123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- /* crypto/bf/bf_locl.h */
- /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.]
- */
- #ifndef HEADER_BF_LOCL_H
- #define HEADER_BF_LOCL_H
- #include <openssl/opensslconf.h> /* BF_PTR, BF_PTR2 */
- #undef c2l
- #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \
- l|=((unsigned long)(*((c)++)))<< 8L, \
- l|=((unsigned long)(*((c)++)))<<16L, \
- l|=((unsigned long)(*((c)++)))<<24L)
- /* NOTE - c is not incremented as per c2l */
- #undef c2ln
- #define c2ln(c,l1,l2,n) { \
- c+=n; \
- l1=l2=0; \
- switch (n) { \
- case 8: l2 =((unsigned long)(*(--(c))))<<24L; \
- case 7: l2|=((unsigned long)(*(--(c))))<<16L; \
- case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \
- case 5: l2|=((unsigned long)(*(--(c)))); \
- case 4: l1 =((unsigned long)(*(--(c))))<<24L; \
- case 3: l1|=((unsigned long)(*(--(c))))<<16L; \
- case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \
- case 1: l1|=((unsigned long)(*(--(c)))); \
- } \
- }
- #undef l2c
- #define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \
- *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
- *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
- *((c)++)=(unsigned char)(((l)>>24L)&0xff))
- /* NOTE - c is not incremented as per l2c */
- #undef l2cn
- #define l2cn(l1,l2,c,n) { \
- c+=n; \
- switch (n) { \
- case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \
- case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \
- case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \
- case 5: *(--(c))=(unsigned char)(((l2) )&0xff); \
- case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \
- case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \
- case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \
- case 1: *(--(c))=(unsigned char)(((l1) )&0xff); \
- } \
- }
- /* NOTE - c is not incremented as per n2l */
- #define n2ln(c,l1,l2,n) { \
- c+=n; \
- l1=l2=0; \
- switch (n) { \
- case 8: l2 =((unsigned long)(*(--(c)))) ; \
- case 7: l2|=((unsigned long)(*(--(c))))<< 8; \
- case 6: l2|=((unsigned long)(*(--(c))))<<16; \
- case 5: l2|=((unsigned long)(*(--(c))))<<24; \
- case 4: l1 =((unsigned long)(*(--(c)))) ; \
- case 3: l1|=((unsigned long)(*(--(c))))<< 8; \
- case 2: l1|=((unsigned long)(*(--(c))))<<16; \
- case 1: l1|=((unsigned long)(*(--(c))))<<24; \
- } \
- }
- /* NOTE - c is not incremented as per l2n */
- #define l2nn(l1,l2,c,n) { \
- c+=n; \
- switch (n) { \
- case 8: *(--(c))=(unsigned char)(((l2) )&0xff); \
- case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \
- case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \
- case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \
- case 4: *(--(c))=(unsigned char)(((l1) )&0xff); \
- case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \
- case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \
- case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \
- } \
- }
- #undef n2l
- #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \
- l|=((unsigned long)(*((c)++)))<<16L, \
- l|=((unsigned long)(*((c)++)))<< 8L, \
- l|=((unsigned long)(*((c)++))))
- #undef l2n
- #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \
- *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
- *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
- *((c)++)=(unsigned char)(((l) )&0xff))
- /* This is actually a big endian algorithm, the most significant byte
- * is used to lookup array 0 */
- #if defined(BF_PTR2)
- /*
- * This is basically a special Intel version. Point is that Intel
- * doesn't have many registers, but offers a reach choice of addressing
- * modes. So we spare some registers by directly traversing BF_KEY
- * structure and hiring the most decorated addressing mode. The code
- * generated by EGCS is *perfectly* competitive with assembler
- * implementation!
- */
- #define BF_ENC(LL,R,KEY,Pi) (\
- LL^=KEY[Pi], \
- t= KEY[BF_ROUNDS+2 + 0 + ((R>>24)&0xFF)], \
- t+= KEY[BF_ROUNDS+2 + 256 + ((R>>16)&0xFF)], \
- t^= KEY[BF_ROUNDS+2 + 512 + ((R>>8 )&0xFF)], \
- t+= KEY[BF_ROUNDS+2 + 768 + ((R )&0xFF)], \
- LL^=t \
- )
- #elif defined(BF_PTR)
- #ifndef BF_LONG_LOG2
- #define BF_LONG_LOG2 2 /* default to BF_LONG being 32 bits */
- #endif
- #define BF_M (0xFF<<BF_LONG_LOG2)
- #define BF_0 (24-BF_LONG_LOG2)
- #define BF_1 (16-BF_LONG_LOG2)
- #define BF_2 ( 8-BF_LONG_LOG2)
- #define BF_3 BF_LONG_LOG2 /* left shift */
- /*
- * This is normally very good on RISC platforms where normally you
- * have to explicitly "multiply" array index by sizeof(BF_LONG)
- * in order to calculate the effective address. This implementation
- * excuses CPU from this extra work. Power[PC] uses should have most
- * fun as (R>>BF_i)&BF_M gets folded into a single instruction, namely
- * rlwinm. So let'em double-check if their compiler does it.
- */
- #define BF_ENC(LL,R,S,P) ( \
- LL^=P, \
- LL^= (((*(BF_LONG *)((unsigned char *)&(S[ 0])+((R>>BF_0)&BF_M))+ \
- *(BF_LONG *)((unsigned char *)&(S[256])+((R>>BF_1)&BF_M)))^ \
- *(BF_LONG *)((unsigned char *)&(S[512])+((R>>BF_2)&BF_M)))+ \
- *(BF_LONG *)((unsigned char *)&(S[768])+((R<<BF_3)&BF_M))) \
- )
- #else
- /*
- * This is a *generic* version. Seem to perform best on platforms that
- * offer explicit support for extraction of 8-bit nibbles preferably
- * complemented with "multiplying" of array index by sizeof(BF_LONG).
- * For the moment of this writing the list comprises Alpha CPU featuring
- * extbl and s[48]addq instructions.
- */
- #define BF_ENC(LL,R,S,P) ( \
- LL^=P, \
- LL^=((( S[ ((int)(R>>24)&0xff)] + \
- S[0x0100+((int)(R>>16)&0xff)])^ \
- S[0x0200+((int)(R>> 8)&0xff)])+ \
- S[0x0300+((int)(R )&0xff)])&0xffffffffL \
- )
- #endif
- #endif
|