123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113 |
- /* crypto/ec/ec2_smpl.c */
- /* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
- * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
- * to the OpenSSL project.
- *
- * The ECC Code is licensed pursuant to the OpenSSL open source
- * license provided below.
- *
- * The software is originally written by Sheueling Chang Shantz and
- * Douglas Stebila of Sun Microsystems Laboratories.
- *
- */
- /* ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
- #include <openssl/err.h>
- #include "ec_lcl.h"
- const EC_METHOD *EC_GF2m_simple_method(void)
- {
- static const EC_METHOD ret = {
- NID_X9_62_characteristic_two_field,
- ec_GF2m_simple_group_init,
- ec_GF2m_simple_group_finish,
- ec_GF2m_simple_group_clear_finish,
- ec_GF2m_simple_group_copy,
- ec_GF2m_simple_group_set_curve,
- ec_GF2m_simple_group_get_curve,
- ec_GF2m_simple_group_get_degree,
- ec_GF2m_simple_group_check_discriminant,
- ec_GF2m_simple_point_init,
- ec_GF2m_simple_point_finish,
- ec_GF2m_simple_point_clear_finish,
- ec_GF2m_simple_point_copy,
- ec_GF2m_simple_point_set_to_infinity,
- 0 /* set_Jprojective_coordinates_GFp */ ,
- 0 /* get_Jprojective_coordinates_GFp */ ,
- ec_GF2m_simple_point_set_affine_coordinates,
- ec_GF2m_simple_point_get_affine_coordinates,
- ec_GF2m_simple_set_compressed_coordinates,
- ec_GF2m_simple_point2oct,
- ec_GF2m_simple_oct2point,
- ec_GF2m_simple_add,
- ec_GF2m_simple_dbl,
- ec_GF2m_simple_invert,
- ec_GF2m_simple_is_at_infinity,
- ec_GF2m_simple_is_on_curve,
- ec_GF2m_simple_cmp,
- ec_GF2m_simple_make_affine,
- ec_GF2m_simple_points_make_affine,
- /*
- * the following three method functions are defined in ec2_mult.c
- */
- ec_GF2m_simple_mul,
- ec_GF2m_precompute_mult,
- ec_GF2m_have_precompute_mult,
- ec_GF2m_simple_field_mul,
- ec_GF2m_simple_field_sqr,
- ec_GF2m_simple_field_div,
- 0 /* field_encode */ ,
- 0 /* field_decode */ ,
- 0 /* field_set_to_one */
- };
- return &ret;
- }
- /*
- * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
- * are handled by EC_GROUP_new.
- */
- int ec_GF2m_simple_group_init(EC_GROUP *group)
- {
- BN_init(&group->field);
- BN_init(&group->a);
- BN_init(&group->b);
- return 1;
- }
- /*
- * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
- * handled by EC_GROUP_free.
- */
- void ec_GF2m_simple_group_finish(EC_GROUP *group)
- {
- BN_free(&group->field);
- BN_free(&group->a);
- BN_free(&group->b);
- }
- /*
- * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
- * members are handled by EC_GROUP_clear_free.
- */
- void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
- {
- BN_clear_free(&group->field);
- BN_clear_free(&group->a);
- BN_clear_free(&group->b);
- group->poly[0] = 0;
- group->poly[1] = 0;
- group->poly[2] = 0;
- group->poly[3] = 0;
- group->poly[4] = 0;
- group->poly[5] = -1;
- }
- /*
- * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
- * handled by EC_GROUP_copy.
- */
- int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
- {
- int i;
- if (!BN_copy(&dest->field, &src->field))
- return 0;
- if (!BN_copy(&dest->a, &src->a))
- return 0;
- if (!BN_copy(&dest->b, &src->b))
- return 0;
- dest->poly[0] = src->poly[0];
- dest->poly[1] = src->poly[1];
- dest->poly[2] = src->poly[2];
- dest->poly[3] = src->poly[3];
- dest->poly[4] = src->poly[4];
- dest->poly[5] = src->poly[5];
- if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2)
- == NULL)
- return 0;
- if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2)
- == NULL)
- return 0;
- for (i = dest->a.top; i < dest->a.dmax; i++)
- dest->a.d[i] = 0;
- for (i = dest->b.top; i < dest->b.dmax; i++)
- dest->b.d[i] = 0;
- return 1;
- }
- /* Set the curve parameters of an EC_GROUP structure. */
- int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
- const BIGNUM *p, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0, i;
- /* group->field */
- if (!BN_copy(&group->field, p))
- goto err;
- i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
- if ((i != 5) && (i != 3)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
- goto err;
- }
- /* group->a */
- if (!BN_GF2m_mod_arr(&group->a, a, group->poly))
- goto err;
- if (bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
- == NULL)
- goto err;
- for (i = group->a.top; i < group->a.dmax; i++)
- group->a.d[i] = 0;
- /* group->b */
- if (!BN_GF2m_mod_arr(&group->b, b, group->poly))
- goto err;
- if (bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
- == NULL)
- goto err;
- for (i = group->b.top; i < group->b.dmax; i++)
- group->b.d[i] = 0;
- ret = 1;
- err:
- return ret;
- }
- /*
- * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
- * then there values will not be set but the method will return with success.
- */
- int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
- BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
- if (p != NULL) {
- if (!BN_copy(p, &group->field))
- return 0;
- }
- if (a != NULL) {
- if (!BN_copy(a, &group->a))
- goto err;
- }
- if (b != NULL) {
- if (!BN_copy(b, &group->b))
- goto err;
- }
- ret = 1;
- err:
- return ret;
- }
- /*
- * Gets the degree of the field. For a curve over GF(2^m) this is the value
- * m.
- */
- int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
- {
- return BN_num_bits(&group->field) - 1;
- }
- /*
- * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
- * elliptic curve <=> b != 0 (mod p)
- */
- int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
- BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *b;
- BN_CTX *new_ctx = NULL;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
- ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- BN_CTX_start(ctx);
- b = BN_CTX_get(ctx);
- if (b == NULL)
- goto err;
- if (!BN_GF2m_mod_arr(b, &group->b, group->poly))
- goto err;
- /*
- * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
- * curve <=> b != 0 (mod p)
- */
- if (BN_is_zero(b))
- goto err;
- ret = 1;
- err:
- if (ctx != NULL)
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
- /* Initializes an EC_POINT. */
- int ec_GF2m_simple_point_init(EC_POINT *point)
- {
- BN_init(&point->X);
- BN_init(&point->Y);
- BN_init(&point->Z);
- return 1;
- }
- /* Frees an EC_POINT. */
- void ec_GF2m_simple_point_finish(EC_POINT *point)
- {
- BN_free(&point->X);
- BN_free(&point->Y);
- BN_free(&point->Z);
- }
- /* Clears and frees an EC_POINT. */
- void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
- {
- BN_clear_free(&point->X);
- BN_clear_free(&point->Y);
- BN_clear_free(&point->Z);
- point->Z_is_one = 0;
- }
- /*
- * Copy the contents of one EC_POINT into another. Assumes dest is
- * initialized.
- */
- int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
- {
- if (!BN_copy(&dest->X, &src->X))
- return 0;
- if (!BN_copy(&dest->Y, &src->Y))
- return 0;
- if (!BN_copy(&dest->Z, &src->Z))
- return 0;
- dest->Z_is_one = src->Z_is_one;
- return 1;
- }
- /*
- * Set an EC_POINT to the point at infinity. A point at infinity is
- * represented by having Z=0.
- */
- int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
- EC_POINT *point)
- {
- point->Z_is_one = 0;
- BN_zero(&point->Z);
- return 1;
- }
- /*
- * Set the coordinates of an EC_POINT using affine coordinates. Note that
- * the simple implementation only uses affine coordinates.
- */
- int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
- EC_POINT *point,
- const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx)
- {
- int ret = 0;
- if (x == NULL || y == NULL) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
- ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- }
- if (!BN_copy(&point->X, x))
- goto err;
- BN_set_negative(&point->X, 0);
- if (!BN_copy(&point->Y, y))
- goto err;
- BN_set_negative(&point->Y, 0);
- if (!BN_copy(&point->Z, BN_value_one()))
- goto err;
- BN_set_negative(&point->Z, 0);
- point->Z_is_one = 1;
- ret = 1;
- err:
- return ret;
- }
- /*
- * Gets the affine coordinates of an EC_POINT. Note that the simple
- * implementation only uses affine coordinates.
- */
- int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BN_CTX *ctx)
- {
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
- EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (BN_cmp(&point->Z, BN_value_one())) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
- ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return 0;
- }
- if (x != NULL) {
- if (!BN_copy(x, &point->X))
- goto err;
- BN_set_negative(x, 0);
- }
- if (y != NULL) {
- if (!BN_copy(y, &point->Y))
- goto err;
- BN_set_negative(y, 0);
- }
- ret = 1;
- err:
- return ret;
- }
- /*-
- * Calculates and sets the affine coordinates of an EC_POINT from the given
- * compressed coordinates. Uses algorithm 2.3.4 of SEC 1.
- * Note that the simple implementation only uses affine coordinates.
- *
- * The method is from the following publication:
- *
- * Harper, Menezes, Vanstone:
- * "Public-Key Cryptosystems with Very Small Key Lengths",
- * EUROCRYPT '92, Springer-Verlag LNCS 658,
- * published February 1993
- *
- * US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe
- * the same method, but claim no priority date earlier than July 29, 1994
- * (and additionally fail to cite the EUROCRYPT '92 publication as prior art).
- */
- int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group,
- EC_POINT *point,
- const BIGNUM *x_, int y_bit,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp, *x, *y, *z;
- int ret = 0, z0;
- /* clear error queue */
- ERR_clear_error();
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- y_bit = (y_bit != 0) ? 1 : 0;
- BN_CTX_start(ctx);
- tmp = BN_CTX_get(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- z = BN_CTX_get(ctx);
- if (z == NULL)
- goto err;
- if (!BN_GF2m_mod_arr(x, x_, group->poly))
- goto err;
- if (BN_is_zero(x)) {
- if (!BN_GF2m_mod_sqrt_arr(y, &group->b, group->poly, ctx))
- goto err;
- } else {
- if (!group->meth->field_sqr(group, tmp, x, ctx))
- goto err;
- if (!group->meth->field_div(group, tmp, &group->b, tmp, ctx))
- goto err;
- if (!BN_GF2m_add(tmp, &group->a, tmp))
- goto err;
- if (!BN_GF2m_add(tmp, x, tmp))
- goto err;
- if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) {
- unsigned long err = ERR_peek_last_error();
- if (ERR_GET_LIB(err) == ERR_LIB_BN
- && ERR_GET_REASON(err) == BN_R_NO_SOLUTION) {
- ERR_clear_error();
- ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES,
- EC_R_INVALID_COMPRESSED_POINT);
- } else
- ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES,
- ERR_R_BN_LIB);
- goto err;
- }
- z0 = (BN_is_odd(z)) ? 1 : 0;
- if (!group->meth->field_mul(group, y, x, z, ctx))
- goto err;
- if (z0 != y_bit) {
- if (!BN_GF2m_add(y, y, x))
- goto err;
- }
- }
- if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Converts an EC_POINT to an octet string. If buf is NULL, the encoded
- * length will be returned. If the length len of buf is smaller than required
- * an error will be returned.
- */
- size_t ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point,
- point_conversion_form_t form,
- unsigned char *buf, size_t len, BN_CTX *ctx)
- {
- size_t ret;
- BN_CTX *new_ctx = NULL;
- int used_ctx = 0;
- BIGNUM *x, *y, *yxi;
- size_t field_len, i, skip;
- if ((form != POINT_CONVERSION_COMPRESSED)
- && (form != POINT_CONVERSION_UNCOMPRESSED)
- && (form != POINT_CONVERSION_HYBRID)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM);
- goto err;
- }
- if (EC_POINT_is_at_infinity(group, point)) {
- /* encodes to a single 0 octet */
- if (buf != NULL) {
- if (len < 1) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
- return 0;
- }
- buf[0] = 0;
- }
- return 1;
- }
- /* ret := required output buffer length */
- field_len = (EC_GROUP_get_degree(group) + 7) / 8;
- ret =
- (form ==
- POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len;
- /* if 'buf' is NULL, just return required length */
- if (buf != NULL) {
- if (len < ret) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
- goto err;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- used_ctx = 1;
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- yxi = BN_CTX_get(ctx);
- if (yxi == NULL)
- goto err;
- if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx))
- goto err;
- buf[0] = form;
- if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) {
- if (!group->meth->field_div(group, yxi, y, x, ctx))
- goto err;
- if (BN_is_odd(yxi))
- buf[0]++;
- }
- i = 1;
- skip = field_len - BN_num_bytes(x);
- if (skip > field_len) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- while (skip > 0) {
- buf[i++] = 0;
- skip--;
- }
- skip = BN_bn2bin(x, buf + i);
- i += skip;
- if (i != 1 + field_len) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if (form == POINT_CONVERSION_UNCOMPRESSED
- || form == POINT_CONVERSION_HYBRID) {
- skip = field_len - BN_num_bytes(y);
- if (skip > field_len) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- while (skip > 0) {
- buf[i++] = 0;
- skip--;
- }
- skip = BN_bn2bin(y, buf + i);
- i += skip;
- }
- if (i != ret) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- }
- if (used_ctx)
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- err:
- if (used_ctx)
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return 0;
- }
- /*
- * Converts an octet string representation to an EC_POINT. Note that the
- * simple implementation only uses affine coordinates.
- */
- int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
- const unsigned char *buf, size_t len,
- BN_CTX *ctx)
- {
- point_conversion_form_t form;
- int y_bit;
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y, *yxi;
- size_t field_len, enc_len;
- int ret = 0;
- if (len == 0) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL);
- return 0;
- }
- form = buf[0];
- y_bit = form & 1;
- form = form & ~1U;
- if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED)
- && (form != POINT_CONVERSION_UNCOMPRESSED)
- && (form != POINT_CONVERSION_HYBRID)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
- return 0;
- }
- if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
- return 0;
- }
- if (form == 0) {
- if (len != 1) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
- return 0;
- }
- return EC_POINT_set_to_infinity(group, point);
- }
- field_len = (EC_GROUP_get_degree(group) + 7) / 8;
- enc_len =
- (form ==
- POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len;
- if (len != enc_len) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
- return 0;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- yxi = BN_CTX_get(ctx);
- if (yxi == NULL)
- goto err;
- if (!BN_bin2bn(buf + 1, field_len, x))
- goto err;
- if (BN_ucmp(x, &group->field) >= 0) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
- goto err;
- }
- if (form == POINT_CONVERSION_COMPRESSED) {
- if (!EC_POINT_set_compressed_coordinates_GF2m
- (group, point, x, y_bit, ctx))
- goto err;
- } else {
- if (!BN_bin2bn(buf + 1 + field_len, field_len, y))
- goto err;
- if (BN_ucmp(y, &group->field) >= 0) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
- goto err;
- }
- if (form == POINT_CONVERSION_HYBRID) {
- if (!group->meth->field_div(group, yxi, y, x, ctx))
- goto err;
- if (y_bit != BN_is_odd(yxi)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
- goto err;
- }
- }
- if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx))
- goto err;
- }
- /* test required by X9.62 */
- if (EC_POINT_is_on_curve(group, point, ctx) <= 0) {
- ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE);
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Computes a + b and stores the result in r. r could be a or b, a could be
- * b. Uses algorithm A.10.2 of IEEE P1363.
- */
- int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, a)) {
- if (!EC_POINT_copy(r, b))
- return 0;
- return 1;
- }
- if (EC_POINT_is_at_infinity(group, b)) {
- if (!EC_POINT_copy(r, a))
- return 0;
- return 1;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- x0 = BN_CTX_get(ctx);
- y0 = BN_CTX_get(ctx);
- x1 = BN_CTX_get(ctx);
- y1 = BN_CTX_get(ctx);
- x2 = BN_CTX_get(ctx);
- y2 = BN_CTX_get(ctx);
- s = BN_CTX_get(ctx);
- t = BN_CTX_get(ctx);
- if (t == NULL)
- goto err;
- if (a->Z_is_one) {
- if (!BN_copy(x0, &a->X))
- goto err;
- if (!BN_copy(y0, &a->Y))
- goto err;
- } else {
- if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx))
- goto err;
- }
- if (b->Z_is_one) {
- if (!BN_copy(x1, &b->X))
- goto err;
- if (!BN_copy(y1, &b->Y))
- goto err;
- } else {
- if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx))
- goto err;
- }
- if (BN_GF2m_cmp(x0, x1)) {
- if (!BN_GF2m_add(t, x0, x1))
- goto err;
- if (!BN_GF2m_add(s, y0, y1))
- goto err;
- if (!group->meth->field_div(group, s, s, t, ctx))
- goto err;
- if (!group->meth->field_sqr(group, x2, s, ctx))
- goto err;
- if (!BN_GF2m_add(x2, x2, &group->a))
- goto err;
- if (!BN_GF2m_add(x2, x2, s))
- goto err;
- if (!BN_GF2m_add(x2, x2, t))
- goto err;
- } else {
- if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
- if (!EC_POINT_set_to_infinity(group, r))
- goto err;
- ret = 1;
- goto err;
- }
- if (!group->meth->field_div(group, s, y1, x1, ctx))
- goto err;
- if (!BN_GF2m_add(s, s, x1))
- goto err;
- if (!group->meth->field_sqr(group, x2, s, ctx))
- goto err;
- if (!BN_GF2m_add(x2, x2, s))
- goto err;
- if (!BN_GF2m_add(x2, x2, &group->a))
- goto err;
- }
- if (!BN_GF2m_add(y2, x1, x2))
- goto err;
- if (!group->meth->field_mul(group, y2, y2, s, ctx))
- goto err;
- if (!BN_GF2m_add(y2, y2, x2))
- goto err;
- if (!BN_GF2m_add(y2, y2, y1))
- goto err;
- if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Computes 2 * a and stores the result in r. r could be a. Uses algorithm
- * A.10.2 of IEEE P1363.
- */
- int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- BN_CTX *ctx)
- {
- return ec_GF2m_simple_add(group, r, a, a, ctx);
- }
- int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
- if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
- /* point is its own inverse */
- return 1;
- if (!EC_POINT_make_affine(group, point, ctx))
- return 0;
- return BN_GF2m_add(&point->Y, &point->X, &point->Y);
- }
- /* Indicates whether the given point is the point at infinity. */
- int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
- const EC_POINT *point)
- {
- return BN_is_zero(&point->Z);
- }
- /*-
- * Determines whether the given EC_POINT is an actual point on the curve defined
- * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
- * y^2 + x*y = x^3 + a*x^2 + b.
- */
- int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
- BN_CTX *ctx)
- {
- int ret = -1;
- BN_CTX *new_ctx = NULL;
- BIGNUM *lh, *y2;
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- if (EC_POINT_is_at_infinity(group, point))
- return 1;
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- /* only support affine coordinates */
- if (!point->Z_is_one)
- return -1;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
- BN_CTX_start(ctx);
- y2 = BN_CTX_get(ctx);
- lh = BN_CTX_get(ctx);
- if (lh == NULL)
- goto err;
- /*-
- * We have a curve defined by a Weierstrass equation
- * y^2 + x*y = x^3 + a*x^2 + b.
- * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
- * <=> ((x + a) * x + y ) * x + b + y^2 = 0
- */
- if (!BN_GF2m_add(lh, &point->X, &group->a))
- goto err;
- if (!field_mul(group, lh, lh, &point->X, ctx))
- goto err;
- if (!BN_GF2m_add(lh, lh, &point->Y))
- goto err;
- if (!field_mul(group, lh, lh, &point->X, ctx))
- goto err;
- if (!BN_GF2m_add(lh, lh, &group->b))
- goto err;
- if (!field_sqr(group, y2, &point->Y, ctx))
- goto err;
- if (!BN_GF2m_add(lh, lh, y2))
- goto err;
- ret = BN_is_zero(lh);
- err:
- if (ctx)
- BN_CTX_end(ctx);
- if (new_ctx)
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*-
- * Indicates whether two points are equal.
- * Return values:
- * -1 error
- * 0 equal (in affine coordinates)
- * 1 not equal
- */
- int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx)
- {
- BIGNUM *aX, *aY, *bX, *bY;
- BN_CTX *new_ctx = NULL;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, a)) {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
- if (EC_POINT_is_at_infinity(group, b))
- return 1;
- if (a->Z_is_one && b->Z_is_one) {
- return ((BN_cmp(&a->X, &b->X) == 0)
- && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
- BN_CTX_start(ctx);
- aX = BN_CTX_get(ctx);
- aY = BN_CTX_get(ctx);
- bX = BN_CTX_get(ctx);
- bY = BN_CTX_get(ctx);
- if (bY == NULL)
- goto err;
- if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx))
- goto err;
- if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx))
- goto err;
- ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
- err:
- if (ctx)
- BN_CTX_end(ctx);
- if (new_ctx)
- BN_CTX_free(new_ctx);
- return ret;
- }
- /* Forces the given EC_POINT to internally use affine coordinates. */
- int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- int ret = 0;
- if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
- return 1;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL)
- goto err;
- if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx))
- goto err;
- if (!BN_copy(&point->X, x))
- goto err;
- if (!BN_copy(&point->Y, y))
- goto err;
- if (!BN_one(&point->Z))
- goto err;
- ret = 1;
- err:
- if (ctx)
- BN_CTX_end(ctx);
- if (new_ctx)
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Forces each of the EC_POINTs in the given array to use affine coordinates.
- */
- int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
- EC_POINT *points[], BN_CTX *ctx)
- {
- size_t i;
- for (i = 0; i < num; i++) {
- if (!group->meth->make_affine(group, points[i], ctx))
- return 0;
- }
- return 1;
- }
- /* Wrapper to simple binary polynomial field multiplication implementation. */
- int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
- }
- /* Wrapper to simple binary polynomial field squaring implementation. */
- int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, BN_CTX *ctx)
- {
- return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
- }
- /* Wrapper to simple binary polynomial field division implementation. */
- int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
- }
|