123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- =pod
- =head1 NAME
- EC_GROUP_get_ecparameters, EC_GROUP_get_ecpkparameters,
- EC_GROUP_new, EC_GROUP_new_from_ecparameters,
- EC_GROUP_new_from_ecpkparameters,
- EC_GROUP_free, EC_GROUP_clear_free, EC_GROUP_new_curve_GFp,
- EC_GROUP_new_curve_GF2m, EC_GROUP_new_by_curve_name, EC_GROUP_set_curve_GFp,
- EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m,
- EC_get_builtin_curves - Functions for creating and destroying EC_GROUP
- objects
- =head1 SYNOPSIS
- #include <openssl/ec.h>
- EC_GROUP *EC_GROUP_new(const EC_METHOD *meth);
- EC_GROUP *EC_GROUP_new_from_ecparameters(const ECPARAMETERS *params)
- EC_GROUP *EC_GROUP_new_from_ecpkparameters(const ECPKPARAMETERS *params)
- void EC_GROUP_free(EC_GROUP *group);
- void EC_GROUP_clear_free(EC_GROUP *group);
- EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
- EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
- EC_GROUP *EC_GROUP_new_by_curve_name(int nid);
- int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
- int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
- int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
- int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
- ECPARAMETERS *EC_GROUP_get_ecparameters(const EC_GROUP *group, ECPARAMETERS *params)
- ECPKPARAMETERS *EC_GROUP_get_ecpkparameters(const EC_GROUP *group, ECPKPARAMETERS *params)
- size_t EC_get_builtin_curves(EC_builtin_curve *r, size_t nitems);
- =head1 DESCRIPTION
- Within the library there are two forms of elliptic curve that are of interest. The first form is those defined over the
- prime field Fp. The elements of Fp are the integers 0 to p-1, where p is a prime number. This gives us a revised
- elliptic curve equation as follows:
- y^2 mod p = x^3 +ax + b mod p
- The second form is those defined over a binary field F2^m where the elements of the field are integers of length at
- most m bits. For this form the elliptic curve equation is modified to:
- y^2 + xy = x^3 + ax^2 + b (where b != 0)
- Operations in a binary field are performed relative to an B<irreducible polynomial>. All such curves with OpenSSL
- use a trinomial or a pentanomial for this parameter.
- A new curve can be constructed by calling EC_GROUP_new, using the implementation provided by B<meth> (see
- L<EC_GFp_simple_method(3)>). It is then necessary to call either EC_GROUP_set_curve_GFp or
- EC_GROUP_set_curve_GF2m as appropriate to create a curve defined over Fp or over F2^m respectively.
- EC_GROUP_new_from_ecparameters() will create a group from the
- specified B<params> and
- EC_GROUP_new_from_ecpkparameters() will create a group from the specific PK B<params>.
- EC_GROUP_set_curve_GFp sets the curve parameters B<p>, B<a> and B<b> for a curve over Fp stored in B<group>.
- EC_group_get_curve_GFp obtains the previously set curve parameters.
- EC_GROUP_set_curve_GF2m sets the equivalent curve parameters for a curve over F2^m. In this case B<p> represents
- the irreducible polynomial - each bit represents a term in the polynomial. Therefore there will either be three
- or five bits set dependent on whether the polynomial is a trinomial or a pentanomial.
- EC_group_get_curve_GF2m obtains the previously set curve parameters.
- The functions EC_GROUP_new_curve_GFp and EC_GROUP_new_curve_GF2m are shortcuts for calling EC_GROUP_new and the
- appropriate EC_group_set_curve function. An appropriate default implementation method will be used.
- Whilst the library can be used to create any curve using the functions described above, there are also a number of
- predefined curves that are available. In order to obtain a list of all of the predefined curves, call the function
- EC_get_builtin_curves. The parameter B<r> should be an array of EC_builtin_curve structures of size B<nitems>. The function
- will populate the B<r> array with information about the builtin curves. If B<nitems> is less than the total number of
- curves available, then the first B<nitems> curves will be returned. Otherwise the total number of curves will be
- provided. The return value is the total number of curves available (whether that number has been populated in B<r> or
- not). Passing a NULL B<r>, or setting B<nitems> to 0 will do nothing other than return the total number of curves available.
- The EC_builtin_curve structure is defined as follows:
- typedef struct {
- int nid;
- const char *comment;
- } EC_builtin_curve;
- Each EC_builtin_curve item has a unique integer id (B<nid>), and a human readable comment string describing the curve.
- In order to construct a builtin curve use the function EC_GROUP_new_by_curve_name and provide the B<nid> of the curve to
- be constructed.
- EC_GROUP_free frees the memory associated with the EC_GROUP.
- If B<group> is NULL nothing is done.
- EC_GROUP_clear_free destroys any sensitive data held within the EC_GROUP and then frees its memory.
- If B<group> is NULL nothing is done.
- =head1 RETURN VALUES
- All EC_GROUP_new* functions return a pointer to the newly constructed group, or NULL on error.
- EC_get_builtin_curves returns the number of builtin curves that are available.
- EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m return 1 on success or 0 on error.
- =head1 SEE ALSO
- L<crypto(7)>, L<EC_GROUP_copy(3)>,
- L<EC_POINT_new(3)>, L<EC_POINT_add(3)>, L<EC_KEY_new(3)>,
- L<EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)>
- =head1 COPYRIGHT
- Copyright 2013-2017 The OpenSSL Project Authors. All Rights Reserved.
- Licensed under the OpenSSL license (the "License"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file LICENSE in the source distribution or at
- L<https://www.openssl.org/source/license.html>.
- =cut
|