DES_random_key.pod 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. =pod
  2. =head1 NAME
  3. DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
  4. DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
  5. DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
  6. DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
  7. DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
  8. DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
  9. DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
  10. DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
  11. DES_fcrypt, DES_crypt - DES encryption
  12. =head1 SYNOPSIS
  13. #include <openssl/des.h>
  14. void DES_random_key(DES_cblock *ret);
  15. int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
  16. int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
  17. int DES_set_key_checked(const_DES_cblock *key,
  18. DES_key_schedule *schedule);
  19. void DES_set_key_unchecked(const_DES_cblock *key,
  20. DES_key_schedule *schedule);
  21. void DES_set_odd_parity(DES_cblock *key);
  22. int DES_is_weak_key(const_DES_cblock *key);
  23. void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
  24. DES_key_schedule *ks, int enc);
  25. void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
  26. DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
  27. void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
  28. DES_key_schedule *ks1, DES_key_schedule *ks2,
  29. DES_key_schedule *ks3, int enc);
  30. void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
  31. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  32. int enc);
  33. void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
  34. int numbits, long length, DES_key_schedule *schedule,
  35. DES_cblock *ivec, int enc);
  36. void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
  37. int numbits, long length, DES_key_schedule *schedule,
  38. DES_cblock *ivec);
  39. void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
  40. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  41. int enc);
  42. void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
  43. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  44. int *num, int enc);
  45. void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
  46. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  47. int *num);
  48. void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
  49. long length, DES_key_schedule *schedule, DES_cblock *ivec,
  50. const_DES_cblock *inw, const_DES_cblock *outw, int enc);
  51. void DES_ede2_cbc_encrypt(const unsigned char *input,
  52. unsigned char *output, long length, DES_key_schedule *ks1,
  53. DES_key_schedule *ks2, DES_cblock *ivec, int enc);
  54. void DES_ede2_cfb64_encrypt(const unsigned char *in,
  55. unsigned char *out, long length, DES_key_schedule *ks1,
  56. DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
  57. void DES_ede2_ofb64_encrypt(const unsigned char *in,
  58. unsigned char *out, long length, DES_key_schedule *ks1,
  59. DES_key_schedule *ks2, DES_cblock *ivec, int *num);
  60. void DES_ede3_cbc_encrypt(const unsigned char *input,
  61. unsigned char *output, long length, DES_key_schedule *ks1,
  62. DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
  63. int enc);
  64. void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
  65. long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
  66. DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
  67. void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
  68. long length, DES_key_schedule *ks1,
  69. DES_key_schedule *ks2, DES_key_schedule *ks3,
  70. DES_cblock *ivec, int *num);
  71. DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
  72. long length, DES_key_schedule *schedule,
  73. const_DES_cblock *ivec);
  74. DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
  75. long length, int out_count, DES_cblock *seed);
  76. void DES_string_to_key(const char *str, DES_cblock *key);
  77. void DES_string_to_2keys(const char *str, DES_cblock *key1,
  78. DES_cblock *key2);
  79. char *DES_fcrypt(const char *buf, const char *salt, char *ret);
  80. char *DES_crypt(const char *buf, const char *salt);
  81. =head1 DESCRIPTION
  82. This library contains a fast implementation of the DES encryption
  83. algorithm.
  84. There are two phases to the use of DES encryption. The first is the
  85. generation of a I<DES_key_schedule> from a key, the second is the
  86. actual encryption. A DES key is of type I<DES_cblock>. This type is
  87. consists of 8 bytes with odd parity. The least significant bit in
  88. each byte is the parity bit. The key schedule is an expanded form of
  89. the key; it is used to speed the encryption process.
  90. DES_random_key() generates a random key. The PRNG must be seeded
  91. prior to using this function (see L<rand(3)>). If the PRNG
  92. could not generate a secure key, 0 is returned.
  93. Before a DES key can be used, it must be converted into the
  94. architecture dependent I<DES_key_schedule> via the
  95. DES_set_key_checked() or DES_set_key_unchecked() function.
  96. DES_set_key_checked() will check that the key passed is of odd parity
  97. and is not a weak or semi-weak key. If the parity is wrong, then -1
  98. is returned. If the key is a weak key, then -2 is returned. If an
  99. error is returned, the key schedule is not generated.
  100. DES_set_key() works like
  101. DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
  102. otherwise like DES_set_key_unchecked(). These functions are available
  103. for compatibility; it is recommended to use a function that does not
  104. depend on a global variable.
  105. DES_set_odd_parity() sets the parity of the passed I<key> to odd.
  106. DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it
  107. is ok.
  108. The following routines mostly operate on an input and output stream of
  109. I<DES_cblock>s.
  110. DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
  111. decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
  112. (ECB) mode. It always transforms the input data, pointed to by
  113. I<input>, into the output data, pointed to by the I<output> argument.
  114. If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
  115. (cleartext) is encrypted in to the I<output> (ciphertext) using the
  116. key_schedule specified by the I<schedule> argument, previously set via
  117. I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
  118. ciphertext) is decrypted into the I<output> (now cleartext). Input
  119. and output may overlap. DES_ecb_encrypt() does not return a value.
  120. DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
  121. three-key Triple-DES encryption in ECB mode. This involves encrypting
  122. the input with I<ks1>, decrypting with the key schedule I<ks2>, and
  123. then encrypting with I<ks3>. This routine greatly reduces the chances
  124. of brute force breaking of DES and has the advantage of if I<ks1>,
  125. I<ks2> and I<ks3> are the same, it is equivalent to just encryption
  126. using ECB mode and I<ks1> as the key.
  127. The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
  128. encryption by using I<ks1> for the final encryption.
  129. DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
  130. (CBC) mode of DES. If the I<encrypt> argument is non-zero, the
  131. routine cipher-block-chain encrypts the cleartext data pointed to by
  132. the I<input> argument into the ciphertext pointed to by the I<output>
  133. argument, using the key schedule provided by the I<schedule> argument,
  134. and initialization vector provided by the I<ivec> argument. If the
  135. I<length> argument is not an integral multiple of eight bytes, the
  136. last block is copied to a temporary area and zero filled. The output
  137. is always an integral multiple of eight bytes.
  138. DES_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and
  139. I<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret
  140. (unlike the iv) and are as such, part of the key. So the key is sort
  141. of 24 bytes. This is much better than CBC DES.
  142. DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
  143. three keys. This means that each DES operation inside the CBC mode is
  144. an C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL.
  145. The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
  146. reusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>.
  147. This form of Triple-DES is used by the RSAREF library.
  148. DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
  149. chaining mode used by Kerberos v4. Its parameters are the same as
  150. DES_ncbc_encrypt().
  151. DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This
  152. method takes an array of characters as input and outputs and array of
  153. characters. It does not require any padding to 8 character groups.
  154. Note: the I<ivec> variable is changed and the new changed value needs to
  155. be passed to the next call to this function. Since this function runs
  156. a complete DES ECB encryption per I<numbits>, this function is only
  157. suggested for use when sending small numbers of characters.
  158. DES_cfb64_encrypt()
  159. implements CFB mode of DES with 64bit feedback. Why is this
  160. useful you ask? Because this routine will allow you to encrypt an
  161. arbitrary number of bytes, no 8 byte padding. Each call to this
  162. routine will encrypt the input bytes to output and then update ivec
  163. and num. num contains 'how far' we are though ivec. If this does
  164. not make much sense, read more about cfb mode of DES :-).
  165. DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
  166. DES_cfb64_encrypt() except that Triple-DES is used.
  167. DES_ofb_encrypt() encrypts using output feedback mode. This method
  168. takes an array of characters as input and outputs and array of
  169. characters. It does not require any padding to 8 character groups.
  170. Note: the I<ivec> variable is changed and the new changed value needs to
  171. be passed to the next call to this function. Since this function runs
  172. a complete DES ECB encryption per numbits, this function is only
  173. suggested for use when sending small numbers of characters.
  174. DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
  175. Feed Back mode.
  176. DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
  177. DES_ofb64_encrypt(), using Triple-DES.
  178. The following functions are included in the DES library for
  179. compatibility with the MIT Kerberos library.
  180. DES_cbc_cksum() produces an 8 byte checksum based on the input stream
  181. (via CBC encryption). The last 4 bytes of the checksum are returned
  182. and the complete 8 bytes are placed in I<output>. This function is
  183. used by Kerberos v4. Other applications should use
  184. L<EVP_DigestInit(3)> etc. instead.
  185. DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte
  186. checksum from the input bytes. The algorithm can be iterated over the
  187. input, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is
  188. non-NULL, the 8 bytes generated by each pass are written into
  189. I<output>.
  190. The following are DES-based transformations:
  191. DES_fcrypt() is a fast version of the Unix crypt(3) function. This
  192. version takes only a small amount of space relative to other fast
  193. crypt() implementations. This is different to the normal crypt in
  194. that the third parameter is the buffer that the return value is
  195. written into. It needs to be at least 14 bytes long. This function
  196. is thread safe, unlike the normal crypt.
  197. DES_crypt() is a faster replacement for the normal system crypt().
  198. This function calls DES_fcrypt() with a static array passed as the
  199. third parameter. This mostly emulates the normal non-thread-safe semantics
  200. of crypt(3).
  201. The B<salt> must be two ASCII characters.
  202. DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
  203. buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
  204. using I<sched> for the key and I<iv> as a starting vector. The actual
  205. data send down I<fd> consists of 4 bytes (in network byte order)
  206. containing the length of the following encrypted data. The encrypted
  207. data then follows, padded with random data out to a multiple of 8
  208. bytes.
  209. =head1 BUGS
  210. DES_3cbc_encrypt() is flawed and must not be used in applications.
  211. DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
  212. instead.
  213. DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
  214. What this means is that if you set numbits to 12, and length to 2, the
  215. first 12 bits will come from the 1st input byte and the low half of
  216. the second input byte. The second 12 bits will have the low 8 bits
  217. taken from the 3rd input byte and the top 4 bits taken from the 4th
  218. input byte. The same holds for output. This function has been
  219. implemented this way because most people will be using a multiple of 8
  220. and because once you get into pulling bytes input bytes apart things
  221. get ugly!
  222. DES_string_to_key() is available for backward compatibility with the
  223. MIT library. New applications should use a cryptographic hash function.
  224. The same applies for DES_string_to_2key().
  225. =head1 NOTES
  226. The B<des> library was written to be source code compatible with
  227. the MIT Kerberos library.
  228. Applications should use the higher level functions
  229. L<EVP_EncryptInit(3)> etc. instead of calling these
  230. functions directly.
  231. Single-key DES is insecure due to its short key size. ECB mode is
  232. not suitable for most applications; see L<des_modes(7)>.
  233. =head1 HISTORY
  234. The requirement that the B<salt> parameter to DES_crypt() and DES_fcrypt()
  235. be two ASCII characters was first enforced in
  236. OpenSSL 1.1.0. Previous versions tried to use the letter uppercase B<A>
  237. if both character were not present, and could crash when given non-ASCII
  238. on some platforms.
  239. =head1 SEE ALSO
  240. L<des_modes(7)>,
  241. L<EVP_EncryptInit(3)>
  242. =head1 COPYRIGHT
  243. Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
  244. Licensed under the OpenSSL license (the "License"). You may not use
  245. this file except in compliance with the License. You can obtain a copy
  246. in the file LICENSE in the source distribution or at
  247. L<https://www.openssl.org/source/license.html>.
  248. =cut