shift(@insns));
  522. eval(shift(@insns));
  523. &psrld (@X[4],30);
  524. &por (@X[0],@X[2]); # "X[0]"<<<=1
  525. eval(shift(@insns));
  526. eval(shift(@insns));
  527. &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
  528. eval(shift(@insns));
  529. eval(shift(@insns));
  530. &pslld (@X[3],2);
  531. &pxor (@X[0],@X[4]);
  532. eval(shift(@insns));
  533. eval(shift(@insns));
  534. &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
  535. eval(shift(@insns));
  536. eval(shift(@insns));
  537. &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
  538. &movdqa (@X[1],@X[-2&7]) if ($Xi<7);
  539. eval(shift(@insns));
  540. eval(shift(@insns));
  541. foreach (@insns) { eval; } # remaining instructions [if any]
  542. $Xi++; push(@X,shift(@X)); # "rotate" X[]
  543. }
  544. sub Xupdate_ssse3_32_79()
  545. { use integer;
  546. my $body = shift;
  547. my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
  548. my ($a,$b,$c,$d,$e);
  549. &movdqa (@X[2],@X[-1&7]) if ($Xi==8);
  550. eval(shift(@insns)); # body_20_39
  551. &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
  552. &palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
  553. eval(shift(@insns));
  554. eval(shift(@insns));
  555. eval(shift(@insns)); # rol
  556. &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
  557. &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
  558. eval(shift(@insns));
  559. eval(shift(@insns));
  560. if ($Xi%5) {
  561. &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
  562. } else { # ... or load next one
  563. &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
  564. }
  565. &paddd (@X[3],@X[-1&7]);
  566. eval(shift(@insns)); # ror
  567. eval(shift(@insns));
  568. &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
  569. eval(shift(@insns)); # body_20_39
  570. eval(shift(@insns));
  571. eval(shift(@insns));
  572. eval(shift(@insns)); # rol
  573. &movdqa (@X[2],@X[0]);
  574. &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
  575. eval(shift(@insns));
  576. eval(shift(@insns));
  577. eval(shift(@insns)); # ror
  578. eval(shift(@insns));
  579. &pslld (@X[0],2);
  580. eval(shift(@insns)); # body_20_39
  581. eval(shift(@insns));
  582. &psrld (@X[2],30);
  583. eval(shift(@insns));
  584. eval(shift(@insns)); # rol
  585. eval(shift(@insns));
  586. eval(shift(@insns));
  587. eval(shift(@insns)); # ror
  588. eval(shift(@insns));
  589. &por (@X[0],@X[2]); # "X[0]"<<<=2
  590. eval(shift(@insns)); # body_20_39
  591. eval(shift(@insns));
  592. &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
  593. eval(shift(@insns));
  594. eval(shift(@insns)); # rol
  595. eval(shift(@insns));
  596. eval(shift(@insns));
  597. eval(shift(@insns)); # ror
  598. &movdqa (@X[3],@X[0]) if ($Xi<19);
  599. eval(shift(@insns));
  600. foreach (@insns) { eval; } # remaining instructions
  601. $Xi++; push(@X,shift(@X)); # "rotate" X[]
  602. }
  603. sub Xuplast_ssse3_80()
  604. { use integer;
  605. my $body = shift;
  606. my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
  607. my ($a,$b,$c,$d,$e);
  608. eval(shift(@insns));
  609. &paddd (@X[3],@X[-1&7]);
  610. eval(shift(@insns));
  611. eval(shift(@insns));
  612. eval(shift(@insns));
  613. eval(shift(@insns));
  614. &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
  615. foreach (@insns) { eval; } # remaining instructions
  616. &mov ($inp=@T[1],&DWP(192+4,"esp"));
  617. &cmp ($inp,&DWP(192+8,"esp"));
  618. &je (&label("done"));
  619. &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
  620. &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
  621. &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
  622. &movdqu (@X[-3&7],&QWP(16,$inp));
  623. &movdqu (@X[-2&7],&QWP(32,$inp));
  624. &movdqu (@X[-1&7],&QWP(48,$inp));
  625. &add ($inp,64);
  626. &pshufb (@X[-4&7],@X[2]); # byte swap
  627. &mov (&DWP(192+4,"esp"),$inp);
  628. &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
  629. $Xi=0;
  630. }
  631. sub Xloop_ssse3()
  632. { use integer;
  633. my $body = shift;
  634. my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
  635. my ($a,$b,$c,$d,$e);
  636. eval(shift(@insns));
  637. eval(shift(@insns));
  638. &pshufb (@X[($Xi-3)&7],@X[2]);
  639. eval(shift(@insns));
  640. eval(shift(@insns));
  641. &paddd (@X[($Xi-4)&7],@X[3]);
  642. eval(shift(@insns));
  643. eval(shift(@insns));
  644. eval(shift(@insns));
  645. eval(shift(@insns));
  646. &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
  647. eval(shift(@insns));
  648. eval(shift(@insns));
  649. &psubd (@X[($Xi-4)&7],@X[3]);
  650. foreach (@insns) { eval; }
  651. $Xi++;
  652. }
  653. sub Xtail_ssse3()
  654. { use integer;
  655. my $body = shift;
  656. my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
  657. my ($a,$b,$c,$d,$e);
  658. foreach (@insns) { eval; }
  659. }
  660. sub body_00_19 () {
  661. (
  662. '($a,$b,$c,$d,$e)=@V;'.
  663. '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
  664. '&xor ($c,$d);',
  665. '&mov (@T[1],$a);', # $b in next round
  666. '&$_rol ($a,5);',
  667. '&and (@T[0],$c);', # ($b&($c^$d))
  668. '&xor ($c,$d);', # restore $c
  669. '&xor (@T[0],$d);',
  670. '&add ($e,$a);',
  671. '&$_ror ($b,$j?7:2);', # $b>>>2
  672. '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
  673. );
  674. }
  675. sub body_20_39 () {
  676. (
  677. '($a,$b,$c,$d,$e)=@V;'.
  678. '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
  679. '&xor (@T[0],$d);', # ($b^$d)
  680. '&mov (@T[1],$a);', # $b in next round
  681. '&$_rol ($a,5);',
  682. '&xor (@T[0],$c);', # ($b^$d^$c)
  683. '&add ($e,$a);',
  684. '&$_ror ($b,7);', # $b>>>2
  685. '&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
  686. );
  687. }
  688. sub body_40_59 () {
  689. (
  690. '($a,$b,$c,$d,$e)=@V;'.
  691. '&mov (@T[1],$c);',
  692. '&xor ($c,$d);',
  693. '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
  694. '&and (@T[1],$d);',
  695. '&and (@T[0],$c);', # ($b&($c^$d))
  696. '&$_ror ($b,7);', # $b>>>2
  697. '&add ($e,@T[1]);',
  698. '&mov (@T[1],$a);', # $b in next round
  699. '&$_rol ($a,5);',
  700. '&add ($e,@T[0]);',
  701. '&xor ($c,$d);', # restore $c
  702. '&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
  703. );
  704. }
  705. &set_label("loop",16);
  706. &Xupdate_ssse3_16_31(\&body_00_19);
  707. &Xupdate_ssse3_16_31(\&body_00_19);
  708. &Xupdate_ssse3_16_31(\&body_00_19);
  709. &Xupdate_ssse3_16_31(\&body_00_19);
  710. &Xupdate_ssse3_32_79(\&body_00_19);
  711. &Xupdate_ssse3_32_79(\&body_20_39);
  712. &Xupdate_ssse3_32_79(\&body_20_39);
  713. &Xupdate_ssse3_32_79(\&body_20_39);
  714. &Xupdate_ssse3_32_79(\&body_20_39);
  715. &Xupdate_ssse3_32_79(\&body_20_39);
  716. &Xupdate_ssse3_32_79(\&body_40_59);
  717. &Xupdate_ssse3_32_79(\&body_40_59);
  718. &Xupdate_ssse3_32_79(\&body_40_59);
  719. &Xupdate_ssse3_32_79(\&body_40_59);
  720. &Xupdate_ssse3_32_79(\&body_40_59);
  721. &Xupdate_ssse3_32_79(\&body_20_39);
  722. &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
  723. $saved_j=$j; @saved_V=@V;
  724. &Xloop_ssse3(\&body_20_39);
  725. &Xloop_ssse3(\&body_20_39);
  726. &Xloop_ssse3(\&body_20_39);
  727. &mov (@T[1],&DWP(192,"esp")); # update context
  728. &add ($A,&DWP(0,@T[1]));
  729. &add (@T[0],&DWP(4,@T[1])); # $b
  730. &add ($C,&DWP(8,@T[1]));
  731. &mov (&DWP(0,@T[1]),$A);
  732. &add ($D,&DWP(12,@T[1]));
  733. &mov (&DWP(4,@T[1]),@T[0]);
  734. &add ($E,&DWP(16,@T[1]));
  735. &mov (&DWP(8,@T[1]),$C);
  736. &mov ($B,@T[0]);
  737. &mov (&DWP(12,@T[1]),$D);
  738. &mov (&DWP(16,@T[1]),$E);
  739. &movdqa (@X[0],@X[-3&7]);
  740. &jmp (&label("loop"));
  741. &set_label("done",16); $j=$saved_j; @V=@saved_V;
  742. &Xtail_ssse3(\&body_20_39);
  743. &Xtail_ssse3(\&body_20_39);
  744. &Xtail_ssse3(\&body_20_39);
  745. &mov (@T[1],&DWP(192,"esp")); # update context
  746. &add ($A,&DWP(0,@T[1]));
  747. &mov ("esp",&DWP(192+12,"esp")); # restore %esp
  748. &add (@T[0],&DWP(4,@T[1])); # $b
  749. &add ($C,&DWP(8,@T[1]));
  750. &mov (&DWP(0,@T[1]),$A);
  751. &add ($D,&DWP(12,@T[1]));
  752. &mov (&DWP(4,@T[1]),@T[0]);
  753. &add ($E,&DWP(16,@T[1]));
  754. &mov (&DWP(8,@T[1]),$C);
  755. &mov (&DWP(12,@T[1]),$D);
  756. &mov (&DWP(16,@T[1]),$E);
  757. &function_end("_sha1_block_data_order_ssse3");
  758. if ($ymm) {
  759. my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
  760. my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
  761. my @V=($A,$B,$C,$D,$E);
  762. my $j=0; # hash round
  763. my @T=($T,$tmp1);
  764. my $inp;
  765. my $_rol=sub { &shld(@_[0],@_) };
  766. my $_ror=sub { &shrd(@_[0],@_) };
  767. &function_begin("_sha1_block_data_order_avx");
  768. &call (&label("pic_point")); # make it PIC!
  769. &set_label("pic_point");
  770. &blindpop($tmp1);
  771. &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
  772. &set_label("avx_shortcut");
  773. &vzeroall();
  774. &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
  775. &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
  776. &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
  777. &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
  778. &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
  779. &mov ($E,&wparam(0)); # load argument block
  780. &mov ($inp=@T[1],&wparam(1));
  781. &mov ($D,&wparam(2));
  782. &mov (@T[0],"esp");
  783. # stack frame layout
  784. #
  785. # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
  786. # X[4]+K X[5]+K X[6]+K X[7]+K
  787. # X[8]+K X[9]+K X[10]+K X[11]+K
  788. # X[12]+K X[13]+K X[14]+K X[15]+K
  789. #
  790. # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
  791. # X[4] X[5] X[6] X[7]
  792. # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
  793. #
  794. # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
  795. # K_40_59 K_40_59 K_40_59 K_40_59
  796. # K_60_79 K_60_79 K_60_79 K_60_79
  797. # K_00_19 K_00_19 K_00_19 K_00_19
  798. # pbswap mask
  799. #
  800. # +192 ctx # argument block
  801. # +196 inp
  802. # +200 end
  803. # +204 esp
  804. &sub ("esp",208);
  805. &and ("esp",-64);
  806. &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
  807. &vmovdqa(&QWP(112+16,"esp"),@X[5]);
  808. &vmovdqa(&QWP(112+32,"esp"),@X[6]);
  809. &shl ($D,6); # len*64
  810. &vmovdqa(&QWP(112+48,"esp"),@X[3]);
  811. &add ($D,$inp); # end of input
  812. &vmovdqa(&QWP(112+64,"esp"),@X[2]);
  813. &add ($inp,64);
  814. &mov (&DWP(192+0,"esp"),$E); # save argument block
  815. &mov (&DWP(192+4,"esp"),$inp);
  816. &mov (&DWP(192+8,"esp"),$D);
  817. &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
  818. &mov ($A,&DWP(0,$E)); # load context
  819. &mov ($B,&DWP(4,$E));
  820. &mov ($C,&DWP(8,$E));
  821. &mov ($D,&DWP(12,$E));
  822. &mov ($E,&DWP(16,$E));
  823. &mov (@T[0],$B); # magic seed
  824. &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
  825. &vmovdqu(@X[-3&7],&QWP(-48,$inp));
  826. &vmovdqu(@X[-2&7],&QWP(-32,$inp));
  827. &vmovdqu(@X[-1&7],&QWP(-16,$inp));
  828. &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
  829. &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
  830. &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
  831. &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
  832. &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
  833. &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
  834. &vpaddd (@X[1],@X[-3&7],@X[3]);
  835. &vpaddd (@X[2],@X[-2&7],@X[3]);
  836. &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
  837. &vmovdqa(&QWP(0+16,"esp"),@X[1]);
  838. &vmovdqa(&QWP(0+32,"esp"),@X[2]);
  839. &jmp (&label("loop"));
  840. sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
  841. { use integer;
  842. my $body = shift;
  843. my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
  844. my ($a,$b,$c,$d,$e);
  845. eval(shift(@insns));
  846. eval(shift(@insns));
  847. &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
  848. eval(shift(@insns));
  849. eval(shift(@insns));
  850. &vpaddd (@X[3],@X[3],@X[-1&7]);
  851. &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
  852. eval(shift(@insns));
  853. eval(shift(@insns));
  854. &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
  855. eval(shift(@insns));
  856. eval(shift(@insns));
  857. &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
  858. eval(shift(@insns));
  859. eval(shift(@insns));
  860. &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
  861. eval(shift(@insns));
  862. eval(shift(@insns));
  863. &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
  864. eval(shift(@insns));
  865. eval(shift(@insns));
  866. &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
  867. eval(shift(@insns));
  868. eval(shift(@insns));
  869. eval(shift(@insns));
  870. eval(shift(@insns));
  871. &vpsrld (@X[2],@X[0],31);
  872. eval(shift(@insns));
  873. eval(shift(@insns));
  874. eval(shift(@insns));
  875. eval(shift(@insns));
  876. &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
  877. &vpaddd (@X[0],@X[0],@X[0]);
  878. eval(shift(@insns));
  879. eval(shift(@insns));
  880. eval(shift(@insns));
  881. eval(shift(@insns));
  882. &vpsrld (@X[3],@X[4],30);
  883. &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
  884. eval(shift(@insns));
  885. eval(shift(@insns));
  886. eval(shift(@insns));
  887. eval(shift(@insns));
  888. &vpslld (@X[4],@X[4],2);
  889. &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
  890. eval(shift(@insns));
  891. eval(shift(@insns));
  892. &vpxor (@X[0],@X[0],@X[3]);
  893. eval(shift(@insns));
  894. eval(shift(@insns));
  895. eval(shift(@insns));
  896. eval(shift(@insns));
  897. &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
  898. eval(shift(@insns));
  899. eval(shift(@insns));
  900. &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
  901. eval(shift(@insns));
  902. eval(shift(@insns));
  903. foreach (@insns) { eval; } # remaining instructions [if any]
  904. $Xi++; push(@X,shift(@X)); # "rotate" X[]
  905. }
  906. sub Xupdate_avx_32_79()
  907. { use integer;
  908. my $body = shift;
  909. my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
  910. my ($a,$b,$c,$d,$e);
  911. &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
  912. &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
  913. eval(shift(@insns)); # body_20_39
  914. eval(shift(@insns));
  915. eval(shift(@insns));
  916. eval(shift(@insns)); # rol
  917. &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
  918. &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
  919. eval(shift(@insns));
  920. eval(shift(@insns));
  921. if ($Xi%5) {
  922. &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
  923. } else { # ... or load next one
  924. &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
  925. }
  926. &vpaddd (@X[3],@X[3],@X[-1&7]);
  927. eval(shift(@insns)); # ror
  928. eval(shift(@insns));
  929. &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
  930. eval(shift(@insns)); # body_20_39
  931. eval(shift(@insns));
  932. eval(shift(@insns));
  933. eval(shift(@insns)); # rol
  934. &vpsrld (@X[2],@X[0],30);
  935. &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
  936. eval(shift(@insns));
  937. eval(shift(@insns));
  938. eval(shift(@insns)); # ror
  939. eval(shift(@insns));
  940. &vpslld (@X[0],@X[0],2);
  941. eval(shift(@insns)); # body_20_39
  942. eval(shift(@insns));
  943. eval(shift(@insns));
  944. eval(shift(@insns)); # rol
  945. eval(shift(@insns));
  946. eval(shift(@insns));
  947. eval(shift(@insns)); # ror
  948. eval(shift(@insns));
  949. &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
  950. eval(shift(@insns)); # body_20_39
  951. eval(shift(@insns));
  952. &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
  953. eval(shift(@insns));
  954. eval(shift(@insns)); # rol
  955. eval(shift(@insns));
  956. eval(shift(@insns));
  957. eval(shift(@insns)); # ror
  958. eval(shift(@insns));
  959. foreach (@insns) { eval; } # remaining instructions
  960. $Xi++; push(@X,shift(@X)); # "rotate" X[]
  961. }
  962. sub Xuplast_avx_80()
  963. { use integer;
  964. my $body = shift;
  965. my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
  966. my ($a,$b,$c,$d,$e);
  967. eval(shift(@insns));
  968. &vpaddd (@X[3],@X[3],@X[-1&7]);
  969. eval(shift(@insns));
  970. eval(shift(@insns));
  971. eval(shift(@insns));
  972. eval(shift(@insns));
  973. &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
  974. foreach (@insns) { eval; } # remaining instructions
  975. &mov ($inp=@T[1],&DWP(192+4,"esp"));
  976. &cmp ($inp,&DWP(192+8,"esp"));
  977. &je (&label("done"));
  978. &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
  979. &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
  980. &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
  981. &vmovdqu(@X[-3&7],&QWP(16,$inp));
  982. &vmovdqu(@X[-2&7],&QWP(32,$inp));
  983. &vmovdqu(@X[-1&7],&QWP(48,$inp));
  984. &add ($inp,64);
  985. &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
  986. &mov (&DWP(192+4,"esp"),$inp);
  987. &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
  988. $Xi=0;
  989. }
  990. sub Xloop_avx()
  991. { use integer;
  992. my $body = shift;
  993. my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
  994. my ($a,$b,$c,$d,$e);
  995. eval(shift(@insns));
  996. eval(shift(@insns));
  997. &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
  998. eval(shift(@insns));
  999. eval(shift(@insns));
  1000. &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
  1001. eval(shift(@insns));
  1002. eval(shift(@insns));
  1003. eval(shift(@insns));
  1004. eval(shift(@insns));
  1005. &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
  1006. eval(shift(@insns));
  1007. eval(shift(@insns));
  1008. foreach (@insns) { eval; }
  1009. $Xi++;
  1010. }
  1011. sub Xtail_avx()
  1012. { use integer;
  1013. my $body = shift;
  1014. my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
  1015. my ($a,$b,$c,$d,$e);
  1016. foreach (@insns) { eval; }
  1017. }
  1018. &set_label("loop",16);
  1019. &Xupdate_avx_16_31(\&body_00_19);
  1020. &Xupdate_avx_16_31(\&body_00_19);
  1021. &Xupdate_avx_16_31(\&body_00_19);
  1022. &Xupdate_avx_16_31(\&body_00_19);
  1023. &Xupdate_avx_32_79(\&body_00_19);
  1024. &Xupdate_avx_32_79(\&body_20_39);
  1025. &Xupdate_avx_32_79(\&body_20_39);
  1026. &Xupdate_avx_32_79(\&body_20_39);
  1027. &Xupdate_avx_32_79(\&body_20_39);
  1028. &Xupdate_avx_32_79(\&body_20_39);
  1029. &Xupdate_avx_32_79(\&body_40_59);
  1030. &Xupdate_avx_32_79(\&body_40_59);
  1031. &Xupdate_avx_32_79(\&body_40_59);
  1032. &Xupdate_avx_32_79(\&body_40_59);
  1033. &Xupdate_avx_32_79(\&body_40_59);
  1034. &Xupdate_avx_32_79(\&body_20_39);
  1035. &Xuplast_avx_80(\&body_20_39); # can jump to "done"
  1036. $saved_j=$j; @saved_V=@V;
  1037. &Xloop_avx(\&body_20_39);
  1038. &Xloop_avx(\&body_20_39);
  1039. &Xloop_avx(\&body_20_39);
  1040. &mov (@T[1],&DWP(192,"esp")); # update context
  1041. &add ($A,&DWP(0,@T[1]));
  1042. &add (@T[0],&DWP(4,@T[1])); # $b
  1043. &add ($C,&DWP(8,@T[1]));
  1044. &mov (&DWP(0,@T[1]),$A);
  1045. &add ($D,&DWP(12,@T[1]));
  1046. &mov (&DWP(4,@T[1]),@T[0]);
  1047. &add ($E,&DWP(16,@T[1]));
  1048. &mov (&DWP(8,@T[1]),$C);
  1049. &mov ($B,@T[0]);
  1050. &mov (&DWP(12,@T[1]),$D);
  1051. &mov (&DWP(16,@T[1]),$E);
  1052. &jmp (&label("loop"));
  1053. &set_label("done",16); $j=$saved_j; @V=@saved_V;
  1054. &Xtail_avx(\&body_20_39);
  1055. &Xtail_avx(\&body_20_39);
  1056. &Xtail_avx(\&body_20_39);
  1057. &vzeroall();
  1058. &mov (@T[1],&DWP(192,"esp")); # update context
  1059. &add ($A,&DWP(0,@T[1]));
  1060. &mov ("esp",&DWP(192+12,"esp")); # restore %esp
  1061. &add (@T[0],&DWP(4,@T[1])); # $b
  1062. &add ($C,&DWP(8,@T[1]));
  1063. &mov (&DWP(0,@T[1]),$A);
  1064. &add ($D,&DWP(12,@T[1]));
  1065. &mov (&DWP(4,@T[1]),@T[0]);
  1066. &add ($E,&DWP(16,@T[1]));
  1067. &mov (&DWP(8,@T[1]),$C);
  1068. &mov (&DWP(12,@T[1]),$D);
  1069. &mov (&DWP(16,@T[1]),$E);
  1070. &function_end("_sha1_block_data_order_avx");
  1071. }
  1072. &set_label("K_XX_XX",64);
  1073. &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
  1074. &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
  1075. &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
  1076. &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
  1077. &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
  1078. }
  1079. &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
  1080. &asm_finish();