ec2_mult.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. /* crypto/ec/ec2_mult.c */
  2. /* ====================================================================
  3. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  4. *
  5. * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
  6. * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
  7. * to the OpenSSL project.
  8. *
  9. * The ECC Code is licensed pursuant to the OpenSSL open source
  10. * license provided below.
  11. *
  12. * The software is originally written by Sheueling Chang Shantz and
  13. * Douglas Stebila of Sun Microsystems Laboratories.
  14. *
  15. */
  16. /* ====================================================================
  17. * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
  18. *
  19. * Redistribution and use in source and binary forms, with or without
  20. * modification, are permitted provided that the following conditions
  21. * are met:
  22. *
  23. * 1. Redistributions of source code must retain the above copyright
  24. * notice, this list of conditions and the following disclaimer.
  25. *
  26. * 2. Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. *
  31. * 3. All advertising materials mentioning features or use of this
  32. * software must display the following acknowledgment:
  33. * "This product includes software developed by the OpenSSL Project
  34. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  35. *
  36. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  37. * endorse or promote products derived from this software without
  38. * prior written permission. For written permission, please contact
  39. * openssl-core@openssl.org.
  40. *
  41. * 5. Products derived from this software may not be called "OpenSSL"
  42. * nor may "OpenSSL" appear in their names without prior written
  43. * permission of the OpenSSL Project.
  44. *
  45. * 6. Redistributions of any form whatsoever must retain the following
  46. * acknowledgment:
  47. * "This product includes software developed by the OpenSSL Project
  48. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  51. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  52. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  53. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  54. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  56. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  57. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  58. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  59. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  60. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  61. * OF THE POSSIBILITY OF SUCH DAMAGE.
  62. * ====================================================================
  63. *
  64. * This product includes cryptographic software written by Eric Young
  65. * (eay@cryptsoft.com). This product includes software written by Tim
  66. * Hudson (tjh@cryptsoft.com).
  67. *
  68. */
  69. #include <openssl/err.h>
  70. #include "ec_lcl.h"
  71. #ifndef OPENSSL_NO_EC2M
  72. /*-
  73. * Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
  74. * coordinates.
  75. * Uses algorithm Mdouble in appendix of
  76. * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
  77. * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
  78. * modified to not require precomputation of c=b^{2^{m-1}}.
  79. */
  80. static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
  81. BN_CTX *ctx)
  82. {
  83. BIGNUM *t1;
  84. int ret = 0;
  85. /* Since Mdouble is static we can guarantee that ctx != NULL. */
  86. BN_CTX_start(ctx);
  87. t1 = BN_CTX_get(ctx);
  88. if (t1 == NULL)
  89. goto err;
  90. if (!group->meth->field_sqr(group, x, x, ctx))
  91. goto err;
  92. if (!group->meth->field_sqr(group, t1, z, ctx))
  93. goto err;
  94. if (!group->meth->field_mul(group, z, x, t1, ctx))
  95. goto err;
  96. if (!group->meth->field_sqr(group, x, x, ctx))
  97. goto err;
  98. if (!group->meth->field_sqr(group, t1, t1, ctx))
  99. goto err;
  100. if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
  101. goto err;
  102. if (!BN_GF2m_add(x, x, t1))
  103. goto err;
  104. ret = 1;
  105. err:
  106. BN_CTX_end(ctx);
  107. return ret;
  108. }
  109. /*-
  110. * Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
  111. * projective coordinates.
  112. * Uses algorithm Madd in appendix of
  113. * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
  114. * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
  115. */
  116. static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1,
  117. BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2,
  118. BN_CTX *ctx)
  119. {
  120. BIGNUM *t1, *t2;
  121. int ret = 0;
  122. /* Since Madd is static we can guarantee that ctx != NULL. */
  123. BN_CTX_start(ctx);
  124. t1 = BN_CTX_get(ctx);
  125. t2 = BN_CTX_get(ctx);
  126. if (t2 == NULL)
  127. goto err;
  128. if (!BN_copy(t1, x))
  129. goto err;
  130. if (!group->meth->field_mul(group, x1, x1, z2, ctx))
  131. goto err;
  132. if (!group->meth->field_mul(group, z1, z1, x2, ctx))
  133. goto err;
  134. if (!group->meth->field_mul(group, t2, x1, z1, ctx))
  135. goto err;
  136. if (!BN_GF2m_add(z1, z1, x1))
  137. goto err;
  138. if (!group->meth->field_sqr(group, z1, z1, ctx))
  139. goto err;
  140. if (!group->meth->field_mul(group, x1, z1, t1, ctx))
  141. goto err;
  142. if (!BN_GF2m_add(x1, x1, t2))
  143. goto err;
  144. ret = 1;
  145. err:
  146. BN_CTX_end(ctx);
  147. return ret;
  148. }
  149. /*-
  150. * Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
  151. * using Montgomery point multiplication algorithm Mxy() in appendix of
  152. * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
  153. * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
  154. * Returns:
  155. * 0 on error
  156. * 1 if return value should be the point at infinity
  157. * 2 otherwise
  158. */
  159. static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y,
  160. BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2,
  161. BN_CTX *ctx)
  162. {
  163. BIGNUM *t3, *t4, *t5;
  164. int ret = 0;
  165. if (BN_is_zero(z1)) {
  166. BN_zero(x2);
  167. BN_zero(z2);
  168. return 1;
  169. }
  170. if (BN_is_zero(z2)) {
  171. if (!BN_copy(x2, x))
  172. return 0;
  173. if (!BN_GF2m_add(z2, x, y))
  174. return 0;
  175. return 2;
  176. }
  177. /* Since Mxy is static we can guarantee that ctx != NULL. */
  178. BN_CTX_start(ctx);
  179. t3 = BN_CTX_get(ctx);
  180. t4 = BN_CTX_get(ctx);
  181. t5 = BN_CTX_get(ctx);
  182. if (t5 == NULL)
  183. goto err;
  184. if (!BN_one(t5))
  185. goto err;
  186. if (!group->meth->field_mul(group, t3, z1, z2, ctx))
  187. goto err;
  188. if (!group->meth->field_mul(group, z1, z1, x, ctx))
  189. goto err;
  190. if (!BN_GF2m_add(z1, z1, x1))
  191. goto err;
  192. if (!group->meth->field_mul(group, z2, z2, x, ctx))
  193. goto err;
  194. if (!group->meth->field_mul(group, x1, z2, x1, ctx))
  195. goto err;
  196. if (!BN_GF2m_add(z2, z2, x2))
  197. goto err;
  198. if (!group->meth->field_mul(group, z2, z2, z1, ctx))
  199. goto err;
  200. if (!group->meth->field_sqr(group, t4, x, ctx))
  201. goto err;
  202. if (!BN_GF2m_add(t4, t4, y))
  203. goto err;
  204. if (!group->meth->field_mul(group, t4, t4, t3, ctx))
  205. goto err;
  206. if (!BN_GF2m_add(t4, t4, z2))
  207. goto err;
  208. if (!group->meth->field_mul(group, t3, t3, x, ctx))
  209. goto err;
  210. if (!group->meth->field_div(group, t3, t5, t3, ctx))
  211. goto err;
  212. if (!group->meth->field_mul(group, t4, t3, t4, ctx))
  213. goto err;
  214. if (!group->meth->field_mul(group, x2, x1, t3, ctx))
  215. goto err;
  216. if (!BN_GF2m_add(z2, x2, x))
  217. goto err;
  218. if (!group->meth->field_mul(group, z2, z2, t4, ctx))
  219. goto err;
  220. if (!BN_GF2m_add(z2, z2, y))
  221. goto err;
  222. ret = 2;
  223. err:
  224. BN_CTX_end(ctx);
  225. return ret;
  226. }
  227. /*-
  228. * Computes scalar*point and stores the result in r.
  229. * point can not equal r.
  230. * Uses a modified algorithm 2P of
  231. * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
  232. * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
  233. *
  234. * To protect against side-channel attack the function uses constant time swap,
  235. * avoiding conditional branches.
  236. */
  237. static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group,
  238. EC_POINT *r,
  239. const BIGNUM *scalar,
  240. const EC_POINT *point,
  241. BN_CTX *ctx)
  242. {
  243. BIGNUM *x1, *x2, *z1, *z2;
  244. int ret = 0, i, group_top;
  245. BN_ULONG mask, word;
  246. if (r == point) {
  247. ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
  248. return 0;
  249. }
  250. /* if result should be point at infinity */
  251. if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
  252. EC_POINT_is_at_infinity(group, point)) {
  253. return EC_POINT_set_to_infinity(group, r);
  254. }
  255. /* only support affine coordinates */
  256. if (!point->Z_is_one)
  257. return 0;
  258. /*
  259. * Since point_multiply is static we can guarantee that ctx != NULL.
  260. */
  261. BN_CTX_start(ctx);
  262. x1 = BN_CTX_get(ctx);
  263. z1 = BN_CTX_get(ctx);
  264. if (z1 == NULL)
  265. goto err;
  266. x2 = &r->X;
  267. z2 = &r->Y;
  268. group_top = group->field.top;
  269. if (bn_wexpand(x1, group_top) == NULL
  270. || bn_wexpand(z1, group_top) == NULL
  271. || bn_wexpand(x2, group_top) == NULL
  272. || bn_wexpand(z2, group_top) == NULL)
  273. goto err;
  274. if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
  275. goto err; /* x1 = x */
  276. if (!BN_one(z1))
  277. goto err; /* z1 = 1 */
  278. if (!group->meth->field_sqr(group, z2, x1, ctx))
  279. goto err; /* z2 = x1^2 = x^2 */
  280. if (!group->meth->field_sqr(group, x2, z2, ctx))
  281. goto err;
  282. if (!BN_GF2m_add(x2, x2, &group->b))
  283. goto err; /* x2 = x^4 + b */
  284. /* find top most bit and go one past it */
  285. i = scalar->top - 1;
  286. mask = BN_TBIT;
  287. word = scalar->d[i];
  288. while (!(word & mask))
  289. mask >>= 1;
  290. mask >>= 1;
  291. /* if top most bit was at word break, go to next word */
  292. if (!mask) {
  293. i--;
  294. mask = BN_TBIT;
  295. }
  296. for (; i >= 0; i--) {
  297. word = scalar->d[i];
  298. while (mask) {
  299. BN_consttime_swap(word & mask, x1, x2, group_top);
  300. BN_consttime_swap(word & mask, z1, z2, group_top);
  301. if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
  302. goto err;
  303. if (!gf2m_Mdouble(group, x1, z1, ctx))
  304. goto err;
  305. BN_consttime_swap(word & mask, x1, x2, group_top);
  306. BN_consttime_swap(word & mask, z1, z2, group_top);
  307. mask >>= 1;
  308. }
  309. mask = BN_TBIT;
  310. }
  311. /* convert out of "projective" coordinates */
  312. i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
  313. if (i == 0)
  314. goto err;
  315. else if (i == 1) {
  316. if (!EC_POINT_set_to_infinity(group, r))
  317. goto err;
  318. } else {
  319. if (!BN_one(&r->Z))
  320. goto err;
  321. r->Z_is_one = 1;
  322. }
  323. /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
  324. BN_set_negative(&r->X, 0);
  325. BN_set_negative(&r->Y, 0);
  326. ret = 1;
  327. err:
  328. BN_CTX_end(ctx);
  329. return ret;
  330. }
  331. /*-
  332. * Computes the sum
  333. * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
  334. * gracefully ignoring NULL scalar values.
  335. */
  336. int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
  337. const BIGNUM *scalar, size_t num,
  338. const EC_POINT *points[], const BIGNUM *scalars[],
  339. BN_CTX *ctx)
  340. {
  341. BN_CTX *new_ctx = NULL;
  342. int ret = 0;
  343. size_t i;
  344. EC_POINT *p = NULL;
  345. EC_POINT *acc = NULL;
  346. if (ctx == NULL) {
  347. ctx = new_ctx = BN_CTX_new();
  348. if (ctx == NULL)
  349. return 0;
  350. }
  351. /*
  352. * This implementation is more efficient than the wNAF implementation for
  353. * 2 or fewer points. Use the ec_wNAF_mul implementation for 3 or more
  354. * points, or if we can perform a fast multiplication based on
  355. * precomputation.
  356. */
  357. if ((scalar && (num > 1)) || (num > 2)
  358. || (num == 0 && EC_GROUP_have_precompute_mult(group))) {
  359. ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
  360. goto err;
  361. }
  362. if ((p = EC_POINT_new(group)) == NULL)
  363. goto err;
  364. if ((acc = EC_POINT_new(group)) == NULL)
  365. goto err;
  366. if (!EC_POINT_set_to_infinity(group, acc))
  367. goto err;
  368. if (scalar) {
  369. if (!ec_GF2m_montgomery_point_multiply
  370. (group, p, scalar, group->generator, ctx))
  371. goto err;
  372. if (BN_is_negative(scalar))
  373. if (!group->meth->invert(group, p, ctx))
  374. goto err;
  375. if (!group->meth->add(group, acc, acc, p, ctx))
  376. goto err;
  377. }
  378. for (i = 0; i < num; i++) {
  379. if (!ec_GF2m_montgomery_point_multiply
  380. (group, p, scalars[i], points[i], ctx))
  381. goto err;
  382. if (BN_is_negative(scalars[i]))
  383. if (!group->meth->invert(group, p, ctx))
  384. goto err;
  385. if (!group->meth->add(group, acc, acc, p, ctx))
  386. goto err;
  387. }
  388. if (!EC_POINT_copy(r, acc))
  389. goto err;
  390. ret = 1;
  391. err:
  392. if (p)
  393. EC_POINT_free(p);
  394. if (acc)
  395. EC_POINT_free(acc);
  396. if (new_ctx != NULL)
  397. BN_CTX_free(new_ctx);
  398. return ret;
  399. }
  400. /*
  401. * Precomputation for point multiplication: fall back to wNAF methods because
  402. * ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate
  403. */
  404. int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
  405. {
  406. return ec_wNAF_precompute_mult(group, ctx);
  407. }
  408. int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
  409. {
  410. return ec_wNAF_have_precompute_mult(group);
  411. }
  412. #endif