123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480 |
- =pod
- =head1 NAME
- pem_password_cb,
- PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey,
- PEM_write_bio_PrivateKey_traditional, PEM_write_PrivateKey,
- PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey,
- PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid,
- PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY,
- PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
- PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
- PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
- PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
- PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
- PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
- PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
- PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams,
- PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
- PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
- PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
- PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
- PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
- PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
- PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
- PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
- PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines
- =head1 SYNOPSIS
- #include <openssl/pem.h>
- typedef int pem_password_cb(char *buf, int size, int rwflag, void *u);
- EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
- pem_password_cb *cb, void *u);
- EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x,
- const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
- int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
- char *kstr, int klen,
- pem_password_cb *cb, void *u);
- int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
- char *kstr, int klen,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
- char *kstr, int klen,
- pem_password_cb *cb, void *u);
- int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
- char *kstr, int klen,
- pem_password_cb *cb, void *u);
- EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
- pem_password_cb *cb, void *u);
- EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
- int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
- RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
- pem_password_cb *cb, void *u);
- RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
- int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
- RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
- pem_password_cb *cb, void *u);
- RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
- int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
- RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
- pem_password_cb *cb, void *u);
- RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
- int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
- DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
- pem_password_cb *cb, void *u);
- DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
- int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
- DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
- pem_password_cb *cb, void *u);
- DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
- int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
- DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
- DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
- int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
- int PEM_write_DSAparams(FILE *fp, DSA *x);
- DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
- DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
- int PEM_write_bio_DHparams(BIO *bp, DH *x);
- int PEM_write_DHparams(FILE *fp, DH *x);
- X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
- X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
- int PEM_write_bio_X509(BIO *bp, X509 *x);
- int PEM_write_X509(FILE *fp, X509 *x);
- X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
- X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
- int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
- int PEM_write_X509_AUX(FILE *fp, X509 *x);
- X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
- pem_password_cb *cb, void *u);
- X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
- int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
- int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
- int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
- X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
- pem_password_cb *cb, void *u);
- X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
- int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
- PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
- PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
- int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
- int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
- =head1 DESCRIPTION
- The PEM functions read or write structures in PEM format. In
- this sense PEM format is simply base64 encoded data surrounded
- by header lines.
- For more details about the meaning of arguments see the
- B<PEM FUNCTION ARGUMENTS> section.
- Each operation has four functions associated with it. For
- clarity the term "B<foobar> functions" will be used to collectively
- refer to the PEM_read_bio_foobar(), PEM_read_foobar(),
- PEM_write_bio_foobar() and PEM_write_foobar() functions.
- The B<PrivateKey> functions read or write a private key in PEM format using an
- EVP_PKEY structure. The write routines use PKCS#8 private key format and are
- equivalent to PEM_write_bio_PKCS8PrivateKey().The read functions transparently
- handle traditional and PKCS#8 format encrypted and unencrypted keys.
- PEM_write_bio_PrivateKey_traditional() writes out a private key in legacy
- "traditional" format.
- PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private
- key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using
- PKCS#5 v2.0 password based encryption algorithms. The B<cipher> argument
- specifies the encryption algorithm to use: unlike some other PEM routines the
- encryption is applied at the PKCS#8 level and not in the PEM headers. If
- B<cipher> is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo
- structure is used instead.
- PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
- also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
- it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
- to use is specified in the B<nid> parameter and should be the NID of the
- corresponding OBJECT IDENTIFIER (see NOTES section).
- The B<PUBKEY> functions process a public key using an EVP_PKEY
- structure. The public key is encoded as a SubjectPublicKeyInfo
- structure.
- The B<RSAPrivateKey> functions process an RSA private key using an
- RSA structure. The write routines uses traditional format. The read
- routines handles the same formats as the B<PrivateKey>
- functions but an error occurs if the private key is not RSA.
- The B<RSAPublicKey> functions process an RSA public key using an
- RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
- structure.
- The B<RSA_PUBKEY> functions also process an RSA public key using
- an RSA structure. However the public key is encoded using a
- SubjectPublicKeyInfo structure and an error occurs if the public
- key is not RSA.
- The B<DSAPrivateKey> functions process a DSA private key using a
- DSA structure. The write routines uses traditional format. The read
- routines handles the same formats as the B<PrivateKey>
- functions but an error occurs if the private key is not DSA.
- The B<DSA_PUBKEY> functions process a DSA public key using
- a DSA structure. The public key is encoded using a
- SubjectPublicKeyInfo structure and an error occurs if the public
- key is not DSA.
- The B<DSAparams> functions process DSA parameters using a DSA
- structure. The parameters are encoded using a Dss-Parms structure
- as defined in RFC2459.
- The B<DHparams> functions process DH parameters using a DH
- structure. The parameters are encoded using a PKCS#3 DHparameter
- structure.
- The B<X509> functions process an X509 certificate using an X509
- structure. They will also process a trusted X509 certificate but
- any trust settings are discarded.
- The B<X509_AUX> functions process a trusted X509 certificate using
- an X509 structure.
- The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
- certificate request using an X509_REQ structure. The B<X509_REQ>
- write functions use B<CERTIFICATE REQUEST> in the header whereas
- the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
- (as required by some CAs). The B<X509_REQ> read functions will
- handle either form so there are no B<X509_REQ_NEW> read functions.
- The B<X509_CRL> functions process an X509 CRL using an X509_CRL
- structure.
- The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
- structure.
- =head1 PEM FUNCTION ARGUMENTS
- The PEM functions have many common arguments.
- The B<bp> BIO parameter (if present) specifies the BIO to read from
- or write to.
- The B<fp> FILE parameter (if present) specifies the FILE pointer to
- read from or write to.
- The PEM read functions all take an argument B<TYPE **x> and return
- a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function
- uses. If B<x> is NULL then the parameter is ignored. If B<x> is not
- NULL but B<*x> is NULL then the structure returned will be written
- to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made
- to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections).
- Irrespective of the value of B<x> a pointer to the structure is always
- returned (or NULL if an error occurred).
- The PEM functions which write private keys take an B<enc> parameter
- which specifies the encryption algorithm to use, encryption is done
- at the PEM level. If this parameter is set to NULL then the private
- key is written in unencrypted form.
- The B<cb> argument is the callback to use when querying for the pass
- phrase used for encrypted PEM structures (normally only private keys).
- For the PEM write routines if the B<kstr> parameter is not NULL then
- B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is
- ignored.
- If the B<cb> parameters is set to NULL and the B<u> parameter is not
- NULL then the B<u> parameter is interpreted as a null terminated string
- to use as the passphrase. If both B<cb> and B<u> are NULL then the
- default callback routine is used which will typically prompt for the
- passphrase on the current terminal with echoing turned off.
- The default passphrase callback is sometimes inappropriate (for example
- in a GUI application) so an alternative can be supplied. The callback
- routine has the following form:
- int cb(char *buf, int size, int rwflag, void *u);
- B<buf> is the buffer to write the passphrase to. B<size> is the maximum
- length of the passphrase (i.e. the size of buf). B<rwflag> is a flag
- which is set to 0 when reading and 1 when writing. A typical routine
- will ask the user to verify the passphrase (for example by prompting
- for it twice) if B<rwflag> is 1. The B<u> parameter has the same
- value as the B<u> parameter passed to the PEM routine. It allows
- arbitrary data to be passed to the callback by the application
- (for example a window handle in a GUI application). The callback
- B<must> return the number of characters in the passphrase or -1 if
- an error occurred.
- =head1 EXAMPLES
- Although the PEM routines take several arguments in almost all applications
- most of them are set to 0 or NULL.
- Read a certificate in PEM format from a BIO:
- X509 *x;
- x = PEM_read_bio_X509(bp, NULL, 0, NULL);
- if (x == NULL) {
- /* Error */
- }
- Alternative method:
- X509 *x = NULL;
- if (!PEM_read_bio_X509(bp, &x, 0, NULL)) {
- /* Error */
- }
- Write a certificate to a BIO:
- if (!PEM_write_bio_X509(bp, x)) {
- /* Error */
- }
- Write a private key (using traditional format) to a BIO using
- triple DES encryption, the pass phrase is prompted for:
- if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) {
- /* Error */
- }
- Write a private key (using PKCS#8 format) to a BIO using triple
- DES encryption, using the pass phrase "hello":
- if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello")) {
- /* Error */
- }
- Read a private key from a BIO using a pass phrase callback:
- key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
- if (key == NULL) {
- /* Error */
- }
- Skeleton pass phrase callback:
- int pass_cb(char *buf, int size, int rwflag, void *u)
- {
- /* We'd probably do something else if 'rwflag' is 1 */
- printf("Enter pass phrase for \"%s\"\n", (char *)u);
- /* get pass phrase, length 'len' into 'tmp' */
- char *tmp = "hello";
- if (tmp == NULL) /* An error occurred */
- return -1;
- size_t len = strlen(tmp);
- if (len > size)
- len = size;
- memcpy(buf, tmp, len);
- return len;
- }
- =head1 NOTES
- The old B<PrivateKey> write routines are retained for compatibility.
- New applications should write private keys using the
- PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
- because they are more secure (they use an iteration count of 2048 whereas
- the traditional routines use a count of 1) unless compatibility with older
- versions of OpenSSL is important.
- The B<PrivateKey> read routines can be used in all applications because
- they handle all formats transparently.
- A frequent cause of problems is attempting to use the PEM routines like
- this:
- X509 *x;
- PEM_read_bio_X509(bp, &x, 0, NULL);
- this is a bug because an attempt will be made to reuse the data at B<x>
- which is an uninitialised pointer.
- =head1 PEM ENCRYPTION FORMAT
- These old B<PrivateKey> routines use a non standard technique for encryption.
- The private key (or other data) takes the following form:
- -----BEGIN RSA PRIVATE KEY-----
- Proc-Type: 4,ENCRYPTED
- DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
- ...base64 encoded data...
- -----END RSA PRIVATE KEY-----
- The line beginning with I<Proc-Type> contains the version and the
- protection on the encapsulated data. The line beginning I<DEK-Info>
- contains two comma separated values: the encryption algorithm name as
- used by EVP_get_cipherbyname() and an initialization vector used by the
- cipher encoded as a set of hexadecimal digits. After those two lines is
- the base64-encoded encrypted data.
- The encryption key is derived using EVP_BytesToKey(). The cipher's
- initialization vector is passed to EVP_BytesToKey() as the B<salt>
- parameter. Internally, B<PKCS5_SALT_LEN> bytes of the salt are used
- (regardless of the size of the initialization vector). The user's
- password is passed to EVP_BytesToKey() using the B<data> and B<datal>
- parameters. Finally, the library uses an iteration count of 1 for
- EVP_BytesToKey().
- The B<key> derived by EVP_BytesToKey() along with the original initialization
- vector is then used to decrypt the encrypted data. The B<iv> produced by
- EVP_BytesToKey() is not utilized or needed, and NULL should be passed to
- the function.
- The pseudo code to derive the key would look similar to:
- EVP_CIPHER* cipher = EVP_des_ede3_cbc();
- EVP_MD* md = EVP_md5();
- unsigned int nkey = EVP_CIPHER_key_length(cipher);
- unsigned int niv = EVP_CIPHER_iv_length(cipher);
- unsigned char key[nkey];
- unsigned char iv[niv];
- memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv);
- rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/);
- if (rc != nkey) {
- /* Error */
- }
- /* On success, use key and iv to initialize the cipher */
- =head1 BUGS
- The PEM read routines in some versions of OpenSSL will not correctly reuse
- an existing structure. Therefore the following:
- PEM_read_bio_X509(bp, &x, 0, NULL);
- where B<x> already contains a valid certificate, may not work, whereas:
- X509_free(x);
- x = PEM_read_bio_X509(bp, NULL, 0, NULL);
- is guaranteed to work.
- =head1 RETURN CODES
- The read routines return either a pointer to the structure read or NULL
- if an error occurred.
- The write routines return 1 for success or 0 for failure.
- =head1 HISTORY
- The old Netscape certificate sequences were no longer documented
- in OpenSSL 1.1; applications should use the PKCS7 standard instead
- as they will be formally deprecated in a future releases.
- =head1 SEE ALSO
- L<EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)>
- =head1 COPYRIGHT
- Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
- Licensed under the OpenSSL license (the "License"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file LICENSE in the source distribution or at
- L<https://www.openssl.org/source/license.html>.
- =cut
|