2
0

EVP_EncryptInit.pod 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. =pod
  2. =head1 NAME
  3. EVP_CIPHER_CTX_new, EVP_CIPHER_CTX_reset, EVP_CIPHER_CTX_free,
  4. EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex,
  5. EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex,
  6. EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFinal_ex,
  7. EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl, EVP_EncryptInit,
  8. EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal,
  9. EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
  10. EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid,
  11. EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length,
  12. EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher,
  13. EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
  14. EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
  15. EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags,
  16. EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
  17. EVP_CIPHER_CTX_set_padding, EVP_enc_null, EVP_des_cbc, EVP_des_ecb,
  18. EVP_des_cfb, EVP_des_ofb, EVP_des_ede_cbc, EVP_des_ede, EVP_des_ede_ofb,
  19. EVP_des_ede_cfb, EVP_des_ede3_cbc, EVP_des_ede3, EVP_des_ede3_ofb,
  20. EVP_des_ede3_cfb, EVP_desx_cbc, EVP_rc4, EVP_rc4_40, EVP_rc4_hmac_md5,
  21. EVP_idea_cbc, EVP_idea_ecb, EVP_idea_cfb, EVP_idea_ofb, EVP_rc2_cbc,
  22. EVP_rc2_ecb, EVP_rc2_cfb, EVP_rc2_ofb, EVP_rc2_40_cbc, EVP_rc2_64_cbc,
  23. EVP_bf_cbc, EVP_bf_ecb, EVP_bf_cfb, EVP_bf_ofb, EVP_cast5_cbc,
  24. EVP_cast5_ecb, EVP_cast5_cfb, EVP_cast5_ofb, EVP_rc5_32_12_16_cbc,
  25. EVP_rc5_32_12_16_ecb, EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ofb,
  26. EVP_aes_128_cbc, EVP_aes_128_ecb, EVP_aes_128_cfb, EVP_aes_128_ofb,
  27. EVP_aes_192_cbc, EVP_aes_192_ecb, EVP_aes_192_cfb, EVP_aes_192_ofb,
  28. EVP_aes_256_cbc, EVP_aes_256_ecb, EVP_aes_256_cfb, EVP_aes_256_ofb,
  29. EVP_aes_128_gcm, EVP_aes_192_gcm, EVP_aes_256_gcm,
  30. EVP_aes_128_ccm, EVP_aes_192_ccm, EVP_aes_256_ccm,
  31. EVP_aes_128_cbc_hmac_sha1, EVP_aes_256_cbc_hmac_sha1,
  32. EVP_aes_128_cbc_hmac_sha256, EVP_aes_256_cbc_hmac_sha256,
  33. EVP_chacha20, EVP_chacha20_poly1305 - EVP cipher routines
  34. =head1 SYNOPSIS
  35. =for comment generic
  36. #include <openssl/evp.h>
  37. EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
  38. int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx);
  39. void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);
  40. int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
  41. ENGINE *impl, const unsigned char *key, const unsigned char *iv);
  42. int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
  43. int *outl, const unsigned char *in, int inl);
  44. int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
  45. int *outl);
  46. int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
  47. ENGINE *impl, const unsigned char *key, const unsigned char *iv);
  48. int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
  49. int *outl, const unsigned char *in, int inl);
  50. int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
  51. int *outl);
  52. int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
  53. ENGINE *impl, const unsigned char *key, const unsigned char *iv, int enc);
  54. int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
  55. int *outl, const unsigned char *in, int inl);
  56. int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
  57. int *outl);
  58. int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
  59. const unsigned char *key, const unsigned char *iv);
  60. int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
  61. int *outl);
  62. int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
  63. const unsigned char *key, const unsigned char *iv);
  64. int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
  65. int *outl);
  66. int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
  67. const unsigned char *key, const unsigned char *iv, int enc);
  68. int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
  69. int *outl);
  70. int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
  71. int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
  72. int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
  73. const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
  74. const EVP_CIPHER *EVP_get_cipherbynid(int nid);
  75. const EVP_CIPHER *EVP_get_cipherbyobj(const ASN1_OBJECT *a);
  76. int EVP_CIPHER_nid(const EVP_CIPHER *e);
  77. int EVP_CIPHER_block_size(const EVP_CIPHER *e);
  78. int EVP_CIPHER_key_length(const EVP_CIPHER *e)
  79. int EVP_CIPHER_key_length(const EVP_CIPHER *e);
  80. int EVP_CIPHER_iv_length(const EVP_CIPHER *e);
  81. unsigned long EVP_CIPHER_flags(const EVP_CIPHER *e);
  82. unsigned long EVP_CIPHER_mode(const EVP_CIPHER *e);
  83. int EVP_CIPHER_type(const EVP_CIPHER *ctx);
  84. const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx);
  85. int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
  86. int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
  87. int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
  88. int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
  89. void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
  90. void EVP_CIPHER_CTX_set_app_data(const EVP_CIPHER_CTX *ctx, void *data);
  91. int EVP_CIPHER_CTX_type(const EVP_CIPHER_CTX *ctx);
  92. int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);
  93. int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
  94. int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
  95. =head1 DESCRIPTION
  96. The EVP cipher routines are a high level interface to certain
  97. symmetric ciphers.
  98. EVP_CIPHER_CTX_new() creates a cipher context.
  99. EVP_CIPHER_CTX_free() clears all information from a cipher context
  100. and free up any allocated memory associate with it, including B<ctx>
  101. itself. This function should be called after all operations using a
  102. cipher are complete so sensitive information does not remain in
  103. memory.
  104. EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption
  105. with cipher B<type> from ENGINE B<impl>. B<ctx> must be created
  106. before calling this function. B<type> is normally supplied
  107. by a function such as EVP_aes_256_cbc(). If B<impl> is NULL then the
  108. default implementation is used. B<key> is the symmetric key to use
  109. and B<iv> is the IV to use (if necessary), the actual number of bytes
  110. used for the key and IV depends on the cipher. It is possible to set
  111. all parameters to NULL except B<type> in an initial call and supply
  112. the remaining parameters in subsequent calls, all of which have B<type>
  113. set to NULL. This is done when the default cipher parameters are not
  114. appropriate.
  115. EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and
  116. writes the encrypted version to B<out>. This function can be called
  117. multiple times to encrypt successive blocks of data. The amount
  118. of data written depends on the block alignment of the encrypted data:
  119. as a result the amount of data written may be anything from zero bytes
  120. to (inl + cipher_block_size - 1) so B<out> should contain sufficient
  121. room. The actual number of bytes written is placed in B<outl>. It also
  122. checks if B<in> and B<out> are partially overlapping, and if they are
  123. 0 is returned to indicate failure.
  124. If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts
  125. the "final" data, that is any data that remains in a partial block.
  126. It uses standard block padding (aka PKCS padding) as described in
  127. the NOTES section, below. The encrypted
  128. final data is written to B<out> which should have sufficient space for
  129. one cipher block. The number of bytes written is placed in B<outl>. After
  130. this function is called the encryption operation is finished and no further
  131. calls to EVP_EncryptUpdate() should be made.
  132. If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more
  133. data and it will return an error if any data remains in a partial block:
  134. that is if the total data length is not a multiple of the block size.
  135. EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the
  136. corresponding decryption operations. EVP_DecryptFinal() will return an
  137. error code if padding is enabled and the final block is not correctly
  138. formatted. The parameters and restrictions are identical to the encryption
  139. operations except that if padding is enabled the decrypted data buffer B<out>
  140. passed to EVP_DecryptUpdate() should have sufficient room for
  141. (B<inl> + cipher_block_size) bytes unless the cipher block size is 1 in
  142. which case B<inl> bytes is sufficient.
  143. EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are
  144. functions that can be used for decryption or encryption. The operation
  145. performed depends on the value of the B<enc> parameter. It should be set
  146. to 1 for encryption, 0 for decryption and -1 to leave the value unchanged
  147. (the actual value of 'enc' being supplied in a previous call).
  148. EVP_CIPHER_CTX_reset() clears all information from a cipher context
  149. and free up any allocated memory associate with it, except the B<ctx>
  150. itself. This function should be called anytime B<ctx> is to be reused
  151. for another EVP_CipherInit() / EVP_CipherUpdate() / EVP_CipherFinal()
  152. series of calls.
  153. EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a
  154. similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex() and
  155. EVP_CipherInit_ex() except the B<ctx> parameter does not need to be
  156. initialized and they always use the default cipher implementation.
  157. EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are
  158. identical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and
  159. EVP_CipherFinal_ex(). In previous releases they also cleaned up
  160. the B<ctx>, but this is no longer done and EVP_CIPHER_CTX_clean()
  161. must be called to free any context resources.
  162. EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
  163. return an EVP_CIPHER structure when passed a cipher name, a NID or an
  164. ASN1_OBJECT structure.
  165. EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when
  166. passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure. The actual NID
  167. value is an internal value which may not have a corresponding OBJECT
  168. IDENTIFIER.
  169. EVP_CIPHER_CTX_set_padding() enables or disables padding. This
  170. function should be called after the context is set up for encryption
  171. or decryption with EVP_EncryptInit_ex(), EVP_DecryptInit_ex() or
  172. EVP_CipherInit_ex(). By default encryption operations are padded using
  173. standard block padding and the padding is checked and removed when
  174. decrypting. If the B<pad> parameter is zero then no padding is
  175. performed, the total amount of data encrypted or decrypted must then
  176. be a multiple of the block size or an error will occur.
  177. EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
  178. length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
  179. structure. The constant B<EVP_MAX_KEY_LENGTH> is the maximum key length
  180. for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a
  181. given cipher, the value of EVP_CIPHER_CTX_key_length() may be different
  182. for variable key length ciphers.
  183. EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx.
  184. If the cipher is a fixed length cipher then attempting to set the key
  185. length to any value other than the fixed value is an error.
  186. EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
  187. length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>.
  188. It will return zero if the cipher does not use an IV. The constant
  189. B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers.
  190. EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
  191. size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
  192. structure. The constant B<EVP_MAX_BLOCK_LENGTH> is also the maximum block
  193. length for all ciphers.
  194. EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed
  195. cipher or context. This "type" is the actual NID of the cipher OBJECT
  196. IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and
  197. 128 bit RC2 have the same NID. If the cipher does not have an object
  198. identifier or does not have ASN1 support this function will return
  199. B<NID_undef>.
  200. EVP_CIPHER_CTX_cipher() returns the B<EVP_CIPHER> structure when passed
  201. an B<EVP_CIPHER_CTX> structure.
  202. EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode:
  203. EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE or
  204. EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then
  205. EVP_CIPH_STREAM_CIPHER is returned.
  206. EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based
  207. on the passed cipher. This will typically include any parameters and an
  208. IV. The cipher IV (if any) must be set when this call is made. This call
  209. should be made before the cipher is actually "used" (before any
  210. EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function
  211. may fail if the cipher does not have any ASN1 support.
  212. EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1
  213. AlgorithmIdentifier "parameter". The precise effect depends on the cipher
  214. In the case of RC2, for example, it will set the IV and effective key length.
  215. This function should be called after the base cipher type is set but before
  216. the key is set. For example EVP_CipherInit() will be called with the IV and
  217. key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally
  218. EVP_CipherInit() again with all parameters except the key set to NULL. It is
  219. possible for this function to fail if the cipher does not have any ASN1 support
  220. or the parameters cannot be set (for example the RC2 effective key length
  221. is not supported.
  222. EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined
  223. and set.
  224. =head1 RETURN VALUES
  225. EVP_CIPHER_CTX_new() returns a pointer to a newly created
  226. B<EVP_CIPHER_CTX> for success and B<NULL> for failure.
  227. EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex()
  228. return 1 for success and 0 for failure.
  229. EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure.
  230. EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success.
  231. EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure.
  232. EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success.
  233. EVP_CIPHER_CTX_reset() returns 1 for success and 0 for failure.
  234. EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
  235. return an B<EVP_CIPHER> structure or NULL on error.
  236. EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.
  237. EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
  238. size.
  239. EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
  240. length.
  241. EVP_CIPHER_CTX_set_padding() always returns 1.
  242. EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
  243. length or zero if the cipher does not use an IV.
  244. EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's
  245. OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER.
  246. EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure.
  247. EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return greater
  248. than zero for success and zero or a negative number.
  249. =head1 CIPHER LISTING
  250. All algorithms have a fixed key length unless otherwise stated.
  251. =over 4
  252. =item EVP_enc_null()
  253. Null cipher: does nothing.
  254. =item EVP_aes_128_cbc(), EVP_aes_128_ecb(), EVP_aes_128_cfb(), EVP_aes_128_ofb()
  255. AES with a 128-bit key in CBC, ECB, CFB and OFB modes respectively.
  256. =item EVP_aes_192_cbc(), EVP_aes_192_ecb(), EVP_aes_192_cfb(), EVP_aes_192_ofb()
  257. AES with a 192-bit key in CBC, ECB, CFB and OFB modes respectively.
  258. =item EVP_aes_256_cbc(), EVP_aes_256_ecb(), EVP_aes_256_cfb(), EVP_aes_256_ofb()
  259. AES with a 256-bit key in CBC, ECB, CFB and OFB modes respectively.
  260. =item EVP_des_cbc(), EVP_des_ecb(), EVP_des_cfb(), EVP_des_ofb()
  261. DES in CBC, ECB, CFB and OFB modes respectively.
  262. =item EVP_des_ede_cbc(), EVP_des_ede(), EVP_des_ede_ofb(), EVP_des_ede_cfb()
  263. Two key triple DES in CBC, ECB, CFB and OFB modes respectively.
  264. =item EVP_des_ede3_cbc(), EVP_des_ede3(), EVP_des_ede3_ofb(), EVP_des_ede3_cfb()
  265. Three key triple DES in CBC, ECB, CFB and OFB modes respectively.
  266. =item EVP_desx_cbc()
  267. DESX algorithm in CBC mode.
  268. =item EVP_rc4()
  269. RC4 stream cipher. This is a variable key length cipher with default key length 128 bits.
  270. =item EVP_rc4_40()
  271. RC4 stream cipher with 40 bit key length.
  272. This is obsolete and new code should use EVP_rc4()
  273. and the EVP_CIPHER_CTX_set_key_length() function.
  274. =item EVP_idea_cbc() EVP_idea_ecb(), EVP_idea_cfb(), EVP_idea_ofb()
  275. IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
  276. =item EVP_rc2_cbc(), EVP_rc2_ecb(), EVP_rc2_cfb(), EVP_rc2_ofb()
  277. RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
  278. length cipher with an additional parameter called "effective key bits" or "effective key length".
  279. By default both are set to 128 bits.
  280. =item EVP_rc2_40_cbc(), EVP_rc2_64_cbc()
  281. RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits.
  282. These are obsolete and new code should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and
  283. EVP_CIPHER_CTX_ctrl() to set the key length and effective key length.
  284. =item EVP_bf_cbc(), EVP_bf_ecb(), EVP_bf_cfb(), EVP_bf_ofb()
  285. Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
  286. length cipher.
  287. =item EVP_cast5_cbc(), EVP_cast5_ecb(), EVP_cast5_cfb(), EVP_cast5_ofb()
  288. CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
  289. length cipher.
  290. =item EVP_rc5_32_12_16_cbc(), EVP_rc5_32_12_16_ecb(), EVP_rc5_32_12_16_cfb(), EVP_rc5_32_12_16_ofb()
  291. RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length
  292. cipher with an additional "number of rounds" parameter. By default the key length is set to 128
  293. bits and 12 rounds.
  294. =item EVP_aes_128_gcm(), EVP_aes_192_gcm(), EVP_aes_256_gcm()
  295. AES Galois Counter Mode (GCM) for 128, 192 and 256 bit keys respectively.
  296. These ciphers require additional control operations to function correctly: see
  297. the L</GCM and OCB Modes> section below for details.
  298. =item EVP_aes_128_ocb(void), EVP_aes_192_ocb(void), EVP_aes_256_ocb(void)
  299. Offset Codebook Mode (OCB) for 128, 192 and 256 bit keys respectively.
  300. These ciphers require additional control operations to function correctly: see
  301. the L</GCM and OCB Modes> section below for details.
  302. =item EVP_aes_128_ccm(), EVP_aes_192_ccm(), EVP_aes_256_ccm()
  303. AES Counter with CBC-MAC Mode (CCM) for 128, 192 and 256 bit keys respectively.
  304. These ciphers require additional control operations to function correctly: see
  305. CCM mode section below for details.
  306. =item EVP_chacha20()
  307. The ChaCha20 stream cipher. The key length is 256 bits, the IV is 96 bits long.
  308. =item EVP_chacha20_poly1305()
  309. Authenticated encryption with ChaCha20-Poly1305. Like EVP_chacha20() the key is
  310. 256 bits and the IV is 96 bits. This supports additional authenticated
  311. data (AAD) and produces a 128 bit authentication tag. See the
  312. L</GCM and OCB Modes> section for more information.
  313. =back
  314. =head1 GCM and OCB Modes
  315. For GCM and OCB mode ciphers the behaviour of the EVP interface is subtly
  316. altered and several additional ctrl operations are supported.
  317. To specify any additional authenticated data (AAD) a call to EVP_CipherUpdate(),
  318. EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output
  319. parameter B<out> set to B<NULL>.
  320. When decrypting the return value of EVP_DecryptFinal() or EVP_CipherFinal()
  321. indicates if the operation was successful. If it does not indicate success
  322. the authentication operation has failed and any output data B<MUST NOT>
  323. be used as it is corrupted.
  324. The following ctrls are supported in both GCM and OCB modes:
  325. EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);
  326. Sets the IV length: this call can only be made before specifying an IV. If
  327. not called a default IV length is used. For GCM AES and OCB AES the default is
  328. 12 (i.e. 96 bits). For OCB mode the maximum is 15.
  329. EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag);
  330. Writes B<taglen> bytes of the tag value to the buffer indicated by B<tag>.
  331. This call can only be made when encrypting data and B<after> all data has been
  332. processed (e.g. after an EVP_EncryptFinal() call). For OCB mode the taglen must
  333. either be 16 or the value previously set via EVP_CTRL_OCB_SET_TAGLEN.
  334. EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);
  335. Sets the expected tag to B<taglen> bytes from B<tag>. This call is only legal
  336. when decrypting data. For OCB mode the taglen must either be 16 or the value
  337. previously set via EVP_CTRL_AEAD_SET_TAG.
  338. In OCB mode calling this with B<tag> set to NULL sets the tag length. The tag
  339. length can only be set before specifying an IV. If not called a default tag
  340. length is used. For OCB AES the default is 16 (i.e. 128 bits). This is also the
  341. maximum tag length for OCB.
  342. =head1 CCM Mode
  343. The behaviour of CCM mode ciphers is similar to GCM mode but with a few
  344. additional requirements and different ctrl values.
  345. Like GCM and OCB modes any additional authenticated data (AAD) is passed by calling
  346. EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output
  347. parameter B<out> set to B<NULL>. Additionally the total plaintext or ciphertext
  348. length B<MUST> be passed to EVP_CipherUpdate(), EVP_EncryptUpdate() or
  349. EVP_DecryptUpdate() with the output and input parameters (B<in> and B<out>)
  350. set to B<NULL> and the length passed in the B<inl> parameter.
  351. The following ctrls are supported in CCM mode:
  352. EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);
  353. This call is made to set the expected B<CCM> tag value when decrypting or
  354. the length of the tag (with the B<tag> parameter set to NULL) when encrypting.
  355. The tag length is often referred to as B<M>. If not set a default value is
  356. used (12 for AES).
  357. EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL);
  358. Sets the CCM B<L> value. If not set a default is used (8 for AES).
  359. EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);
  360. Sets the CCM nonce (IV) length: this call can only be made before specifying
  361. an nonce value. The nonce length is given by B<15 - L> so it is 7 by default
  362. for AES.
  363. =head1 NOTES
  364. Where possible the B<EVP> interface to symmetric ciphers should be used in
  365. preference to the low level interfaces. This is because the code then becomes
  366. transparent to the cipher used and much more flexible. Additionally, the
  367. B<EVP> interface will ensure the use of platform specific cryptographic
  368. acceleration such as AES-NI (the low level interfaces do not provide the
  369. guarantee).
  370. PKCS padding works by adding B<n> padding bytes of value B<n> to make the total
  371. length of the encrypted data a multiple of the block size. Padding is always
  372. added so if the data is already a multiple of the block size B<n> will equal
  373. the block size. For example if the block size is 8 and 11 bytes are to be
  374. encrypted then 5 padding bytes of value 5 will be added.
  375. When decrypting the final block is checked to see if it has the correct form.
  376. Although the decryption operation can produce an error if padding is enabled,
  377. it is not a strong test that the input data or key is correct. A random block
  378. has better than 1 in 256 chance of being of the correct format and problems with
  379. the input data earlier on will not produce a final decrypt error.
  380. If padding is disabled then the decryption operation will always succeed if
  381. the total amount of data decrypted is a multiple of the block size.
  382. The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(),
  383. EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for
  384. compatibility with existing code. New code should use EVP_EncryptInit_ex(),
  385. EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(),
  386. EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an
  387. existing context without allocating and freeing it up on each call.
  388. EVP_get_cipherbynid(), and EVP_get_cipherbyobj() are implemented as macros.
  389. =head1 BUGS
  390. For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is
  391. a limitation of the current RC5 code rather than the EVP interface.
  392. EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with
  393. default key lengths. If custom ciphers exceed these values the results are
  394. unpredictable. This is because it has become standard practice to define a
  395. generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes.
  396. The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested
  397. for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode.
  398. =head1 EXAMPLES
  399. Encrypt a string using IDEA:
  400. int do_crypt(char *outfile)
  401. {
  402. unsigned char outbuf[1024];
  403. int outlen, tmplen;
  404. /* Bogus key and IV: we'd normally set these from
  405. * another source.
  406. */
  407. unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
  408. unsigned char iv[] = {1,2,3,4,5,6,7,8};
  409. char intext[] = "Some Crypto Text";
  410. EVP_CIPHER_CTX *ctx;
  411. FILE *out;
  412. ctx = EVP_CIPHER_CTX_new();
  413. EVP_EncryptInit_ex(ctx, EVP_idea_cbc(), NULL, key, iv);
  414. if(!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext, strlen(intext)))
  415. {
  416. /* Error */
  417. return 0;
  418. }
  419. /* Buffer passed to EVP_EncryptFinal() must be after data just
  420. * encrypted to avoid overwriting it.
  421. */
  422. if(!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen))
  423. {
  424. /* Error */
  425. return 0;
  426. }
  427. outlen += tmplen;
  428. EVP_CIPHER_CTX_free(ctx);
  429. /* Need binary mode for fopen because encrypted data is
  430. * binary data. Also cannot use strlen() on it because
  431. * it won't be null terminated and may contain embedded
  432. * nulls.
  433. */
  434. out = fopen(outfile, "wb");
  435. fwrite(outbuf, 1, outlen, out);
  436. fclose(out);
  437. return 1;
  438. }
  439. The ciphertext from the above example can be decrypted using the B<openssl>
  440. utility with the command line (shown on two lines for clarity):
  441. openssl idea -d <filename
  442. -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708
  443. General encryption and decryption function example using FILE I/O and AES128
  444. with a 128-bit key:
  445. int do_crypt(FILE *in, FILE *out, int do_encrypt)
  446. {
  447. /* Allow enough space in output buffer for additional block */
  448. unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
  449. int inlen, outlen;
  450. EVP_CIPHER_CTX *ctx;
  451. /* Bogus key and IV: we'd normally set these from
  452. * another source.
  453. */
  454. unsigned char key[] = "0123456789abcdeF";
  455. unsigned char iv[] = "1234567887654321";
  456. /* Don't set key or IV right away; we want to check lengths */
  457. ctx = EVP_CIPHER_CTX_new();
  458. EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
  459. do_encrypt);
  460. OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == 16);
  461. OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == 16);
  462. /* Now we can set key and IV */
  463. EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt);
  464. for(;;)
  465. {
  466. inlen = fread(inbuf, 1, 1024, in);
  467. if (inlen <= 0) break;
  468. if(!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf, inlen))
  469. {
  470. /* Error */
  471. EVP_CIPHER_CTX_free(ctx);
  472. return 0;
  473. }
  474. fwrite(outbuf, 1, outlen, out);
  475. }
  476. if(!EVP_CipherFinal_ex(ctx, outbuf, &outlen))
  477. {
  478. /* Error */
  479. EVP_CIPHER_CTX_free(ctx);
  480. return 0;
  481. }
  482. fwrite(outbuf, 1, outlen, out);
  483. EVP_CIPHER_CTX_free(ctx);
  484. return 1;
  485. }
  486. =head1 SEE ALSO
  487. L<evp(7)>
  488. =head1 HISTORY
  489. Support for OCB mode was added in OpenSSL 1.1.0
  490. B<EVP_CIPHER_CTX> was made opaque in OpenSSL 1.1.0. As a result,
  491. EVP_CIPHER_CTX_reset() appeared and EVP_CIPHER_CTX_cleanup()
  492. disappeared. EVP_CIPHER_CTX_init() remains as an alias for
  493. EVP_CIPHER_CTX_reset().
  494. =head1 COPYRIGHT
  495. Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved.
  496. Licensed under the OpenSSL license (the "License"). You may not use
  497. this file except in compliance with the License. You can obtain a copy
  498. in the file LICENSE in the source distribution or at
  499. L<https://www.openssl.org/source/license.html>.
  500. =cut