sha256.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. /* crypto/sha/sha256.c */
  2. /* ====================================================================
  3. * Copyright (c) 2004 The OpenSSL Project. All rights reserved
  4. * according to the OpenSSL license [found in ../../LICENSE].
  5. * ====================================================================
  6. */
  7. #include <openssl/opensslconf.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #include <openssl/crypto.h>
  11. #include <openssl/sha.h>
  12. #include <openssl/opensslv.h>
  13. const char SHA256_version[] = "SHA-256" OPENSSL_VERSION_PTEXT;
  14. int SHA224_Init(SHA256_CTX *c)
  15. {
  16. memset(c, 0, sizeof(*c));
  17. c->h[0] = 0xc1059ed8UL;
  18. c->h[1] = 0x367cd507UL;
  19. c->h[2] = 0x3070dd17UL;
  20. c->h[3] = 0xf70e5939UL;
  21. c->h[4] = 0xffc00b31UL;
  22. c->h[5] = 0x68581511UL;
  23. c->h[6] = 0x64f98fa7UL;
  24. c->h[7] = 0xbefa4fa4UL;
  25. c->md_len = SHA224_DIGEST_LENGTH;
  26. return 1;
  27. }
  28. int SHA256_Init(SHA256_CTX *c)
  29. {
  30. memset(c, 0, sizeof(*c));
  31. c->h[0] = 0x6a09e667UL;
  32. c->h[1] = 0xbb67ae85UL;
  33. c->h[2] = 0x3c6ef372UL;
  34. c->h[3] = 0xa54ff53aUL;
  35. c->h[4] = 0x510e527fUL;
  36. c->h[5] = 0x9b05688cUL;
  37. c->h[6] = 0x1f83d9abUL;
  38. c->h[7] = 0x5be0cd19UL;
  39. c->md_len = SHA256_DIGEST_LENGTH;
  40. return 1;
  41. }
  42. unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
  43. {
  44. SHA256_CTX c;
  45. static unsigned char m[SHA224_DIGEST_LENGTH];
  46. if (md == NULL)
  47. md = m;
  48. SHA224_Init(&c);
  49. SHA256_Update(&c, d, n);
  50. SHA256_Final(md, &c);
  51. OPENSSL_cleanse(&c, sizeof(c));
  52. return (md);
  53. }
  54. unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
  55. {
  56. SHA256_CTX c;
  57. static unsigned char m[SHA256_DIGEST_LENGTH];
  58. if (md == NULL)
  59. md = m;
  60. SHA256_Init(&c);
  61. SHA256_Update(&c, d, n);
  62. SHA256_Final(md, &c);
  63. OPENSSL_cleanse(&c, sizeof(c));
  64. return (md);
  65. }
  66. int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
  67. {
  68. return SHA256_Update(c, data, len);
  69. }
  70. int SHA224_Final(unsigned char *md, SHA256_CTX *c)
  71. {
  72. return SHA256_Final(md, c);
  73. }
  74. #define DATA_ORDER_IS_BIG_ENDIAN
  75. #define HASH_LONG SHA_LONG
  76. #define HASH_CTX SHA256_CTX
  77. #define HASH_CBLOCK SHA_CBLOCK
  78. /*
  79. * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
  80. * default: case below covers for it. It's not clear however if it's
  81. * permitted to truncate to amount of bytes not divisible by 4. I bet not,
  82. * but if it is, then default: case shall be extended. For reference.
  83. * Idea behind separate cases for pre-defined lenghts is to let the
  84. * compiler decide if it's appropriate to unroll small loops.
  85. */
  86. #define HASH_MAKE_STRING(c,s) do { \
  87. unsigned long ll; \
  88. unsigned int nn; \
  89. switch ((c)->md_len) \
  90. { case SHA224_DIGEST_LENGTH: \
  91. for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
  92. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  93. break; \
  94. case SHA256_DIGEST_LENGTH: \
  95. for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
  96. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  97. break; \
  98. default: \
  99. if ((c)->md_len > SHA256_DIGEST_LENGTH) \
  100. return 0; \
  101. for (nn=0;nn<(c)->md_len/4;nn++) \
  102. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  103. break; \
  104. } \
  105. } while (0)
  106. #define HASH_UPDATE SHA256_Update
  107. #define HASH_TRANSFORM SHA256_Transform
  108. #define HASH_FINAL SHA256_Final
  109. #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
  110. #ifndef SHA256_ASM
  111. static
  112. #endif
  113. void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);
  114. #include "internal/md32_common.h"
  115. #ifndef SHA256_ASM
  116. static const SHA_LONG K256[64] = {
  117. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  118. 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  119. 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  120. 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  121. 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  122. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  123. 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  124. 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  125. 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  126. 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  127. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  128. 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  129. 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  130. 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  131. 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  132. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  133. };
  134. /*
  135. * FIPS specification refers to right rotations, while our ROTATE macro
  136. * is left one. This is why you might notice that rotation coefficients
  137. * differ from those observed in FIPS document by 32-N...
  138. */
  139. # define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
  140. # define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
  141. # define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
  142. # define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
  143. # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  144. # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  145. # ifdef OPENSSL_SMALL_FOOTPRINT
  146. static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
  147. size_t num)
  148. {
  149. unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2;
  150. SHA_LONG X[16], l;
  151. int i;
  152. const unsigned char *data = in;
  153. while (num--) {
  154. a = ctx->h[0];
  155. b = ctx->h[1];
  156. c = ctx->h[2];
  157. d = ctx->h[3];
  158. e = ctx->h[4];
  159. f = ctx->h[5];
  160. g = ctx->h[6];
  161. h = ctx->h[7];
  162. for (i = 0; i < 16; i++) {
  163. HOST_c2l(data, l);
  164. T1 = X[i] = l;
  165. T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
  166. T2 = Sigma0(a) + Maj(a, b, c);
  167. h = g;
  168. g = f;
  169. f = e;
  170. e = d + T1;
  171. d = c;
  172. c = b;
  173. b = a;
  174. a = T1 + T2;
  175. }
  176. for (; i < 64; i++) {
  177. s0 = X[(i + 1) & 0x0f];
  178. s0 = sigma0(s0);
  179. s1 = X[(i + 14) & 0x0f];
  180. s1 = sigma1(s1);
  181. T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
  182. T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
  183. T2 = Sigma0(a) + Maj(a, b, c);
  184. h = g;
  185. g = f;
  186. f = e;
  187. e = d + T1;
  188. d = c;
  189. c = b;
  190. b = a;
  191. a = T1 + T2;
  192. }
  193. ctx->h[0] += a;
  194. ctx->h[1] += b;
  195. ctx->h[2] += c;
  196. ctx->h[3] += d;
  197. ctx->h[4] += e;
  198. ctx->h[5] += f;
  199. ctx->h[6] += g;
  200. ctx->h[7] += h;
  201. }
  202. }
  203. # else
  204. # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  205. T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
  206. h = Sigma0(a) + Maj(a,b,c); \
  207. d += T1; h += T1; } while (0)
  208. # define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
  209. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
  210. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
  211. T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
  212. ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
  213. static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
  214. size_t num)
  215. {
  216. unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1;
  217. SHA_LONG X[16];
  218. int i;
  219. const unsigned char *data = in;
  220. const union {
  221. long one;
  222. char little;
  223. } is_endian = {
  224. 1
  225. };
  226. while (num--) {
  227. a = ctx->h[0];
  228. b = ctx->h[1];
  229. c = ctx->h[2];
  230. d = ctx->h[3];
  231. e = ctx->h[4];
  232. f = ctx->h[5];
  233. g = ctx->h[6];
  234. h = ctx->h[7];
  235. if (!is_endian.little && sizeof(SHA_LONG) == 4
  236. && ((size_t)in % 4) == 0) {
  237. const SHA_LONG *W = (const SHA_LONG *)data;
  238. T1 = X[0] = W[0];
  239. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  240. T1 = X[1] = W[1];
  241. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  242. T1 = X[2] = W[2];
  243. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  244. T1 = X[3] = W[3];
  245. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  246. T1 = X[4] = W[4];
  247. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  248. T1 = X[5] = W[5];
  249. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  250. T1 = X[6] = W[6];
  251. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  252. T1 = X[7] = W[7];
  253. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  254. T1 = X[8] = W[8];
  255. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  256. T1 = X[9] = W[9];
  257. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  258. T1 = X[10] = W[10];
  259. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  260. T1 = X[11] = W[11];
  261. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  262. T1 = X[12] = W[12];
  263. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  264. T1 = X[13] = W[13];
  265. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  266. T1 = X[14] = W[14];
  267. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  268. T1 = X[15] = W[15];
  269. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  270. data += SHA256_CBLOCK;
  271. } else {
  272. SHA_LONG l;
  273. HOST_c2l(data, l);
  274. T1 = X[0] = l;
  275. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  276. HOST_c2l(data, l);
  277. T1 = X[1] = l;
  278. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  279. HOST_c2l(data, l);
  280. T1 = X[2] = l;
  281. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  282. HOST_c2l(data, l);
  283. T1 = X[3] = l;
  284. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  285. HOST_c2l(data, l);
  286. T1 = X[4] = l;
  287. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  288. HOST_c2l(data, l);
  289. T1 = X[5] = l;
  290. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  291. HOST_c2l(data, l);
  292. T1 = X[6] = l;
  293. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  294. HOST_c2l(data, l);
  295. T1 = X[7] = l;
  296. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  297. HOST_c2l(data, l);
  298. T1 = X[8] = l;
  299. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  300. HOST_c2l(data, l);
  301. T1 = X[9] = l;
  302. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  303. HOST_c2l(data, l);
  304. T1 = X[10] = l;
  305. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  306. HOST_c2l(data, l);
  307. T1 = X[11] = l;
  308. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  309. HOST_c2l(data, l);
  310. T1 = X[12] = l;
  311. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  312. HOST_c2l(data, l);
  313. T1 = X[13] = l;
  314. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  315. HOST_c2l(data, l);
  316. T1 = X[14] = l;
  317. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  318. HOST_c2l(data, l);
  319. T1 = X[15] = l;
  320. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  321. }
  322. for (i = 16; i < 64; i += 8) {
  323. ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
  324. ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
  325. ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
  326. ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
  327. ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
  328. ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
  329. ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
  330. ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
  331. }
  332. ctx->h[0] += a;
  333. ctx->h[1] += b;
  334. ctx->h[2] += c;
  335. ctx->h[3] += d;
  336. ctx->h[4] += e;
  337. ctx->h[5] += f;
  338. ctx->h[6] += g;
  339. ctx->h[7] += h;
  340. }
  341. }
  342. # endif
  343. #endif /* SHA256_ASM */