sha512-armv8.pl 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. #!/usr/bin/env perl
  2. #
  3. # ====================================================================
  4. # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
  5. # project. The module is, however, dual licensed under OpenSSL and
  6. # CRYPTOGAMS licenses depending on where you obtain it. For further
  7. # details see http://www.openssl.org/~appro/cryptogams/.
  8. # ====================================================================
  9. #
  10. # SHA256/512 for ARMv8.
  11. #
  12. # Performance in cycles per processed byte and improvement coefficient
  13. # over code generated with "default" compiler:
  14. #
  15. # SHA256-hw SHA256(*) SHA512
  16. # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
  17. # Cortex-A53 2.38 15.6 (+110%) 10.1 (+190%(***))
  18. # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
  19. #
  20. # (*) Software SHA256 results are of lesser relevance, presented
  21. # mostly for informational purposes.
  22. # (**) The result is a trade-off: it's possible to improve it by
  23. # 10% (or by 1 cycle per round), but at the cost of 20% loss
  24. # on Cortex-A53 (or by 4 cycles per round).
  25. # (***) Super-impressive coefficients over gcc-generated code are
  26. # indication of some compiler "pathology", most notably code
  27. # generated with -mgeneral-regs-only is significanty faster
  28. # and lags behind assembly only by 50-90%.
  29. $flavour=shift;
  30. $output=shift;
  31. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
  32. ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
  33. ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
  34. die "can't locate arm-xlate.pl";
  35. open OUT,"| \"$^X\" $xlate $flavour $output";
  36. *STDOUT=*OUT;
  37. if ($output =~ /512/) {
  38. $BITS=512;
  39. $SZ=8;
  40. @Sigma0=(28,34,39);
  41. @Sigma1=(14,18,41);
  42. @sigma0=(1, 8, 7);
  43. @sigma1=(19,61, 6);
  44. $rounds=80;
  45. $reg_t="x";
  46. } else {
  47. $BITS=256;
  48. $SZ=4;
  49. @Sigma0=( 2,13,22);
  50. @Sigma1=( 6,11,25);
  51. @sigma0=( 7,18, 3);
  52. @sigma1=(17,19,10);
  53. $rounds=64;
  54. $reg_t="w";
  55. }
  56. $func="sha${BITS}_block_data_order";
  57. ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
  58. @X=map("$reg_t$_",(3..15,0..2));
  59. @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
  60. ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
  61. sub BODY_00_xx {
  62. my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
  63. my $j=($i+1)&15;
  64. my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
  65. $T0=@X[$i+3] if ($i<11);
  66. $code.=<<___ if ($i<16);
  67. #ifndef __ARMEB__
  68. rev @X[$i],@X[$i] // $i
  69. #endif
  70. ___
  71. $code.=<<___ if ($i<13 && ($i&1));
  72. ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
  73. ___
  74. $code.=<<___ if ($i==13);
  75. ldp @X[14],@X[15],[$inp]
  76. ___
  77. $code.=<<___ if ($i>=14);
  78. ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
  79. ___
  80. $code.=<<___ if ($i>0 && $i<16);
  81. add $a,$a,$t1 // h+=Sigma0(a)
  82. ___
  83. $code.=<<___ if ($i>=11);
  84. str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
  85. ___
  86. # While ARMv8 specifies merged rotate-n-logical operation such as
  87. # 'eor x,y,z,ror#n', it was found to negatively affect performance
  88. # on Apple A7. The reason seems to be that it requires even 'y' to
  89. # be available earlier. This means that such merged instruction is
  90. # not necessarily best choice on critical path... On the other hand
  91. # Cortex-A5x handles merged instructions much better than disjoint
  92. # rotate and logical... See (**) footnote above.
  93. $code.=<<___ if ($i<15);
  94. ror $t0,$e,#$Sigma1[0]
  95. add $h,$h,$t2 // h+=K[i]
  96. eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
  97. and $t1,$f,$e
  98. bic $t2,$g,$e
  99. add $h,$h,@X[$i&15] // h+=X[i]
  100. orr $t1,$t1,$t2 // Ch(e,f,g)
  101. eor $t2,$a,$b // a^b, b^c in next round
  102. eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
  103. ror $T0,$a,#$Sigma0[0]
  104. add $h,$h,$t1 // h+=Ch(e,f,g)
  105. eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
  106. add $h,$h,$t0 // h+=Sigma1(e)
  107. and $t3,$t3,$t2 // (b^c)&=(a^b)
  108. add $d,$d,$h // d+=h
  109. eor $t3,$t3,$b // Maj(a,b,c)
  110. eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
  111. add $h,$h,$t3 // h+=Maj(a,b,c)
  112. ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
  113. //add $h,$h,$t1 // h+=Sigma0(a)
  114. ___
  115. $code.=<<___ if ($i>=15);
  116. ror $t0,$e,#$Sigma1[0]
  117. add $h,$h,$t2 // h+=K[i]
  118. ror $T1,@X[($j+1)&15],#$sigma0[0]
  119. and $t1,$f,$e
  120. ror $T2,@X[($j+14)&15],#$sigma1[0]
  121. bic $t2,$g,$e
  122. ror $T0,$a,#$Sigma0[0]
  123. add $h,$h,@X[$i&15] // h+=X[i]
  124. eor $t0,$t0,$e,ror#$Sigma1[1]
  125. eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
  126. orr $t1,$t1,$t2 // Ch(e,f,g)
  127. eor $t2,$a,$b // a^b, b^c in next round
  128. eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
  129. eor $T0,$T0,$a,ror#$Sigma0[1]
  130. add $h,$h,$t1 // h+=Ch(e,f,g)
  131. and $t3,$t3,$t2 // (b^c)&=(a^b)
  132. eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
  133. eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
  134. add $h,$h,$t0 // h+=Sigma1(e)
  135. eor $t3,$t3,$b // Maj(a,b,c)
  136. eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
  137. eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
  138. add @X[$j],@X[$j],@X[($j+9)&15]
  139. add $d,$d,$h // d+=h
  140. add $h,$h,$t3 // h+=Maj(a,b,c)
  141. ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
  142. add @X[$j],@X[$j],$T1
  143. add $h,$h,$t1 // h+=Sigma0(a)
  144. add @X[$j],@X[$j],$T2
  145. ___
  146. ($t2,$t3)=($t3,$t2);
  147. }
  148. $code.=<<___;
  149. #include "arm_arch.h"
  150. .text
  151. .extern OPENSSL_armcap_P
  152. .globl $func
  153. .type $func,%function
  154. .align 6
  155. $func:
  156. ___
  157. $code.=<<___ if ($SZ==4);
  158. ldr x16,.LOPENSSL_armcap_P
  159. adr x17,.LOPENSSL_armcap_P
  160. add x16,x16,x17
  161. ldr w16,[x16]
  162. tst w16,#ARMV8_SHA256
  163. b.ne .Lv8_entry
  164. ___
  165. $code.=<<___;
  166. stp x29,x30,[sp,#-128]!
  167. add x29,sp,#0
  168. stp x19,x20,[sp,#16]
  169. stp x21,x22,[sp,#32]
  170. stp x23,x24,[sp,#48]
  171. stp x25,x26,[sp,#64]
  172. stp x27,x28,[sp,#80]
  173. sub sp,sp,#4*$SZ
  174. ldp $A,$B,[$ctx] // load context
  175. ldp $C,$D,[$ctx,#2*$SZ]
  176. ldp $E,$F,[$ctx,#4*$SZ]
  177. add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
  178. ldp $G,$H,[$ctx,#6*$SZ]
  179. adr $Ktbl,.LK$BITS
  180. stp $ctx,$num,[x29,#96]
  181. .Loop:
  182. ldp @X[0],@X[1],[$inp],#2*$SZ
  183. ldr $t2,[$Ktbl],#$SZ // *K++
  184. eor $t3,$B,$C // magic seed
  185. str $inp,[x29,#112]
  186. ___
  187. for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
  188. $code.=".Loop_16_xx:\n";
  189. for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
  190. $code.=<<___;
  191. cbnz $t2,.Loop_16_xx
  192. ldp $ctx,$num,[x29,#96]
  193. ldr $inp,[x29,#112]
  194. sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
  195. ldp @X[0],@X[1],[$ctx]
  196. ldp @X[2],@X[3],[$ctx,#2*$SZ]
  197. add $inp,$inp,#14*$SZ // advance input pointer
  198. ldp @X[4],@X[5],[$ctx,#4*$SZ]
  199. add $A,$A,@X[0]
  200. ldp @X[6],@X[7],[$ctx,#6*$SZ]
  201. add $B,$B,@X[1]
  202. add $C,$C,@X[2]
  203. add $D,$D,@X[3]
  204. stp $A,$B,[$ctx]
  205. add $E,$E,@X[4]
  206. add $F,$F,@X[5]
  207. stp $C,$D,[$ctx,#2*$SZ]
  208. add $G,$G,@X[6]
  209. add $H,$H,@X[7]
  210. cmp $inp,$num
  211. stp $E,$F,[$ctx,#4*$SZ]
  212. stp $G,$H,[$ctx,#6*$SZ]
  213. b.ne .Loop
  214. ldp x19,x20,[x29,#16]
  215. add sp,sp,#4*$SZ
  216. ldp x21,x22,[x29,#32]
  217. ldp x23,x24,[x29,#48]
  218. ldp x25,x26,[x29,#64]
  219. ldp x27,x28,[x29,#80]
  220. ldp x29,x30,[sp],#128
  221. ret
  222. .size $func,.-$func
  223. .align 6
  224. .type .LK$BITS,%object
  225. .LK$BITS:
  226. ___
  227. $code.=<<___ if ($SZ==8);
  228. .quad 0x428a2f98d728ae22,0x7137449123ef65cd
  229. .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
  230. .quad 0x3956c25bf348b538,0x59f111f1b605d019
  231. .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
  232. .quad 0xd807aa98a3030242,0x12835b0145706fbe
  233. .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
  234. .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
  235. .quad 0x9bdc06a725c71235,0xc19bf174cf692694
  236. .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
  237. .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
  238. .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
  239. .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
  240. .quad 0x983e5152ee66dfab,0xa831c66d2db43210
  241. .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
  242. .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
  243. .quad 0x06ca6351e003826f,0x142929670a0e6e70
  244. .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
  245. .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
  246. .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
  247. .quad 0x81c2c92e47edaee6,0x92722c851482353b
  248. .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
  249. .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
  250. .quad 0xd192e819d6ef5218,0xd69906245565a910
  251. .quad 0xf40e35855771202a,0x106aa07032bbd1b8
  252. .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
  253. .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
  254. .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
  255. .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
  256. .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
  257. .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
  258. .quad 0x90befffa23631e28,0xa4506cebde82bde9
  259. .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
  260. .quad 0xca273eceea26619c,0xd186b8c721c0c207
  261. .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
  262. .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
  263. .quad 0x113f9804bef90dae,0x1b710b35131c471b
  264. .quad 0x28db77f523047d84,0x32caab7b40c72493
  265. .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
  266. .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
  267. .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
  268. .quad 0 // terminator
  269. ___
  270. $code.=<<___ if ($SZ==4);
  271. .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
  272. .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
  273. .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
  274. .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
  275. .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
  276. .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
  277. .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
  278. .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
  279. .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
  280. .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
  281. .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
  282. .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
  283. .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
  284. .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
  285. .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
  286. .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
  287. .long 0 //terminator
  288. ___
  289. $code.=<<___;
  290. .size .LK$BITS,.-.LK$BITS
  291. .align 3
  292. .LOPENSSL_armcap_P:
  293. .quad OPENSSL_armcap_P-.
  294. .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
  295. .align 2
  296. ___
  297. if ($SZ==4) {
  298. my $Ktbl="x3";
  299. my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
  300. my @MSG=map("v$_.16b",(4..7));
  301. my ($W0,$W1)=("v16.4s","v17.4s");
  302. my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
  303. $code.=<<___;
  304. .type sha256_block_armv8,%function
  305. .align 6
  306. sha256_block_armv8:
  307. .Lv8_entry:
  308. stp x29,x30,[sp,#-16]!
  309. add x29,sp,#0
  310. ld1.32 {$ABCD,$EFGH},[$ctx]
  311. adr $Ktbl,.LK256
  312. .Loop_hw:
  313. ld1 {@MSG[0]-@MSG[3]},[$inp],#64
  314. sub $num,$num,#1
  315. ld1.32 {$W0},[$Ktbl],#16
  316. rev32 @MSG[0],@MSG[0]
  317. rev32 @MSG[1],@MSG[1]
  318. rev32 @MSG[2],@MSG[2]
  319. rev32 @MSG[3],@MSG[3]
  320. orr $ABCD_SAVE,$ABCD,$ABCD // offload
  321. orr $EFGH_SAVE,$EFGH,$EFGH
  322. ___
  323. for($i=0;$i<12;$i++) {
  324. $code.=<<___;
  325. ld1.32 {$W1},[$Ktbl],#16
  326. add.i32 $W0,$W0,@MSG[0]
  327. sha256su0 @MSG[0],@MSG[1]
  328. orr $abcd,$ABCD,$ABCD
  329. sha256h $ABCD,$EFGH,$W0
  330. sha256h2 $EFGH,$abcd,$W0
  331. sha256su1 @MSG[0],@MSG[2],@MSG[3]
  332. ___
  333. ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
  334. }
  335. $code.=<<___;
  336. ld1.32 {$W1},[$Ktbl],#16
  337. add.i32 $W0,$W0,@MSG[0]
  338. orr $abcd,$ABCD,$ABCD
  339. sha256h $ABCD,$EFGH,$W0
  340. sha256h2 $EFGH,$abcd,$W0
  341. ld1.32 {$W0},[$Ktbl],#16
  342. add.i32 $W1,$W1,@MSG[1]
  343. orr $abcd,$ABCD,$ABCD
  344. sha256h $ABCD,$EFGH,$W1
  345. sha256h2 $EFGH,$abcd,$W1
  346. ld1.32 {$W1},[$Ktbl]
  347. add.i32 $W0,$W0,@MSG[2]
  348. sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
  349. orr $abcd,$ABCD,$ABCD
  350. sha256h $ABCD,$EFGH,$W0
  351. sha256h2 $EFGH,$abcd,$W0
  352. add.i32 $W1,$W1,@MSG[3]
  353. orr $abcd,$ABCD,$ABCD
  354. sha256h $ABCD,$EFGH,$W1
  355. sha256h2 $EFGH,$abcd,$W1
  356. add.i32 $ABCD,$ABCD,$ABCD_SAVE
  357. add.i32 $EFGH,$EFGH,$EFGH_SAVE
  358. cbnz $num,.Loop_hw
  359. st1.32 {$ABCD,$EFGH},[$ctx]
  360. ldr x29,[sp],#16
  361. ret
  362. .size sha256_block_armv8,.-sha256_block_armv8
  363. ___
  364. }
  365. $code.=<<___;
  366. .comm OPENSSL_armcap_P,4,4
  367. ___
  368. { my %opcode = (
  369. "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
  370. "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
  371. sub unsha256 {
  372. my ($mnemonic,$arg)=@_;
  373. $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
  374. &&
  375. sprintf ".inst\t0x%08x\t//%s %s",
  376. $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
  377. $mnemonic,$arg;
  378. }
  379. }
  380. foreach(split("\n",$code)) {
  381. s/\`([^\`]*)\`/eval($1)/geo;
  382. s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo;
  383. s/\.\w?32\b//o and s/\.16b/\.4s/go;
  384. m/(ld|st)1[^\[]+\[0\]/o and s/\.4s/\.s/go;
  385. print $_,"\n";
  386. }
  387. close STDOUT;