123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154 |
- /* crypto/ec/ecp_nistp521.c */
- /*
- * Written by Adam Langley (Google) for the OpenSSL project
- */
- /* Copyright 2011 Google Inc.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- *
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
- *
- * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
- * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
- * work which got its smarts from Daniel J. Bernstein's work on the same.
- */
- #include <openssl/opensslconf.h>
- #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
- # ifndef OPENSSL_SYS_VMS
- # include <stdint.h>
- # else
- # include <inttypes.h>
- # endif
- # include <string.h>
- # include <openssl/err.h>
- # include "ec_lcl.h"
- # if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
- /* even with gcc, the typedef won't work for 32-bit platforms */
- typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
- * platforms */
- # else
- # error "Need GCC 3.1 or later to define type uint128_t"
- # endif
- typedef uint8_t u8;
- typedef uint64_t u64;
- typedef int64_t s64;
- /*
- * The underlying field. P521 operates over GF(2^521-1). We can serialise an
- * element of this field into 66 bytes where the most significant byte
- * contains only a single bit. We call this an felem_bytearray.
- */
- typedef u8 felem_bytearray[66];
- /*
- * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
- * These values are big-endian.
- */
- static const felem_bytearray nistp521_curve_params[5] = {
- {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff},
- {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xfc},
- {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
- 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
- 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
- 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
- 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
- 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
- 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
- 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
- 0x3f, 0x00},
- {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
- 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
- 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
- 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
- 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
- 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
- 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
- 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
- 0xbd, 0x66},
- {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
- 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
- 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
- 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
- 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
- 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
- 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
- 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
- 0x66, 0x50}
- };
- /*-
- * The representation of field elements.
- * ------------------------------------
- *
- * We represent field elements with nine values. These values are either 64 or
- * 128 bits and the field element represented is:
- * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p)
- * Each of the nine values is called a 'limb'. Since the limbs are spaced only
- * 58 bits apart, but are greater than 58 bits in length, the most significant
- * bits of each limb overlap with the least significant bits of the next.
- *
- * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
- * 'largefelem' */
- # define NLIMBS 9
- typedef uint64_t limb;
- typedef limb felem[NLIMBS];
- typedef uint128_t largefelem[NLIMBS];
- static const limb bottom57bits = 0x1ffffffffffffff;
- static const limb bottom58bits = 0x3ffffffffffffff;
- /*
- * bin66_to_felem takes a little-endian byte array and converts it into felem
- * form. This assumes that the CPU is little-endian.
- */
- static void bin66_to_felem(felem out, const u8 in[66])
- {
- out[0] = (*((limb *) & in[0])) & bottom58bits;
- out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits;
- out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits;
- out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits;
- out[4] = (*((limb *) & in[29])) & bottom58bits;
- out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits;
- out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits;
- out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits;
- out[8] = (*((limb *) & in[58])) & bottom57bits;
- }
- /*
- * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
- * array. This assumes that the CPU is little-endian.
- */
- static void felem_to_bin66(u8 out[66], const felem in)
- {
- memset(out, 0, 66);
- (*((limb *) & out[0])) = in[0];
- (*((limb *) & out[7])) |= in[1] << 2;
- (*((limb *) & out[14])) |= in[2] << 4;
- (*((limb *) & out[21])) |= in[3] << 6;
- (*((limb *) & out[29])) = in[4];
- (*((limb *) & out[36])) |= in[5] << 2;
- (*((limb *) & out[43])) |= in[6] << 4;
- (*((limb *) & out[50])) |= in[7] << 6;
- (*((limb *) & out[58])) = in[8];
- }
- /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
- static void flip_endian(u8 *out, const u8 *in, unsigned len)
- {
- unsigned i;
- for (i = 0; i < len; ++i)
- out[i] = in[len - 1 - i];
- }
- /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
- static int BN_to_felem(felem out, const BIGNUM *bn)
- {
- felem_bytearray b_in;
- felem_bytearray b_out;
- unsigned num_bytes;
- /* BN_bn2bin eats leading zeroes */
- memset(b_out, 0, sizeof(b_out));
- num_bytes = BN_num_bytes(bn);
- if (num_bytes > sizeof b_out) {
- ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
- return 0;
- }
- if (BN_is_negative(bn)) {
- ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
- return 0;
- }
- num_bytes = BN_bn2bin(bn, b_in);
- flip_endian(b_out, b_in, num_bytes);
- bin66_to_felem(out, b_out);
- return 1;
- }
- /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
- static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
- {
- felem_bytearray b_in, b_out;
- felem_to_bin66(b_in, in);
- flip_endian(b_out, b_in, sizeof b_out);
- return BN_bin2bn(b_out, sizeof b_out, out);
- }
- /*-
- * Field operations
- * ----------------
- */
- static void felem_one(felem out)
- {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- }
- static void felem_assign(felem out, const felem in)
- {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = in[3];
- out[4] = in[4];
- out[5] = in[5];
- out[6] = in[6];
- out[7] = in[7];
- out[8] = in[8];
- }
- /* felem_sum64 sets out = out + in. */
- static void felem_sum64(felem out, const felem in)
- {
- out[0] += in[0];
- out[1] += in[1];
- out[2] += in[2];
- out[3] += in[3];
- out[4] += in[4];
- out[5] += in[5];
- out[6] += in[6];
- out[7] += in[7];
- out[8] += in[8];
- }
- /* felem_scalar sets out = in * scalar */
- static void felem_scalar(felem out, const felem in, limb scalar)
- {
- out[0] = in[0] * scalar;
- out[1] = in[1] * scalar;
- out[2] = in[2] * scalar;
- out[3] = in[3] * scalar;
- out[4] = in[4] * scalar;
- out[5] = in[5] * scalar;
- out[6] = in[6] * scalar;
- out[7] = in[7] * scalar;
- out[8] = in[8] * scalar;
- }
- /* felem_scalar64 sets out = out * scalar */
- static void felem_scalar64(felem out, limb scalar)
- {
- out[0] *= scalar;
- out[1] *= scalar;
- out[2] *= scalar;
- out[3] *= scalar;
- out[4] *= scalar;
- out[5] *= scalar;
- out[6] *= scalar;
- out[7] *= scalar;
- out[8] *= scalar;
- }
- /* felem_scalar128 sets out = out * scalar */
- static void felem_scalar128(largefelem out, limb scalar)
- {
- out[0] *= scalar;
- out[1] *= scalar;
- out[2] *= scalar;
- out[3] *= scalar;
- out[4] *= scalar;
- out[5] *= scalar;
- out[6] *= scalar;
- out[7] *= scalar;
- out[8] *= scalar;
- }
- /*-
- * felem_neg sets |out| to |-in|
- * On entry:
- * in[i] < 2^59 + 2^14
- * On exit:
- * out[i] < 2^62
- */
- static void felem_neg(felem out, const felem in)
- {
- /* In order to prevent underflow, we subtract from 0 mod p. */
- static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
- static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
- out[0] = two62m3 - in[0];
- out[1] = two62m2 - in[1];
- out[2] = two62m2 - in[2];
- out[3] = two62m2 - in[3];
- out[4] = two62m2 - in[4];
- out[5] = two62m2 - in[5];
- out[6] = two62m2 - in[6];
- out[7] = two62m2 - in[7];
- out[8] = two62m2 - in[8];
- }
- /*-
- * felem_diff64 subtracts |in| from |out|
- * On entry:
- * in[i] < 2^59 + 2^14
- * On exit:
- * out[i] < out[i] + 2^62
- */
- static void felem_diff64(felem out, const felem in)
- {
- /*
- * In order to prevent underflow, we add 0 mod p before subtracting.
- */
- static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
- static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
- out[0] += two62m3 - in[0];
- out[1] += two62m2 - in[1];
- out[2] += two62m2 - in[2];
- out[3] += two62m2 - in[3];
- out[4] += two62m2 - in[4];
- out[5] += two62m2 - in[5];
- out[6] += two62m2 - in[6];
- out[7] += two62m2 - in[7];
- out[8] += two62m2 - in[8];
- }
- /*-
- * felem_diff_128_64 subtracts |in| from |out|
- * On entry:
- * in[i] < 2^62 + 2^17
- * On exit:
- * out[i] < out[i] + 2^63
- */
- static void felem_diff_128_64(largefelem out, const felem in)
- {
- /*
- * In order to prevent underflow, we add 0 mod p before subtracting.
- */
- static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5);
- static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4);
- out[0] += two63m6 - in[0];
- out[1] += two63m5 - in[1];
- out[2] += two63m5 - in[2];
- out[3] += two63m5 - in[3];
- out[4] += two63m5 - in[4];
- out[5] += two63m5 - in[5];
- out[6] += two63m5 - in[6];
- out[7] += two63m5 - in[7];
- out[8] += two63m5 - in[8];
- }
- /*-
- * felem_diff_128_64 subtracts |in| from |out|
- * On entry:
- * in[i] < 2^126
- * On exit:
- * out[i] < out[i] + 2^127 - 2^69
- */
- static void felem_diff128(largefelem out, const largefelem in)
- {
- /*
- * In order to prevent underflow, we add 0 mod p before subtracting.
- */
- static const uint128_t two127m70 =
- (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
- static const uint128_t two127m69 =
- (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
- out[0] += (two127m70 - in[0]);
- out[1] += (two127m69 - in[1]);
- out[2] += (two127m69 - in[2]);
- out[3] += (two127m69 - in[3]);
- out[4] += (two127m69 - in[4]);
- out[5] += (two127m69 - in[5]);
- out[6] += (two127m69 - in[6]);
- out[7] += (two127m69 - in[7]);
- out[8] += (two127m69 - in[8]);
- }
- /*-
- * felem_square sets |out| = |in|^2
- * On entry:
- * in[i] < 2^62
- * On exit:
- * out[i] < 17 * max(in[i]) * max(in[i])
- */
- static void felem_square(largefelem out, const felem in)
- {
- felem inx2, inx4;
- felem_scalar(inx2, in, 2);
- felem_scalar(inx4, in, 4);
- /*-
- * We have many cases were we want to do
- * in[x] * in[y] +
- * in[y] * in[x]
- * This is obviously just
- * 2 * in[x] * in[y]
- * However, rather than do the doubling on the 128 bit result, we
- * double one of the inputs to the multiplication by reading from
- * |inx2|
- */
- out[0] = ((uint128_t) in[0]) * in[0];
- out[1] = ((uint128_t) in[0]) * inx2[1];
- out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
- out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
- out[4] = ((uint128_t) in[0]) * inx2[4] +
- ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
- out[5] = ((uint128_t) in[0]) * inx2[5] +
- ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
- out[6] = ((uint128_t) in[0]) * inx2[6] +
- ((uint128_t) in[1]) * inx2[5] +
- ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
- out[7] = ((uint128_t) in[0]) * inx2[7] +
- ((uint128_t) in[1]) * inx2[6] +
- ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
- out[8] = ((uint128_t) in[0]) * inx2[8] +
- ((uint128_t) in[1]) * inx2[7] +
- ((uint128_t) in[2]) * inx2[6] +
- ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
- /*
- * The remaining limbs fall above 2^521, with the first falling at 2^522.
- * They correspond to locations one bit up from the limbs produced above
- * so we would have to multiply by two to align them. Again, rather than
- * operate on the 128-bit result, we double one of the inputs to the
- * multiplication. If we want to double for both this reason, and the
- * reason above, then we end up multiplying by four.
- */
- /* 9 */
- out[0] += ((uint128_t) in[1]) * inx4[8] +
- ((uint128_t) in[2]) * inx4[7] +
- ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
- /* 10 */
- out[1] += ((uint128_t) in[2]) * inx4[8] +
- ((uint128_t) in[3]) * inx4[7] +
- ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
- /* 11 */
- out[2] += ((uint128_t) in[3]) * inx4[8] +
- ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
- /* 12 */
- out[3] += ((uint128_t) in[4]) * inx4[8] +
- ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
- /* 13 */
- out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
- /* 14 */
- out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
- /* 15 */
- out[6] += ((uint128_t) in[7]) * inx4[8];
- /* 16 */
- out[7] += ((uint128_t) in[8]) * inx2[8];
- }
- /*-
- * felem_mul sets |out| = |in1| * |in2|
- * On entry:
- * in1[i] < 2^64
- * in2[i] < 2^63
- * On exit:
- * out[i] < 17 * max(in1[i]) * max(in2[i])
- */
- static void felem_mul(largefelem out, const felem in1, const felem in2)
- {
- felem in2x2;
- felem_scalar(in2x2, in2, 2);
- out[0] = ((uint128_t) in1[0]) * in2[0];
- out[1] = ((uint128_t) in1[0]) * in2[1] +
- ((uint128_t) in1[1]) * in2[0];
- out[2] = ((uint128_t) in1[0]) * in2[2] +
- ((uint128_t) in1[1]) * in2[1] +
- ((uint128_t) in1[2]) * in2[0];
- out[3] = ((uint128_t) in1[0]) * in2[3] +
- ((uint128_t) in1[1]) * in2[2] +
- ((uint128_t) in1[2]) * in2[1] +
- ((uint128_t) in1[3]) * in2[0];
- out[4] = ((uint128_t) in1[0]) * in2[4] +
- ((uint128_t) in1[1]) * in2[3] +
- ((uint128_t) in1[2]) * in2[2] +
- ((uint128_t) in1[3]) * in2[1] +
- ((uint128_t) in1[4]) * in2[0];
- out[5] = ((uint128_t) in1[0]) * in2[5] +
- ((uint128_t) in1[1]) * in2[4] +
- ((uint128_t) in1[2]) * in2[3] +
- ((uint128_t) in1[3]) * in2[2] +
- ((uint128_t) in1[4]) * in2[1] +
- ((uint128_t) in1[5]) * in2[0];
- out[6] = ((uint128_t) in1[0]) * in2[6] +
- ((uint128_t) in1[1]) * in2[5] +
- ((uint128_t) in1[2]) * in2[4] +
- ((uint128_t) in1[3]) * in2[3] +
- ((uint128_t) in1[4]) * in2[2] +
- ((uint128_t) in1[5]) * in2[1] +
- ((uint128_t) in1[6]) * in2[0];
- out[7] = ((uint128_t) in1[0]) * in2[7] +
- ((uint128_t) in1[1]) * in2[6] +
- ((uint128_t) in1[2]) * in2[5] +
- ((uint128_t) in1[3]) * in2[4] +
- ((uint128_t) in1[4]) * in2[3] +
- ((uint128_t) in1[5]) * in2[2] +
- ((uint128_t) in1[6]) * in2[1] +
- ((uint128_t) in1[7]) * in2[0];
- out[8] = ((uint128_t) in1[0]) * in2[8] +
- ((uint128_t) in1[1]) * in2[7] +
- ((uint128_t) in1[2]) * in2[6] +
- ((uint128_t) in1[3]) * in2[5] +
- ((uint128_t) in1[4]) * in2[4] +
- ((uint128_t) in1[5]) * in2[3] +
- ((uint128_t) in1[6]) * in2[2] +
- ((uint128_t) in1[7]) * in2[1] +
- ((uint128_t) in1[8]) * in2[0];
- /* See comment in felem_square about the use of in2x2 here */
- out[0] += ((uint128_t) in1[1]) * in2x2[8] +
- ((uint128_t) in1[2]) * in2x2[7] +
- ((uint128_t) in1[3]) * in2x2[6] +
- ((uint128_t) in1[4]) * in2x2[5] +
- ((uint128_t) in1[5]) * in2x2[4] +
- ((uint128_t) in1[6]) * in2x2[3] +
- ((uint128_t) in1[7]) * in2x2[2] +
- ((uint128_t) in1[8]) * in2x2[1];
- out[1] += ((uint128_t) in1[2]) * in2x2[8] +
- ((uint128_t) in1[3]) * in2x2[7] +
- ((uint128_t) in1[4]) * in2x2[6] +
- ((uint128_t) in1[5]) * in2x2[5] +
- ((uint128_t) in1[6]) * in2x2[4] +
- ((uint128_t) in1[7]) * in2x2[3] +
- ((uint128_t) in1[8]) * in2x2[2];
- out[2] += ((uint128_t) in1[3]) * in2x2[8] +
- ((uint128_t) in1[4]) * in2x2[7] +
- ((uint128_t) in1[5]) * in2x2[6] +
- ((uint128_t) in1[6]) * in2x2[5] +
- ((uint128_t) in1[7]) * in2x2[4] +
- ((uint128_t) in1[8]) * in2x2[3];
- out[3] += ((uint128_t) in1[4]) * in2x2[8] +
- ((uint128_t) in1[5]) * in2x2[7] +
- ((uint128_t) in1[6]) * in2x2[6] +
- ((uint128_t) in1[7]) * in2x2[5] +
- ((uint128_t) in1[8]) * in2x2[4];
- out[4] += ((uint128_t) in1[5]) * in2x2[8] +
- ((uint128_t) in1[6]) * in2x2[7] +
- ((uint128_t) in1[7]) * in2x2[6] +
- ((uint128_t) in1[8]) * in2x2[5];
- out[5] += ((uint128_t) in1[6]) * in2x2[8] +
- ((uint128_t) in1[7]) * in2x2[7] +
- ((uint128_t) in1[8]) * in2x2[6];
- out[6] += ((uint128_t) in1[7]) * in2x2[8] +
- ((uint128_t) in1[8]) * in2x2[7];
- out[7] += ((uint128_t) in1[8]) * in2x2[8];
- }
- static const limb bottom52bits = 0xfffffffffffff;
- /*-
- * felem_reduce converts a largefelem to an felem.
- * On entry:
- * in[i] < 2^128
- * On exit:
- * out[i] < 2^59 + 2^14
- */
- static void felem_reduce(felem out, const largefelem in)
- {
- u64 overflow1, overflow2;
- out[0] = ((limb) in[0]) & bottom58bits;
- out[1] = ((limb) in[1]) & bottom58bits;
- out[2] = ((limb) in[2]) & bottom58bits;
- out[3] = ((limb) in[3]) & bottom58bits;
- out[4] = ((limb) in[4]) & bottom58bits;
- out[5] = ((limb) in[5]) & bottom58bits;
- out[6] = ((limb) in[6]) & bottom58bits;
- out[7] = ((limb) in[7]) & bottom58bits;
- out[8] = ((limb) in[8]) & bottom58bits;
- /* out[i] < 2^58 */
- out[1] += ((limb) in[0]) >> 58;
- out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
- /*-
- * out[1] < 2^58 + 2^6 + 2^58
- * = 2^59 + 2^6
- */
- out[2] += ((limb) (in[0] >> 64)) >> 52;
- out[2] += ((limb) in[1]) >> 58;
- out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
- out[3] += ((limb) (in[1] >> 64)) >> 52;
- out[3] += ((limb) in[2]) >> 58;
- out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
- out[4] += ((limb) (in[2] >> 64)) >> 52;
- out[4] += ((limb) in[3]) >> 58;
- out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
- out[5] += ((limb) (in[3] >> 64)) >> 52;
- out[5] += ((limb) in[4]) >> 58;
- out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
- out[6] += ((limb) (in[4] >> 64)) >> 52;
- out[6] += ((limb) in[5]) >> 58;
- out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
- out[7] += ((limb) (in[5] >> 64)) >> 52;
- out[7] += ((limb) in[6]) >> 58;
- out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
- out[8] += ((limb) (in[6] >> 64)) >> 52;
- out[8] += ((limb) in[7]) >> 58;
- out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
- /*-
- * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
- * < 2^59 + 2^13
- */
- overflow1 = ((limb) (in[7] >> 64)) >> 52;
- overflow1 += ((limb) in[8]) >> 58;
- overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
- overflow2 = ((limb) (in[8] >> 64)) >> 52;
- overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */
- overflow2 <<= 1; /* overflow2 < 2^13 */
- out[0] += overflow1; /* out[0] < 2^60 */
- out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */
- out[1] += out[0] >> 58;
- out[0] &= bottom58bits;
- /*-
- * out[0] < 2^58
- * out[1] < 2^59 + 2^6 + 2^13 + 2^2
- * < 2^59 + 2^14
- */
- }
- static void felem_square_reduce(felem out, const felem in)
- {
- largefelem tmp;
- felem_square(tmp, in);
- felem_reduce(out, tmp);
- }
- static void felem_mul_reduce(felem out, const felem in1, const felem in2)
- {
- largefelem tmp;
- felem_mul(tmp, in1, in2);
- felem_reduce(out, tmp);
- }
- /*-
- * felem_inv calculates |out| = |in|^{-1}
- *
- * Based on Fermat's Little Theorem:
- * a^p = a (mod p)
- * a^{p-1} = 1 (mod p)
- * a^{p-2} = a^{-1} (mod p)
- */
- static void felem_inv(felem out, const felem in)
- {
- felem ftmp, ftmp2, ftmp3, ftmp4;
- largefelem tmp;
- unsigned i;
- felem_square(tmp, in);
- felem_reduce(ftmp, tmp); /* 2^1 */
- felem_mul(tmp, in, ftmp);
- felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
- felem_assign(ftmp2, ftmp);
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
- felem_mul(tmp, in, ftmp);
- felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */
- felem_assign(ftmp2, ftmp3);
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */
- felem_assign(ftmp4, ftmp3);
- felem_mul(tmp, ftmp3, ftmp);
- felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */
- felem_square(tmp, ftmp4);
- felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */
- felem_assign(ftmp2, ftmp3);
- for (i = 0; i < 8; i++) {
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
- }
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */
- felem_assign(ftmp2, ftmp3);
- for (i = 0; i < 16; i++) {
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
- }
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */
- felem_assign(ftmp2, ftmp3);
- for (i = 0; i < 32; i++) {
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
- }
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */
- felem_assign(ftmp2, ftmp3);
- for (i = 0; i < 64; i++) {
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
- }
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */
- felem_assign(ftmp2, ftmp3);
- for (i = 0; i < 128; i++) {
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
- }
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */
- felem_assign(ftmp2, ftmp3);
- for (i = 0; i < 256; i++) {
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
- }
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */
- for (i = 0; i < 9; i++) {
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
- }
- felem_mul(tmp, ftmp3, ftmp4);
- felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */
- felem_mul(tmp, ftmp3, in);
- felem_reduce(out, tmp); /* 2^512 - 3 */
- }
- /* This is 2^521-1, expressed as an felem */
- static const felem kPrime = {
- 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
- 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
- 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
- };
- /*-
- * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
- * otherwise.
- * On entry:
- * in[i] < 2^59 + 2^14
- */
- static limb felem_is_zero(const felem in)
- {
- felem ftmp;
- limb is_zero, is_p;
- felem_assign(ftmp, in);
- ftmp[0] += ftmp[8] >> 57;
- ftmp[8] &= bottom57bits;
- /* ftmp[8] < 2^57 */
- ftmp[1] += ftmp[0] >> 58;
- ftmp[0] &= bottom58bits;
- ftmp[2] += ftmp[1] >> 58;
- ftmp[1] &= bottom58bits;
- ftmp[3] += ftmp[2] >> 58;
- ftmp[2] &= bottom58bits;
- ftmp[4] += ftmp[3] >> 58;
- ftmp[3] &= bottom58bits;
- ftmp[5] += ftmp[4] >> 58;
- ftmp[4] &= bottom58bits;
- ftmp[6] += ftmp[5] >> 58;
- ftmp[5] &= bottom58bits;
- ftmp[7] += ftmp[6] >> 58;
- ftmp[6] &= bottom58bits;
- ftmp[8] += ftmp[7] >> 58;
- ftmp[7] &= bottom58bits;
- /* ftmp[8] < 2^57 + 4 */
- /*
- * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
- * than our bound for ftmp[8]. Therefore we only have to check if the
- * zero is zero or 2^521-1.
- */
- is_zero = 0;
- is_zero |= ftmp[0];
- is_zero |= ftmp[1];
- is_zero |= ftmp[2];
- is_zero |= ftmp[3];
- is_zero |= ftmp[4];
- is_zero |= ftmp[5];
- is_zero |= ftmp[6];
- is_zero |= ftmp[7];
- is_zero |= ftmp[8];
- is_zero--;
- /*
- * We know that ftmp[i] < 2^63, therefore the only way that the top bit
- * can be set is if is_zero was 0 before the decrement.
- */
- is_zero = ((s64) is_zero) >> 63;
- is_p = ftmp[0] ^ kPrime[0];
- is_p |= ftmp[1] ^ kPrime[1];
- is_p |= ftmp[2] ^ kPrime[2];
- is_p |= ftmp[3] ^ kPrime[3];
- is_p |= ftmp[4] ^ kPrime[4];
- is_p |= ftmp[5] ^ kPrime[5];
- is_p |= ftmp[6] ^ kPrime[6];
- is_p |= ftmp[7] ^ kPrime[7];
- is_p |= ftmp[8] ^ kPrime[8];
- is_p--;
- is_p = ((s64) is_p) >> 63;
- is_zero |= is_p;
- return is_zero;
- }
- static int felem_is_zero_int(const felem in)
- {
- return (int)(felem_is_zero(in) & ((limb) 1));
- }
- /*-
- * felem_contract converts |in| to its unique, minimal representation.
- * On entry:
- * in[i] < 2^59 + 2^14
- */
- static void felem_contract(felem out, const felem in)
- {
- limb is_p, is_greater, sign;
- static const limb two58 = ((limb) 1) << 58;
- felem_assign(out, in);
- out[0] += out[8] >> 57;
- out[8] &= bottom57bits;
- /* out[8] < 2^57 */
- out[1] += out[0] >> 58;
- out[0] &= bottom58bits;
- out[2] += out[1] >> 58;
- out[1] &= bottom58bits;
- out[3] += out[2] >> 58;
- out[2] &= bottom58bits;
- out[4] += out[3] >> 58;
- out[3] &= bottom58bits;
- out[5] += out[4] >> 58;
- out[4] &= bottom58bits;
- out[6] += out[5] >> 58;
- out[5] &= bottom58bits;
- out[7] += out[6] >> 58;
- out[6] &= bottom58bits;
- out[8] += out[7] >> 58;
- out[7] &= bottom58bits;
- /* out[8] < 2^57 + 4 */
- /*
- * If the value is greater than 2^521-1 then we have to subtract 2^521-1
- * out. See the comments in felem_is_zero regarding why we don't test for
- * other multiples of the prime.
- */
- /*
- * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
- */
- is_p = out[0] ^ kPrime[0];
- is_p |= out[1] ^ kPrime[1];
- is_p |= out[2] ^ kPrime[2];
- is_p |= out[3] ^ kPrime[3];
- is_p |= out[4] ^ kPrime[4];
- is_p |= out[5] ^ kPrime[5];
- is_p |= out[6] ^ kPrime[6];
- is_p |= out[7] ^ kPrime[7];
- is_p |= out[8] ^ kPrime[8];
- is_p--;
- is_p &= is_p << 32;
- is_p &= is_p << 16;
- is_p &= is_p << 8;
- is_p &= is_p << 4;
- is_p &= is_p << 2;
- is_p &= is_p << 1;
- is_p = ((s64) is_p) >> 63;
- is_p = ~is_p;
- /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
- out[0] &= is_p;
- out[1] &= is_p;
- out[2] &= is_p;
- out[3] &= is_p;
- out[4] &= is_p;
- out[5] &= is_p;
- out[6] &= is_p;
- out[7] &= is_p;
- out[8] &= is_p;
- /*
- * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
- * 57 is greater than zero as (2^521-1) + x >= 2^522
- */
- is_greater = out[8] >> 57;
- is_greater |= is_greater << 32;
- is_greater |= is_greater << 16;
- is_greater |= is_greater << 8;
- is_greater |= is_greater << 4;
- is_greater |= is_greater << 2;
- is_greater |= is_greater << 1;
- is_greater = ((s64) is_greater) >> 63;
- out[0] -= kPrime[0] & is_greater;
- out[1] -= kPrime[1] & is_greater;
- out[2] -= kPrime[2] & is_greater;
- out[3] -= kPrime[3] & is_greater;
- out[4] -= kPrime[4] & is_greater;
- out[5] -= kPrime[5] & is_greater;
- out[6] -= kPrime[6] & is_greater;
- out[7] -= kPrime[7] & is_greater;
- out[8] -= kPrime[8] & is_greater;
- /* Eliminate negative coefficients */
- sign = -(out[0] >> 63);
- out[0] += (two58 & sign);
- out[1] -= (1 & sign);
- sign = -(out[1] >> 63);
- out[1] += (two58 & sign);
- out[2] -= (1 & sign);
- sign = -(out[2] >> 63);
- out[2] += (two58 & sign);
- out[3] -= (1 & sign);
- sign = -(out[3] >> 63);
- out[3] += (two58 & sign);
- out[4] -= (1 & sign);
- sign = -(out[4] >> 63);
- out[4] += (two58 & sign);
- out[5] -= (1 & sign);
- sign = -(out[0] >> 63);
- out[5] += (two58 & sign);
- out[6] -= (1 & sign);
- sign = -(out[6] >> 63);
- out[6] += (two58 & sign);
- out[7] -= (1 & sign);
- sign = -(out[7] >> 63);
- out[7] += (two58 & sign);
- out[8] -= (1 & sign);
- sign = -(out[5] >> 63);
- out[5] += (two58 & sign);
- out[6] -= (1 & sign);
- sign = -(out[6] >> 63);
- out[6] += (two58 & sign);
- out[7] -= (1 & sign);
- sign = -(out[7] >> 63);
- out[7] += (two58 & sign);
- out[8] -= (1 & sign);
- }
- /*-
- * Group operations
- * ----------------
- *
- * Building on top of the field operations we have the operations on the
- * elliptic curve group itself. Points on the curve are represented in Jacobian
- * coordinates */
- /*-
- * point_double calcuates 2*(x_in, y_in, z_in)
- *
- * The method is taken from:
- * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
- *
- * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
- * while x_out == y_in is not (maybe this works, but it's not tested). */
- static void
- point_double(felem x_out, felem y_out, felem z_out,
- const felem x_in, const felem y_in, const felem z_in)
- {
- largefelem tmp, tmp2;
- felem delta, gamma, beta, alpha, ftmp, ftmp2;
- felem_assign(ftmp, x_in);
- felem_assign(ftmp2, x_in);
- /* delta = z^2 */
- felem_square(tmp, z_in);
- felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */
- /* gamma = y^2 */
- felem_square(tmp, y_in);
- felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */
- /* beta = x*gamma */
- felem_mul(tmp, x_in, gamma);
- felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */
- /* alpha = 3*(x-delta)*(x+delta) */
- felem_diff64(ftmp, delta);
- /* ftmp[i] < 2^61 */
- felem_sum64(ftmp2, delta);
- /* ftmp2[i] < 2^60 + 2^15 */
- felem_scalar64(ftmp2, 3);
- /* ftmp2[i] < 3*2^60 + 3*2^15 */
- felem_mul(tmp, ftmp, ftmp2);
- /*-
- * tmp[i] < 17(3*2^121 + 3*2^76)
- * = 61*2^121 + 61*2^76
- * < 64*2^121 + 64*2^76
- * = 2^127 + 2^82
- * < 2^128
- */
- felem_reduce(alpha, tmp);
- /* x' = alpha^2 - 8*beta */
- felem_square(tmp, alpha);
- /*
- * tmp[i] < 17*2^120 < 2^125
- */
- felem_assign(ftmp, beta);
- felem_scalar64(ftmp, 8);
- /* ftmp[i] < 2^62 + 2^17 */
- felem_diff_128_64(tmp, ftmp);
- /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
- felem_reduce(x_out, tmp);
- /* z' = (y + z)^2 - gamma - delta */
- felem_sum64(delta, gamma);
- /* delta[i] < 2^60 + 2^15 */
- felem_assign(ftmp, y_in);
- felem_sum64(ftmp, z_in);
- /* ftmp[i] < 2^60 + 2^15 */
- felem_square(tmp, ftmp);
- /*
- * tmp[i] < 17(2^122) < 2^127
- */
- felem_diff_128_64(tmp, delta);
- /* tmp[i] < 2^127 + 2^63 */
- felem_reduce(z_out, tmp);
- /* y' = alpha*(4*beta - x') - 8*gamma^2 */
- felem_scalar64(beta, 4);
- /* beta[i] < 2^61 + 2^16 */
- felem_diff64(beta, x_out);
- /* beta[i] < 2^61 + 2^60 + 2^16 */
- felem_mul(tmp, alpha, beta);
- /*-
- * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
- * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
- * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
- * < 2^128
- */
- felem_square(tmp2, gamma);
- /*-
- * tmp2[i] < 17*(2^59 + 2^14)^2
- * = 17*(2^118 + 2^74 + 2^28)
- */
- felem_scalar128(tmp2, 8);
- /*-
- * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
- * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
- * < 2^126
- */
- felem_diff128(tmp, tmp2);
- /*-
- * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
- * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
- * 2^74 + 2^69 + 2^34 + 2^30
- * < 2^128
- */
- felem_reduce(y_out, tmp);
- }
- /* copy_conditional copies in to out iff mask is all ones. */
- static void copy_conditional(felem out, const felem in, limb mask)
- {
- unsigned i;
- for (i = 0; i < NLIMBS; ++i) {
- const limb tmp = mask & (in[i] ^ out[i]);
- out[i] ^= tmp;
- }
- }
- /*-
- * point_add calcuates (x1, y1, z1) + (x2, y2, z2)
- *
- * The method is taken from
- * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
- * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
- *
- * This function includes a branch for checking whether the two input points
- * are equal (while not equal to the point at infinity). This case never
- * happens during single point multiplication, so there is no timing leak for
- * ECDH or ECDSA signing. */
- static void point_add(felem x3, felem y3, felem z3,
- const felem x1, const felem y1, const felem z1,
- const int mixed, const felem x2, const felem y2,
- const felem z2)
- {
- felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
- largefelem tmp, tmp2;
- limb x_equal, y_equal, z1_is_zero, z2_is_zero;
- z1_is_zero = felem_is_zero(z1);
- z2_is_zero = felem_is_zero(z2);
- /* ftmp = z1z1 = z1**2 */
- felem_square(tmp, z1);
- felem_reduce(ftmp, tmp);
- if (!mixed) {
- /* ftmp2 = z2z2 = z2**2 */
- felem_square(tmp, z2);
- felem_reduce(ftmp2, tmp);
- /* u1 = ftmp3 = x1*z2z2 */
- felem_mul(tmp, x1, ftmp2);
- felem_reduce(ftmp3, tmp);
- /* ftmp5 = z1 + z2 */
- felem_assign(ftmp5, z1);
- felem_sum64(ftmp5, z2);
- /* ftmp5[i] < 2^61 */
- /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
- felem_square(tmp, ftmp5);
- /* tmp[i] < 17*2^122 */
- felem_diff_128_64(tmp, ftmp);
- /* tmp[i] < 17*2^122 + 2^63 */
- felem_diff_128_64(tmp, ftmp2);
- /* tmp[i] < 17*2^122 + 2^64 */
- felem_reduce(ftmp5, tmp);
- /* ftmp2 = z2 * z2z2 */
- felem_mul(tmp, ftmp2, z2);
- felem_reduce(ftmp2, tmp);
- /* s1 = ftmp6 = y1 * z2**3 */
- felem_mul(tmp, y1, ftmp2);
- felem_reduce(ftmp6, tmp);
- } else {
- /*
- * We'll assume z2 = 1 (special case z2 = 0 is handled later)
- */
- /* u1 = ftmp3 = x1*z2z2 */
- felem_assign(ftmp3, x1);
- /* ftmp5 = 2*z1z2 */
- felem_scalar(ftmp5, z1, 2);
- /* s1 = ftmp6 = y1 * z2**3 */
- felem_assign(ftmp6, y1);
- }
- /* u2 = x2*z1z1 */
- felem_mul(tmp, x2, ftmp);
- /* tmp[i] < 17*2^120 */
- /* h = ftmp4 = u2 - u1 */
- felem_diff_128_64(tmp, ftmp3);
- /* tmp[i] < 17*2^120 + 2^63 */
- felem_reduce(ftmp4, tmp);
- x_equal = felem_is_zero(ftmp4);
- /* z_out = ftmp5 * h */
- felem_mul(tmp, ftmp5, ftmp4);
- felem_reduce(z_out, tmp);
- /* ftmp = z1 * z1z1 */
- felem_mul(tmp, ftmp, z1);
- felem_reduce(ftmp, tmp);
- /* s2 = tmp = y2 * z1**3 */
- felem_mul(tmp, y2, ftmp);
- /* tmp[i] < 17*2^120 */
- /* r = ftmp5 = (s2 - s1)*2 */
- felem_diff_128_64(tmp, ftmp6);
- /* tmp[i] < 17*2^120 + 2^63 */
- felem_reduce(ftmp5, tmp);
- y_equal = felem_is_zero(ftmp5);
- felem_scalar64(ftmp5, 2);
- /* ftmp5[i] < 2^61 */
- if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
- point_double(x3, y3, z3, x1, y1, z1);
- return;
- }
- /* I = ftmp = (2h)**2 */
- felem_assign(ftmp, ftmp4);
- felem_scalar64(ftmp, 2);
- /* ftmp[i] < 2^61 */
- felem_square(tmp, ftmp);
- /* tmp[i] < 17*2^122 */
- felem_reduce(ftmp, tmp);
- /* J = ftmp2 = h * I */
- felem_mul(tmp, ftmp4, ftmp);
- felem_reduce(ftmp2, tmp);
- /* V = ftmp4 = U1 * I */
- felem_mul(tmp, ftmp3, ftmp);
- felem_reduce(ftmp4, tmp);
- /* x_out = r**2 - J - 2V */
- felem_square(tmp, ftmp5);
- /* tmp[i] < 17*2^122 */
- felem_diff_128_64(tmp, ftmp2);
- /* tmp[i] < 17*2^122 + 2^63 */
- felem_assign(ftmp3, ftmp4);
- felem_scalar64(ftmp4, 2);
- /* ftmp4[i] < 2^61 */
- felem_diff_128_64(tmp, ftmp4);
- /* tmp[i] < 17*2^122 + 2^64 */
- felem_reduce(x_out, tmp);
- /* y_out = r(V-x_out) - 2 * s1 * J */
- felem_diff64(ftmp3, x_out);
- /*
- * ftmp3[i] < 2^60 + 2^60 = 2^61
- */
- felem_mul(tmp, ftmp5, ftmp3);
- /* tmp[i] < 17*2^122 */
- felem_mul(tmp2, ftmp6, ftmp2);
- /* tmp2[i] < 17*2^120 */
- felem_scalar128(tmp2, 2);
- /* tmp2[i] < 17*2^121 */
- felem_diff128(tmp, tmp2);
- /*-
- * tmp[i] < 2^127 - 2^69 + 17*2^122
- * = 2^126 - 2^122 - 2^6 - 2^2 - 1
- * < 2^127
- */
- felem_reduce(y_out, tmp);
- copy_conditional(x_out, x2, z1_is_zero);
- copy_conditional(x_out, x1, z2_is_zero);
- copy_conditional(y_out, y2, z1_is_zero);
- copy_conditional(y_out, y1, z2_is_zero);
- copy_conditional(z_out, z2, z1_is_zero);
- copy_conditional(z_out, z1, z2_is_zero);
- felem_assign(x3, x_out);
- felem_assign(y3, y_out);
- felem_assign(z3, z_out);
- }
- /*-
- * Base point pre computation
- * --------------------------
- *
- * Two different sorts of precomputed tables are used in the following code.
- * Each contain various points on the curve, where each point is three field
- * elements (x, y, z).
- *
- * For the base point table, z is usually 1 (0 for the point at infinity).
- * This table has 16 elements:
- * index | bits | point
- * ------+---------+------------------------------
- * 0 | 0 0 0 0 | 0G
- * 1 | 0 0 0 1 | 1G
- * 2 | 0 0 1 0 | 2^130G
- * 3 | 0 0 1 1 | (2^130 + 1)G
- * 4 | 0 1 0 0 | 2^260G
- * 5 | 0 1 0 1 | (2^260 + 1)G
- * 6 | 0 1 1 0 | (2^260 + 2^130)G
- * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
- * 8 | 1 0 0 0 | 2^390G
- * 9 | 1 0 0 1 | (2^390 + 1)G
- * 10 | 1 0 1 0 | (2^390 + 2^130)G
- * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
- * 12 | 1 1 0 0 | (2^390 + 2^260)G
- * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
- * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
- * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
- *
- * The reason for this is so that we can clock bits into four different
- * locations when doing simple scalar multiplies against the base point.
- *
- * Tables for other points have table[i] = iG for i in 0 .. 16. */
- /* gmul is the table of precomputed base points */
- static const felem gmul[16][3] = {
- {{0, 0, 0, 0, 0, 0, 0, 0, 0},
- {0, 0, 0, 0, 0, 0, 0, 0, 0},
- {0, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
- 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
- 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
- {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
- 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
- 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
- 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
- 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
- {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
- 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
- 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
- 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
- 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
- {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
- 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
- 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
- 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
- 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
- {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
- 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
- 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
- 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
- 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
- {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
- 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
- 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
- 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
- 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
- {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
- 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
- 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
- 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
- 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
- {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
- 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
- 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
- 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
- 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
- {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
- 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
- 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
- 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
- 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
- {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
- 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
- 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
- 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
- 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
- {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
- 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
- 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
- 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
- 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
- {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
- 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
- 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
- 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
- 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
- {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
- 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
- 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
- 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
- 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
- {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
- 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
- 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
- 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
- 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
- {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
- 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
- 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}},
- {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
- 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
- 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
- {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
- 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
- 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
- {1, 0, 0, 0, 0, 0, 0, 0, 0}}
- };
- /*
- * select_point selects the |idx|th point from a precomputation table and
- * copies it to out.
- */
- /* pre_comp below is of the size provided in |size| */
- static void select_point(const limb idx, unsigned int size,
- const felem pre_comp[][3], felem out[3])
- {
- unsigned i, j;
- limb *outlimbs = &out[0][0];
- memset(out, 0, sizeof(out));
- for (i = 0; i < size; i++) {
- const limb *inlimbs = &pre_comp[i][0][0];
- limb mask = i ^ idx;
- mask |= mask >> 4;
- mask |= mask >> 2;
- mask |= mask >> 1;
- mask &= 1;
- mask--;
- for (j = 0; j < NLIMBS * 3; j++)
- outlimbs[j] |= inlimbs[j] & mask;
- }
- }
- /* get_bit returns the |i|th bit in |in| */
- static char get_bit(const felem_bytearray in, int i)
- {
- if (i < 0)
- return 0;
- return (in[i >> 3] >> (i & 7)) & 1;
- }
- /*
- * Interleaved point multiplication using precomputed point multiples: The
- * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
- * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
- * generator, using certain (large) precomputed multiples in g_pre_comp.
- * Output point (X, Y, Z) is stored in x_out, y_out, z_out
- */
- static void batch_mul(felem x_out, felem y_out, felem z_out,
- const felem_bytearray scalars[],
- const unsigned num_points, const u8 *g_scalar,
- const int mixed, const felem pre_comp[][17][3],
- const felem g_pre_comp[16][3])
- {
- int i, skip;
- unsigned num, gen_mul = (g_scalar != NULL);
- felem nq[3], tmp[4];
- limb bits;
- u8 sign, digit;
- /* set nq to the point at infinity */
- memset(nq, 0, sizeof(nq));
- /*
- * Loop over all scalars msb-to-lsb, interleaving additions of multiples
- * of the generator (last quarter of rounds) and additions of other
- * points multiples (every 5th round).
- */
- skip = 1; /* save two point operations in the first
- * round */
- for (i = (num_points ? 520 : 130); i >= 0; --i) {
- /* double */
- if (!skip)
- point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
- /* add multiples of the generator */
- if (gen_mul && (i <= 130)) {
- bits = get_bit(g_scalar, i + 390) << 3;
- if (i < 130) {
- bits |= get_bit(g_scalar, i + 260) << 2;
- bits |= get_bit(g_scalar, i + 130) << 1;
- bits |= get_bit(g_scalar, i);
- }
- /* select the point to add, in constant time */
- select_point(bits, 16, g_pre_comp, tmp);
- if (!skip) {
- /* The 1 argument below is for "mixed" */
- point_add(nq[0], nq[1], nq[2],
- nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
- } else {
- memcpy(nq, tmp, 3 * sizeof(felem));
- skip = 0;
- }
- }
- /* do other additions every 5 doublings */
- if (num_points && (i % 5 == 0)) {
- /* loop over all scalars */
- for (num = 0; num < num_points; ++num) {
- bits = get_bit(scalars[num], i + 4) << 5;
- bits |= get_bit(scalars[num], i + 3) << 4;
- bits |= get_bit(scalars[num], i + 2) << 3;
- bits |= get_bit(scalars[num], i + 1) << 2;
- bits |= get_bit(scalars[num], i) << 1;
- bits |= get_bit(scalars[num], i - 1);
- ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
- /*
- * select the point to add or subtract, in constant time
- */
- select_point(digit, 17, pre_comp[num], tmp);
- felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
- * point */
- copy_conditional(tmp[1], tmp[3], (-(limb) sign));
- if (!skip) {
- point_add(nq[0], nq[1], nq[2],
- nq[0], nq[1], nq[2],
- mixed, tmp[0], tmp[1], tmp[2]);
- } else {
- memcpy(nq, tmp, 3 * sizeof(felem));
- skip = 0;
- }
- }
- }
- }
- felem_assign(x_out, nq[0]);
- felem_assign(y_out, nq[1]);
- felem_assign(z_out, nq[2]);
- }
- /* Precomputation for the group generator. */
- typedef struct {
- felem g_pre_comp[16][3];
- int references;
- } NISTP521_PRE_COMP;
- const EC_METHOD *EC_GFp_nistp521_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_prime_field,
- ec_GFp_nistp521_group_init,
- ec_GFp_simple_group_finish,
- ec_GFp_simple_group_clear_finish,
- ec_GFp_nist_group_copy,
- ec_GFp_nistp521_group_set_curve,
- ec_GFp_simple_group_get_curve,
- ec_GFp_simple_group_get_degree,
- ec_GFp_simple_group_check_discriminant,
- ec_GFp_simple_point_init,
- ec_GFp_simple_point_finish,
- ec_GFp_simple_point_clear_finish,
- ec_GFp_simple_point_copy,
- ec_GFp_simple_point_set_to_infinity,
- ec_GFp_simple_set_Jprojective_coordinates_GFp,
- ec_GFp_simple_get_Jprojective_coordinates_GFp,
- ec_GFp_simple_point_set_affine_coordinates,
- ec_GFp_nistp521_point_get_affine_coordinates,
- 0 /* point_set_compressed_coordinates */ ,
- 0 /* point2oct */ ,
- 0 /* oct2point */ ,
- ec_GFp_simple_add,
- ec_GFp_simple_dbl,
- ec_GFp_simple_invert,
- ec_GFp_simple_is_at_infinity,
- ec_GFp_simple_is_on_curve,
- ec_GFp_simple_cmp,
- ec_GFp_simple_make_affine,
- ec_GFp_simple_points_make_affine,
- ec_GFp_nistp521_points_mul,
- ec_GFp_nistp521_precompute_mult,
- ec_GFp_nistp521_have_precompute_mult,
- ec_GFp_nist_field_mul,
- ec_GFp_nist_field_sqr,
- 0 /* field_div */ ,
- 0 /* field_encode */ ,
- 0 /* field_decode */ ,
- 0 /* field_set_to_one */
- };
- return &ret;
- }
- /******************************************************************************/
- /*
- * FUNCTIONS TO MANAGE PRECOMPUTATION
- */
- static NISTP521_PRE_COMP *nistp521_pre_comp_new()
- {
- NISTP521_PRE_COMP *ret = OPENSSL_malloc(sizeof(*ret));
- if (!ret) {
- ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- return ret;
- }
- memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
- ret->references = 1;
- return ret;
- }
- static void *nistp521_pre_comp_dup(void *src_)
- {
- NISTP521_PRE_COMP *src = src_;
- /* no need to actually copy, these objects never change! */
- CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
- return src_;
- }
- static void nistp521_pre_comp_free(void *pre_)
- {
- int i;
- NISTP521_PRE_COMP *pre = pre_;
- if (!pre)
- return;
- i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
- if (i > 0)
- return;
- OPENSSL_free(pre);
- }
- static void nistp521_pre_comp_clear_free(void *pre_)
- {
- int i;
- NISTP521_PRE_COMP *pre = pre_;
- if (!pre)
- return;
- i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
- if (i > 0)
- return;
- OPENSSL_clear_free(pre, sizeof(*pre));
- }
- /******************************************************************************/
- /*
- * OPENSSL EC_METHOD FUNCTIONS
- */
- int ec_GFp_nistp521_group_init(EC_GROUP *group)
- {
- int ret;
- ret = ec_GFp_simple_group_init(group);
- group->a_is_minus3 = 1;
- return ret;
- }
- int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
- const BIGNUM *a, const BIGNUM *b,
- BN_CTX *ctx)
- {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *curve_p, *curve_a, *curve_b;
- if (ctx == NULL)
- if ((ctx = new_ctx = BN_CTX_new()) == NULL)
- return 0;
- BN_CTX_start(ctx);
- if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
- ((curve_a = BN_CTX_get(ctx)) == NULL) ||
- ((curve_b = BN_CTX_get(ctx)) == NULL))
- goto err;
- BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
- BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
- BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
- if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
- ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
- EC_R_WRONG_CURVE_PARAMETERS);
- goto err;
- }
- group->field_mod_func = BN_nist_mod_521;
- ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
- * (X/Z^2, Y/Z^3)
- */
- int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BN_CTX *ctx)
- {
- felem z1, z2, x_in, y_in, x_out, y_out;
- largefelem tmp;
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
- EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
- (!BN_to_felem(z1, point->Z)))
- return 0;
- felem_inv(z2, z1);
- felem_square(tmp, z2);
- felem_reduce(z1, tmp);
- felem_mul(tmp, x_in, z1);
- felem_reduce(x_in, tmp);
- felem_contract(x_out, x_in);
- if (x != NULL) {
- if (!felem_to_BN(x, x_out)) {
- ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
- ERR_R_BN_LIB);
- return 0;
- }
- }
- felem_mul(tmp, z1, z2);
- felem_reduce(z1, tmp);
- felem_mul(tmp, y_in, z1);
- felem_reduce(y_in, tmp);
- felem_contract(y_out, y_in);
- if (y != NULL) {
- if (!felem_to_BN(y, y_out)) {
- ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
- ERR_R_BN_LIB);
- return 0;
- }
- }
- return 1;
- }
- /* points below is of size |num|, and tmp_felems is of size |num+1/ */
- static void make_points_affine(size_t num, felem points[][3],
- felem tmp_felems[])
- {
- /*
- * Runs in constant time, unless an input is the point at infinity (which
- * normally shouldn't happen).
- */
- ec_GFp_nistp_points_make_affine_internal(num,
- points,
- sizeof(felem),
- tmp_felems,
- (void (*)(void *))felem_one,
- (int (*)(const void *))
- felem_is_zero_int,
- (void (*)(void *, const void *))
- felem_assign,
- (void (*)(void *, const void *))
- felem_square_reduce, (void (*)
- (void *,
- const void
- *,
- const void
- *))
- felem_mul_reduce,
- (void (*)(void *, const void *))
- felem_inv,
- (void (*)(void *, const void *))
- felem_contract);
- }
- /*
- * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
- * values Result is stored in r (r can equal one of the inputs).
- */
- int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
- const BIGNUM *scalar, size_t num,
- const EC_POINT *points[],
- const BIGNUM *scalars[], BN_CTX *ctx)
- {
- int ret = 0;
- int j;
- int mixed = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y, *z, *tmp_scalar;
- felem_bytearray g_secret;
- felem_bytearray *secrets = NULL;
- felem (*pre_comp)[17][3] = NULL;
- felem *tmp_felems = NULL;
- felem_bytearray tmp;
- unsigned i, num_bytes;
- int have_pre_comp = 0;
- size_t num_points = num;
- felem x_in, y_in, z_in, x_out, y_out, z_out;
- NISTP521_PRE_COMP *pre = NULL;
- felem(*g_pre_comp)[3] = NULL;
- EC_POINT *generator = NULL;
- const EC_POINT *p = NULL;
- const BIGNUM *p_scalar = NULL;
- if (ctx == NULL)
- if ((ctx = new_ctx = BN_CTX_new()) == NULL)
- return 0;
- BN_CTX_start(ctx);
- if (((x = BN_CTX_get(ctx)) == NULL) ||
- ((y = BN_CTX_get(ctx)) == NULL) ||
- ((z = BN_CTX_get(ctx)) == NULL) ||
- ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
- goto err;
- if (scalar != NULL) {
- pre = EC_EX_DATA_get_data(group->extra_data,
- nistp521_pre_comp_dup,
- nistp521_pre_comp_free,
- nistp521_pre_comp_clear_free);
- if (pre)
- /* we have precomputation, try to use it */
- g_pre_comp = &pre->g_pre_comp[0];
- else
- /* try to use the standard precomputation */
- g_pre_comp = (felem(*)[3]) gmul;
- generator = EC_POINT_new(group);
- if (generator == NULL)
- goto err;
- /* get the generator from precomputation */
- if (!felem_to_BN(x, g_pre_comp[1][0]) ||
- !felem_to_BN(y, g_pre_comp[1][1]) ||
- !felem_to_BN(z, g_pre_comp[1][2])) {
- ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
- generator, x, y, z,
- ctx))
- goto err;
- if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
- /* precomputation matches generator */
- have_pre_comp = 1;
- else
- /*
- * we don't have valid precomputation: treat the generator as a
- * random point
- */
- num_points++;
- }
- if (num_points > 0) {
- if (num_points >= 2) {
- /*
- * unless we precompute multiples for just one point, converting
- * those into affine form is time well spent
- */
- mixed = 1;
- }
- secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
- pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
- if (mixed)
- tmp_felems =
- OPENSSL_malloc(sizeof(*tmp_felemts) * (num_points * 17 + 1));
- if ((secrets == NULL) || (pre_comp == NULL)
- || (mixed && (tmp_felems == NULL))) {
- ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- /*
- * we treat NULL scalars as 0, and NULL points as points at infinity,
- * i.e., they contribute nothing to the linear combination
- */
- memset(secrets, 0, sizeof(*secrets) * num_points);
- memset(pre_comp, 0, sizseof(*pre_comp) * num_points);
- for (i = 0; i < num_points; ++i) {
- if (i == num)
- /*
- * we didn't have a valid precomputation, so we pick the
- * generator
- */
- {
- p = EC_GROUP_get0_generator(group);
- p_scalar = scalar;
- } else
- /* the i^th point */
- {
- p = points[i];
- p_scalar = scalars[i];
- }
- if ((p_scalar != NULL) && (p != NULL)) {
- /* reduce scalar to 0 <= scalar < 2^521 */
- if ((BN_num_bits(p_scalar) > 521)
- || (BN_is_negative(p_scalar))) {
- /*
- * this is an unusual input, and we don't guarantee
- * constant-timeness
- */
- if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
- ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- num_bytes = BN_bn2bin(tmp_scalar, tmp);
- } else
- num_bytes = BN_bn2bin(p_scalar, tmp);
- flip_endian(secrets[i], tmp, num_bytes);
- /* precompute multiples */
- if ((!BN_to_felem(x_out, p->X)) ||
- (!BN_to_felem(y_out, p->Y)) ||
- (!BN_to_felem(z_out, p->Z)))
- goto err;
- memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
- memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
- memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
- for (j = 2; j <= 16; ++j) {
- if (j & 1) {
- point_add(pre_comp[i][j][0], pre_comp[i][j][1],
- pre_comp[i][j][2], pre_comp[i][1][0],
- pre_comp[i][1][1], pre_comp[i][1][2], 0,
- pre_comp[i][j - 1][0],
- pre_comp[i][j - 1][1],
- pre_comp[i][j - 1][2]);
- } else {
- point_double(pre_comp[i][j][0], pre_comp[i][j][1],
- pre_comp[i][j][2], pre_comp[i][j / 2][0],
- pre_comp[i][j / 2][1],
- pre_comp[i][j / 2][2]);
- }
- }
- }
- }
- if (mixed)
- make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
- }
- /* the scalar for the generator */
- if ((scalar != NULL) && (have_pre_comp)) {
- memset(g_secret, 0, sizeof(g_secret));
- /* reduce scalar to 0 <= scalar < 2^521 */
- if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
- /*
- * this is an unusual input, and we don't guarantee
- * constant-timeness
- */
- if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
- ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- num_bytes = BN_bn2bin(tmp_scalar, tmp);
- } else
- num_bytes = BN_bn2bin(scalar, tmp);
- flip_endian(g_secret, tmp, num_bytes);
- /* do the multiplication with generator precomputation */
- batch_mul(x_out, y_out, z_out,
- (const felem_bytearray(*))secrets, num_points,
- g_secret,
- mixed, (const felem(*)[17][3])pre_comp,
- (const felem(*)[3])g_pre_comp);
- } else
- /* do the multiplication without generator precomputation */
- batch_mul(x_out, y_out, z_out,
- (const felem_bytearray(*))secrets, num_points,
- NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
- /* reduce the output to its unique minimal representation */
- felem_contract(x_in, x_out);
- felem_contract(y_in, y_out);
- felem_contract(z_in, z_out);
- if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
- (!felem_to_BN(z, z_in))) {
- ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
- err:
- BN_CTX_end(ctx);
- EC_POINT_free(generator);
- BN_CTX_free(new_ctx);
- OPENSSL_free(secrets);
- OPENSSL_free(pre_comp);
- OPENSSL_free(tmp_felems);
- return ret;
- }
- int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
- {
- int ret = 0;
- NISTP521_PRE_COMP *pre = NULL;
- int i, j;
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- EC_POINT *generator = NULL;
- felem tmp_felems[16];
- /* throw away old precomputation */
- EC_EX_DATA_free_data(&group->extra_data, nistp521_pre_comp_dup,
- nistp521_pre_comp_free,
- nistp521_pre_comp_clear_free);
- if (ctx == NULL)
- if ((ctx = new_ctx = BN_CTX_new()) == NULL)
- return 0;
- BN_CTX_start(ctx);
- if (((x = BN_CTX_get(ctx)) == NULL) || ((y = BN_CTX_get(ctx)) == NULL))
- goto err;
- /* get the generator */
- if (group->generator == NULL)
- goto err;
- generator = EC_POINT_new(group);
- if (generator == NULL)
- goto err;
- BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
- BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
- if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
- goto err;
- if ((pre = nistp521_pre_comp_new()) == NULL)
- goto err;
- /*
- * if the generator is the standard one, use built-in precomputation
- */
- if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
- memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
- ret = 1;
- goto err;
- }
- if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
- (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
- (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
- goto err;
- /* compute 2^130*G, 2^260*G, 2^390*G */
- for (i = 1; i <= 4; i <<= 1) {
- point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
- pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
- pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
- for (j = 0; j < 129; ++j) {
- point_double(pre->g_pre_comp[2 * i][0],
- pre->g_pre_comp[2 * i][1],
- pre->g_pre_comp[2 * i][2],
- pre->g_pre_comp[2 * i][0],
- pre->g_pre_comp[2 * i][1],
- pre->g_pre_comp[2 * i][2]);
- }
- }
- /* g_pre_comp[0] is the point at infinity */
- memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
- /* the remaining multiples */
- /* 2^130*G + 2^260*G */
- point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
- pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
- pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
- 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
- pre->g_pre_comp[2][2]);
- /* 2^130*G + 2^390*G */
- point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
- pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
- pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
- 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
- pre->g_pre_comp[2][2]);
- /* 2^260*G + 2^390*G */
- point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
- pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
- pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
- 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
- pre->g_pre_comp[4][2]);
- /* 2^130*G + 2^260*G + 2^390*G */
- point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
- pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
- pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
- 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
- pre->g_pre_comp[2][2]);
- for (i = 1; i < 8; ++i) {
- /* odd multiples: add G */
- point_add(pre->g_pre_comp[2 * i + 1][0],
- pre->g_pre_comp[2 * i + 1][1],
- pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
- pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
- pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
- pre->g_pre_comp[1][2]);
- }
- make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
- if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp521_pre_comp_dup,
- nistp521_pre_comp_free,
- nistp521_pre_comp_clear_free))
- goto err;
- ret = 1;
- pre = NULL;
- err:
- BN_CTX_end(ctx);
- EC_POINT_free(generator);
- BN_CTX_free(new_ctx);
- nistp521_pre_comp_free(pre);
- return ret;
- }
- int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
- {
- if (EC_EX_DATA_get_data(group->extra_data, nistp521_pre_comp_dup,
- nistp521_pre_comp_free,
- nistp521_pre_comp_clear_free)
- != NULL)
- return 1;
- else
- return 0;
- }
- #else
- static void *dummy = &dummy;
- #endif
|