123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- /*
- * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <stdlib.h>
- #include <stdarg.h>
- #include <string.h>
- #include <openssl/evp.h>
- #include <openssl/kdf.h>
- #include <openssl/err.h>
- #include <openssl/core_names.h>
- #include <openssl/proverr.h>
- #include "crypto/evp.h"
- #include "internal/numbers.h"
- #include "prov/implementations.h"
- #include "prov/provider_ctx.h"
- #include "prov/providercommon.h"
- #include "prov/provider_util.h"
- #ifndef OPENSSL_NO_SCRYPT
- static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
- static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
- static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
- static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
- static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
- static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
- static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
- static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
- static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
- static int scrypt_alg(const char *pass, size_t passlen,
- const unsigned char *salt, size_t saltlen,
- uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
- unsigned char *key, size_t keylen, EVP_MD *sha256,
- OSSL_LIB_CTX *libctx, const char *propq);
- typedef struct {
- OSSL_LIB_CTX *libctx;
- char *propq;
- unsigned char *pass;
- size_t pass_len;
- unsigned char *salt;
- size_t salt_len;
- uint64_t N;
- uint64_t r, p;
- uint64_t maxmem_bytes;
- EVP_MD *sha256;
- } KDF_SCRYPT;
- static void kdf_scrypt_init(KDF_SCRYPT *ctx);
- static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
- {
- KDF_SCRYPT *ctx;
- if (!ossl_prov_is_running())
- return NULL;
- ctx = OPENSSL_zalloc(sizeof(*ctx));
- if (ctx == NULL) {
- ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
- return NULL;
- }
- ctx->libctx = libctx;
- kdf_scrypt_init(ctx);
- return ctx;
- }
- static void *kdf_scrypt_new(void *provctx)
- {
- return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
- }
- static void kdf_scrypt_free(void *vctx)
- {
- KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
- if (ctx != NULL) {
- OPENSSL_free(ctx->propq);
- EVP_MD_free(ctx->sha256);
- kdf_scrypt_reset(ctx);
- OPENSSL_free(ctx);
- }
- }
- static void kdf_scrypt_reset(void *vctx)
- {
- KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
- OPENSSL_free(ctx->salt);
- OPENSSL_clear_free(ctx->pass, ctx->pass_len);
- kdf_scrypt_init(ctx);
- }
- static void *kdf_scrypt_dup(void *vctx)
- {
- const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
- KDF_SCRYPT *dest;
- dest = kdf_scrypt_new_inner(src->libctx);
- if (dest != NULL) {
- if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
- goto err;
- if (src->propq != NULL) {
- dest->propq = OPENSSL_strdup(src->propq);
- if (dest->propq == NULL)
- goto err;
- }
- if (!ossl_prov_memdup(src->salt, src->salt_len,
- &dest->salt, &dest->salt_len)
- || !ossl_prov_memdup(src->pass, src->pass_len,
- &dest->pass , &dest->pass_len))
- goto err;
- dest->N = src->N;
- dest->r = src->r;
- dest->p = src->p;
- dest->maxmem_bytes = src->maxmem_bytes;
- dest->sha256 = src->sha256;
- }
- return dest;
- err:
- kdf_scrypt_free(dest);
- return NULL;
- }
- static void kdf_scrypt_init(KDF_SCRYPT *ctx)
- {
- /* Default values are the most conservative recommendation given in the
- * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
- * for this parameter choice (approx. 128 * r * N * p bytes).
- */
- ctx->N = 1 << 20;
- ctx->r = 8;
- ctx->p = 1;
- ctx->maxmem_bytes = 1025 * 1024 * 1024;
- }
- static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
- const OSSL_PARAM *p)
- {
- OPENSSL_clear_free(*buffer, *buflen);
- *buffer = NULL;
- *buflen = 0;
- if (p->data_size == 0) {
- if ((*buffer = OPENSSL_malloc(1)) == NULL) {
- ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- } else if (p->data != NULL) {
- if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
- return 0;
- }
- return 1;
- }
- static int set_digest(KDF_SCRYPT *ctx)
- {
- EVP_MD_free(ctx->sha256);
- ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
- if (ctx->sha256 == NULL) {
- OPENSSL_free(ctx);
- ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
- return 0;
- }
- return 1;
- }
- static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
- {
- OPENSSL_free(ctx->propq);
- ctx->propq = NULL;
- if (propq != NULL) {
- ctx->propq = OPENSSL_strdup(propq);
- if (ctx->propq == NULL) {
- ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- }
- return 1;
- }
- static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
- const OSSL_PARAM params[])
- {
- KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
- if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
- return 0;
- if (ctx->pass == NULL) {
- ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
- return 0;
- }
- if (ctx->salt == NULL) {
- ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
- return 0;
- }
- if (ctx->sha256 == NULL && !set_digest(ctx))
- return 0;
- return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
- ctx->salt_len, ctx->N, ctx->r, ctx->p,
- ctx->maxmem_bytes, key, keylen, ctx->sha256,
- ctx->libctx, ctx->propq);
- }
- static int is_power_of_two(uint64_t value)
- {
- return (value != 0) && ((value & (value - 1)) == 0);
- }
- static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
- {
- const OSSL_PARAM *p;
- KDF_SCRYPT *ctx = vctx;
- uint64_t u64_value;
- if (params == NULL)
- return 1;
- if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
- if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
- return 0;
- if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
- if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
- return 0;
- if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
- != NULL) {
- if (!OSSL_PARAM_get_uint64(p, &u64_value)
- || u64_value <= 1
- || !is_power_of_two(u64_value))
- return 0;
- ctx->N = u64_value;
- }
- if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
- != NULL) {
- if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
- return 0;
- ctx->r = u64_value;
- }
- if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
- != NULL) {
- if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
- return 0;
- ctx->p = u64_value;
- }
- if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
- != NULL) {
- if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
- return 0;
- ctx->maxmem_bytes = u64_value;
- }
- p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
- if (p != NULL) {
- if (p->data_type != OSSL_PARAM_UTF8_STRING
- || !set_property_query(ctx, p->data)
- || !set_digest(ctx))
- return 0;
- }
- return 1;
- }
- static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
- ossl_unused void *p_ctx)
- {
- static const OSSL_PARAM known_settable_ctx_params[] = {
- OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
- OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
- OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
- OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
- OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
- OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
- OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
- OSSL_PARAM_END
- };
- return known_settable_ctx_params;
- }
- static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
- {
- OSSL_PARAM *p;
- if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
- return OSSL_PARAM_set_size_t(p, SIZE_MAX);
- return -2;
- }
- static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
- ossl_unused void *p_ctx)
- {
- static const OSSL_PARAM known_gettable_ctx_params[] = {
- OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
- OSSL_PARAM_END
- };
- return known_gettable_ctx_params;
- }
- const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
- { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
- { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
- { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
- { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
- { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
- { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
- (void(*)(void))kdf_scrypt_settable_ctx_params },
- { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
- { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
- (void(*)(void))kdf_scrypt_gettable_ctx_params },
- { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
- { 0, NULL }
- };
- #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
- static void salsa208_word_specification(uint32_t inout[16])
- {
- int i;
- uint32_t x[16];
- memcpy(x, inout, sizeof(x));
- for (i = 8; i > 0; i -= 2) {
- x[4] ^= R(x[0] + x[12], 7);
- x[8] ^= R(x[4] + x[0], 9);
- x[12] ^= R(x[8] + x[4], 13);
- x[0] ^= R(x[12] + x[8], 18);
- x[9] ^= R(x[5] + x[1], 7);
- x[13] ^= R(x[9] + x[5], 9);
- x[1] ^= R(x[13] + x[9], 13);
- x[5] ^= R(x[1] + x[13], 18);
- x[14] ^= R(x[10] + x[6], 7);
- x[2] ^= R(x[14] + x[10], 9);
- x[6] ^= R(x[2] + x[14], 13);
- x[10] ^= R(x[6] + x[2], 18);
- x[3] ^= R(x[15] + x[11], 7);
- x[7] ^= R(x[3] + x[15], 9);
- x[11] ^= R(x[7] + x[3], 13);
- x[15] ^= R(x[11] + x[7], 18);
- x[1] ^= R(x[0] + x[3], 7);
- x[2] ^= R(x[1] + x[0], 9);
- x[3] ^= R(x[2] + x[1], 13);
- x[0] ^= R(x[3] + x[2], 18);
- x[6] ^= R(x[5] + x[4], 7);
- x[7] ^= R(x[6] + x[5], 9);
- x[4] ^= R(x[7] + x[6], 13);
- x[5] ^= R(x[4] + x[7], 18);
- x[11] ^= R(x[10] + x[9], 7);
- x[8] ^= R(x[11] + x[10], 9);
- x[9] ^= R(x[8] + x[11], 13);
- x[10] ^= R(x[9] + x[8], 18);
- x[12] ^= R(x[15] + x[14], 7);
- x[13] ^= R(x[12] + x[15], 9);
- x[14] ^= R(x[13] + x[12], 13);
- x[15] ^= R(x[14] + x[13], 18);
- }
- for (i = 0; i < 16; ++i)
- inout[i] += x[i];
- OPENSSL_cleanse(x, sizeof(x));
- }
- static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
- {
- uint64_t i, j;
- uint32_t X[16], *pB;
- memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
- pB = B;
- for (i = 0; i < r * 2; i++) {
- for (j = 0; j < 16; j++)
- X[j] ^= *pB++;
- salsa208_word_specification(X);
- memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
- }
- OPENSSL_cleanse(X, sizeof(X));
- }
- static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
- uint32_t *X, uint32_t *T, uint32_t *V)
- {
- unsigned char *pB;
- uint32_t *pV;
- uint64_t i, k;
- /* Convert from little endian input */
- for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
- *pV = *pB++;
- *pV |= *pB++ << 8;
- *pV |= *pB++ << 16;
- *pV |= (uint32_t)*pB++ << 24;
- }
- for (i = 1; i < N; i++, pV += 32 * r)
- scryptBlockMix(pV, pV - 32 * r, r);
- scryptBlockMix(X, V + (N - 1) * 32 * r, r);
- for (i = 0; i < N; i++) {
- uint32_t j;
- j = X[16 * (2 * r - 1)] % N;
- pV = V + 32 * r * j;
- for (k = 0; k < 32 * r; k++)
- T[k] = X[k] ^ *pV++;
- scryptBlockMix(X, T, r);
- }
- /* Convert output to little endian */
- for (i = 0, pB = B; i < 32 * r; i++) {
- uint32_t xtmp = X[i];
- *pB++ = xtmp & 0xff;
- *pB++ = (xtmp >> 8) & 0xff;
- *pB++ = (xtmp >> 16) & 0xff;
- *pB++ = (xtmp >> 24) & 0xff;
- }
- }
- #ifndef SIZE_MAX
- # define SIZE_MAX ((size_t)-1)
- #endif
- /*
- * Maximum power of two that will fit in uint64_t: this should work on
- * most (all?) platforms.
- */
- #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
- /*
- * Maximum value of p * r:
- * p <= ((2^32-1) * hLen) / MFLen =>
- * p <= ((2^32-1) * 32) / (128 * r) =>
- * p * r <= (2^30-1)
- */
- #define SCRYPT_PR_MAX ((1 << 30) - 1)
- static int scrypt_alg(const char *pass, size_t passlen,
- const unsigned char *salt, size_t saltlen,
- uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
- unsigned char *key, size_t keylen, EVP_MD *sha256,
- OSSL_LIB_CTX *libctx, const char *propq)
- {
- int rv = 0;
- unsigned char *B;
- uint32_t *X, *V, *T;
- uint64_t i, Blen, Vlen;
- /* Sanity check parameters */
- /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
- if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
- return 0;
- /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
- if (p > SCRYPT_PR_MAX / r) {
- ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
- /*
- * Need to check N: if 2^(128 * r / 8) overflows limit this is
- * automatically satisfied since N <= UINT64_MAX.
- */
- if (16 * r <= LOG2_UINT64_MAX) {
- if (N >= (((uint64_t)1) << (16 * r))) {
- ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
- }
- /* Memory checks: check total allocated buffer size fits in uint64_t */
- /*
- * B size in section 5 step 1.S
- * Note: we know p * 128 * r < UINT64_MAX because we already checked
- * p * r < SCRYPT_PR_MAX
- */
- Blen = p * 128 * r;
- /*
- * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
- * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
- */
- if (Blen > INT_MAX) {
- ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
- /*
- * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
- * This is combined size V, X and T (section 4)
- */
- i = UINT64_MAX / (32 * sizeof(uint32_t));
- if (N + 2 > i / r) {
- ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
- Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
- /* check total allocated size fits in uint64_t */
- if (Blen > UINT64_MAX - Vlen) {
- ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
- /* Check that the maximum memory doesn't exceed a size_t limits */
- if (maxmem > SIZE_MAX)
- maxmem = SIZE_MAX;
- if (Blen + Vlen > maxmem) {
- ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
- /* If no key return to indicate parameters are OK */
- if (key == NULL)
- return 1;
- B = OPENSSL_malloc((size_t)(Blen + Vlen));
- if (B == NULL) {
- ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- X = (uint32_t *)(B + Blen);
- T = X + 32 * r;
- V = T + 32 * r;
- if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
- (int)Blen, B, libctx, propq) == 0)
- goto err;
- for (i = 0; i < p; i++)
- scryptROMix(B + 128 * r * i, r, N, X, T, V);
- if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
- keylen, key, libctx, propq) == 0)
- goto err;
- rv = 1;
- err:
- if (rv == 0)
- ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
- OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
- return rv;
- }
- #endif
|