123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- /*
- * Copyright 2019-2020 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <openssl/crypto.h>
- #include <openssl/bn.h>
- #include "crypto/sparse_array.h"
- /*
- * How many bits are used to index each level in the tree structure?
- * This setting determines the number of pointers stored in each node of the
- * tree used to represent the sparse array. Having more pointers reduces the
- * depth of the tree but potentially wastes more memory. That is, this is a
- * direct space versus time tradeoff.
- *
- * The large memory model uses twelve bits which means that the are 4096
- * pointers in each tree node. This is more than sufficient to hold the
- * largest defined NID (as of Feb 2019). This means that using a NID to
- * index a sparse array becomes a constant time single array look up.
- *
- * The small memory model uses four bits which means the tree nodes contain
- * sixteen pointers. This reduces the amount of unused space significantly
- * at a cost in time.
- *
- * The library builder is also permitted to define other sizes in the closed
- * interval [2, sizeof(ossl_uintmax_t) * 8].
- */
- #ifndef OPENSSL_SA_BLOCK_BITS
- # ifdef OPENSSL_SMALL_FOOTPRINT
- # define OPENSSL_SA_BLOCK_BITS 4
- # else
- # define OPENSSL_SA_BLOCK_BITS 12
- # endif
- #elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1)
- # error OPENSSL_SA_BLOCK_BITS is out of range
- #endif
- /*
- * From the number of bits, work out:
- * the number of pointers in a tree node;
- * a bit mask to quickly extract an index and
- * the maximum depth of the tree structure.
- */
- #define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS)
- #define SA_BLOCK_MASK (SA_BLOCK_MAX - 1)
- #define SA_BLOCK_MAX_LEVELS (((int)sizeof(ossl_uintmax_t) * 8 \
- + OPENSSL_SA_BLOCK_BITS - 1) \
- / OPENSSL_SA_BLOCK_BITS)
- struct sparse_array_st {
- int levels;
- ossl_uintmax_t top;
- size_t nelem;
- void **nodes;
- };
- OPENSSL_SA *OPENSSL_SA_new(void)
- {
- OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));
- return res;
- }
- static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),
- void (*leaf)(ossl_uintmax_t, void *, void *), void *arg)
- {
- int i[SA_BLOCK_MAX_LEVELS];
- void *nodes[SA_BLOCK_MAX_LEVELS];
- ossl_uintmax_t idx = 0;
- int l = 0;
- i[0] = 0;
- nodes[0] = sa->nodes;
- while (l >= 0) {
- const int n = i[l];
- void ** const p = nodes[l];
- if (n >= SA_BLOCK_MAX) {
- if (p != NULL && node != NULL)
- (*node)(p);
- l--;
- idx >>= OPENSSL_SA_BLOCK_BITS;
- } else {
- i[l] = n + 1;
- if (p != NULL && p[n] != NULL) {
- idx = (idx & ~SA_BLOCK_MASK) | n;
- if (l < sa->levels - 1) {
- i[++l] = 0;
- nodes[l] = p[n];
- idx <<= OPENSSL_SA_BLOCK_BITS;
- } else if (leaf != NULL) {
- (*leaf)(idx, p[n], arg);
- }
- }
- }
- }
- }
- static void sa_free_node(void **p)
- {
- OPENSSL_free(p);
- }
- static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg)
- {
- OPENSSL_free(p);
- }
- void OPENSSL_SA_free(OPENSSL_SA *sa)
- {
- sa_doall(sa, &sa_free_node, NULL, NULL);
- OPENSSL_free(sa);
- }
- void OPENSSL_SA_free_leaves(OPENSSL_SA *sa)
- {
- sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);
- OPENSSL_free(sa);
- }
- /* Wrap this in a structure to avoid compiler warnings */
- struct trampoline_st {
- void (*func)(ossl_uintmax_t, void *);
- };
- static void trampoline(ossl_uintmax_t n, void *l, void *arg)
- {
- ((const struct trampoline_st *)arg)->func(n, l);
- }
- void OPENSSL_SA_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t,
- void *))
- {
- struct trampoline_st tramp;
- tramp.func = leaf;
- if (sa != NULL)
- sa_doall(sa, NULL, &trampoline, &tramp);
- }
- void OPENSSL_SA_doall_arg(const OPENSSL_SA *sa,
- void (*leaf)(ossl_uintmax_t, void *, void *),
- void *arg)
- {
- if (sa != NULL)
- sa_doall(sa, NULL, leaf, arg);
- }
- size_t OPENSSL_SA_num(const OPENSSL_SA *sa)
- {
- return sa == NULL ? 0 : sa->nelem;
- }
- void *OPENSSL_SA_get(const OPENSSL_SA *sa, ossl_uintmax_t n)
- {
- int level;
- void **p, *r = NULL;
- if (sa == NULL || sa->nelem == 0)
- return NULL;
- if (n <= sa->top) {
- p = sa->nodes;
- for (level = sa->levels - 1; p != NULL && level > 0; level--)
- p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))
- & SA_BLOCK_MASK];
- r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];
- }
- return r;
- }
- static ossl_inline void **alloc_node(void)
- {
- return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));
- }
- int OPENSSL_SA_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val)
- {
- int i, level = 1;
- ossl_uintmax_t n = posn;
- void **p;
- if (sa == NULL)
- return 0;
- for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++)
- if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)
- break;
- for (;sa->levels < level; sa->levels++) {
- p = alloc_node();
- if (p == NULL)
- return 0;
- p[0] = sa->nodes;
- sa->nodes = p;
- }
- if (sa->top < posn)
- sa->top = posn;
- p = sa->nodes;
- for (level = sa->levels - 1; level > 0; level--) {
- i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;
- if (p[i] == NULL && (p[i] = alloc_node()) == NULL)
- return 0;
- p = p[i];
- }
- p += posn & SA_BLOCK_MASK;
- if (val == NULL && *p != NULL)
- sa->nelem--;
- else if (val != NULL && *p == NULL)
- sa->nelem++;
- *p = val;
- return 1;
- }
|