sha512.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. /*
  2. * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <openssl/opensslconf.h>
  10. /*-
  11. * IMPLEMENTATION NOTES.
  12. *
  13. * As you might have noticed 32-bit hash algorithms:
  14. *
  15. * - permit SHA_LONG to be wider than 32-bit
  16. * - optimized versions implement two transform functions: one operating
  17. * on [aligned] data in host byte order and one - on data in input
  18. * stream byte order;
  19. * - share common byte-order neutral collector and padding function
  20. * implementations, ../md32_common.h;
  21. *
  22. * Neither of the above applies to this SHA-512 implementations. Reasons
  23. * [in reverse order] are:
  24. *
  25. * - it's the only 64-bit hash algorithm for the moment of this writing,
  26. * there is no need for common collector/padding implementation [yet];
  27. * - by supporting only one transform function [which operates on
  28. * *aligned* data in input stream byte order, big-endian in this case]
  29. * we minimize burden of maintenance in two ways: a) collector/padding
  30. * function is simpler; b) only one transform function to stare at;
  31. * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  32. * apply a number of optimizations to mitigate potential performance
  33. * penalties caused by previous design decision;
  34. *
  35. * Caveat lector.
  36. *
  37. * Implementation relies on the fact that "long long" is 64-bit on
  38. * both 32- and 64-bit platforms. If some compiler vendor comes up
  39. * with 128-bit long long, adjustment to sha.h would be required.
  40. * As this implementation relies on 64-bit integer type, it's totally
  41. * inappropriate for platforms which don't support it, most notably
  42. * 16-bit platforms.
  43. * <appro@fy.chalmers.se>
  44. */
  45. #include <stdlib.h>
  46. #include <string.h>
  47. #include <openssl/crypto.h>
  48. #include <openssl/sha.h>
  49. #include <openssl/opensslv.h>
  50. #include "internal/cryptlib.h"
  51. #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
  52. defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
  53. defined(__s390__) || defined(__s390x__) || \
  54. defined(__aarch64__) || \
  55. defined(SHA512_ASM)
  56. # define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  57. #endif
  58. int SHA384_Init(SHA512_CTX *c)
  59. {
  60. c->h[0] = U64(0xcbbb9d5dc1059ed8);
  61. c->h[1] = U64(0x629a292a367cd507);
  62. c->h[2] = U64(0x9159015a3070dd17);
  63. c->h[3] = U64(0x152fecd8f70e5939);
  64. c->h[4] = U64(0x67332667ffc00b31);
  65. c->h[5] = U64(0x8eb44a8768581511);
  66. c->h[6] = U64(0xdb0c2e0d64f98fa7);
  67. c->h[7] = U64(0x47b5481dbefa4fa4);
  68. c->Nl = 0;
  69. c->Nh = 0;
  70. c->num = 0;
  71. c->md_len = SHA384_DIGEST_LENGTH;
  72. return 1;
  73. }
  74. int SHA512_Init(SHA512_CTX *c)
  75. {
  76. c->h[0] = U64(0x6a09e667f3bcc908);
  77. c->h[1] = U64(0xbb67ae8584caa73b);
  78. c->h[2] = U64(0x3c6ef372fe94f82b);
  79. c->h[3] = U64(0xa54ff53a5f1d36f1);
  80. c->h[4] = U64(0x510e527fade682d1);
  81. c->h[5] = U64(0x9b05688c2b3e6c1f);
  82. c->h[6] = U64(0x1f83d9abfb41bd6b);
  83. c->h[7] = U64(0x5be0cd19137e2179);
  84. c->Nl = 0;
  85. c->Nh = 0;
  86. c->num = 0;
  87. c->md_len = SHA512_DIGEST_LENGTH;
  88. return 1;
  89. }
  90. #ifndef SHA512_ASM
  91. static
  92. #endif
  93. void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
  94. int SHA512_Final(unsigned char *md, SHA512_CTX *c)
  95. {
  96. unsigned char *p = (unsigned char *)c->u.p;
  97. size_t n = c->num;
  98. p[n] = 0x80; /* There always is a room for one */
  99. n++;
  100. if (n > (sizeof(c->u) - 16)) {
  101. memset(p + n, 0, sizeof(c->u) - n);
  102. n = 0;
  103. sha512_block_data_order(c, p, 1);
  104. }
  105. memset(p + n, 0, sizeof(c->u) - 16 - n);
  106. #ifdef B_ENDIAN
  107. c->u.d[SHA_LBLOCK - 2] = c->Nh;
  108. c->u.d[SHA_LBLOCK - 1] = c->Nl;
  109. #else
  110. p[sizeof(c->u) - 1] = (unsigned char)(c->Nl);
  111. p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8);
  112. p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16);
  113. p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24);
  114. p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32);
  115. p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40);
  116. p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48);
  117. p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56);
  118. p[sizeof(c->u) - 9] = (unsigned char)(c->Nh);
  119. p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8);
  120. p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16);
  121. p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24);
  122. p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32);
  123. p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40);
  124. p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48);
  125. p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56);
  126. #endif
  127. sha512_block_data_order(c, p, 1);
  128. if (md == 0)
  129. return 0;
  130. switch (c->md_len) {
  131. /* Let compiler decide if it's appropriate to unroll... */
  132. case SHA384_DIGEST_LENGTH:
  133. for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
  134. SHA_LONG64 t = c->h[n];
  135. *(md++) = (unsigned char)(t >> 56);
  136. *(md++) = (unsigned char)(t >> 48);
  137. *(md++) = (unsigned char)(t >> 40);
  138. *(md++) = (unsigned char)(t >> 32);
  139. *(md++) = (unsigned char)(t >> 24);
  140. *(md++) = (unsigned char)(t >> 16);
  141. *(md++) = (unsigned char)(t >> 8);
  142. *(md++) = (unsigned char)(t);
  143. }
  144. break;
  145. case SHA512_DIGEST_LENGTH:
  146. for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
  147. SHA_LONG64 t = c->h[n];
  148. *(md++) = (unsigned char)(t >> 56);
  149. *(md++) = (unsigned char)(t >> 48);
  150. *(md++) = (unsigned char)(t >> 40);
  151. *(md++) = (unsigned char)(t >> 32);
  152. *(md++) = (unsigned char)(t >> 24);
  153. *(md++) = (unsigned char)(t >> 16);
  154. *(md++) = (unsigned char)(t >> 8);
  155. *(md++) = (unsigned char)(t);
  156. }
  157. break;
  158. /* ... as well as make sure md_len is not abused. */
  159. default:
  160. return 0;
  161. }
  162. return 1;
  163. }
  164. int SHA384_Final(unsigned char *md, SHA512_CTX *c)
  165. {
  166. return SHA512_Final(md, c);
  167. }
  168. int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
  169. {
  170. SHA_LONG64 l;
  171. unsigned char *p = c->u.p;
  172. const unsigned char *data = (const unsigned char *)_data;
  173. if (len == 0)
  174. return 1;
  175. l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff);
  176. if (l < c->Nl)
  177. c->Nh++;
  178. if (sizeof(len) >= 8)
  179. c->Nh += (((SHA_LONG64) len) >> 61);
  180. c->Nl = l;
  181. if (c->num != 0) {
  182. size_t n = sizeof(c->u) - c->num;
  183. if (len < n) {
  184. memcpy(p + c->num, data, len), c->num += (unsigned int)len;
  185. return 1;
  186. } else {
  187. memcpy(p + c->num, data, n), c->num = 0;
  188. len -= n, data += n;
  189. sha512_block_data_order(c, p, 1);
  190. }
  191. }
  192. if (len >= sizeof(c->u)) {
  193. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  194. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  195. while (len >= sizeof(c->u))
  196. memcpy(p, data, sizeof(c->u)),
  197. sha512_block_data_order(c, p, 1),
  198. len -= sizeof(c->u), data += sizeof(c->u);
  199. else
  200. #endif
  201. sha512_block_data_order(c, data, len / sizeof(c->u)),
  202. data += len, len %= sizeof(c->u), data -= len;
  203. }
  204. if (len != 0)
  205. memcpy(p, data, len), c->num = (int)len;
  206. return 1;
  207. }
  208. int SHA384_Update(SHA512_CTX *c, const void *data, size_t len)
  209. {
  210. return SHA512_Update(c, data, len);
  211. }
  212. void SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
  213. {
  214. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  215. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  216. memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p;
  217. #endif
  218. sha512_block_data_order(c, data, 1);
  219. }
  220. unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
  221. {
  222. SHA512_CTX c;
  223. static unsigned char m[SHA384_DIGEST_LENGTH];
  224. if (md == NULL)
  225. md = m;
  226. SHA384_Init(&c);
  227. SHA512_Update(&c, d, n);
  228. SHA512_Final(md, &c);
  229. OPENSSL_cleanse(&c, sizeof(c));
  230. return (md);
  231. }
  232. unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
  233. {
  234. SHA512_CTX c;
  235. static unsigned char m[SHA512_DIGEST_LENGTH];
  236. if (md == NULL)
  237. md = m;
  238. SHA512_Init(&c);
  239. SHA512_Update(&c, d, n);
  240. SHA512_Final(md, &c);
  241. OPENSSL_cleanse(&c, sizeof(c));
  242. return (md);
  243. }
  244. #ifndef SHA512_ASM
  245. static const SHA_LONG64 K512[80] = {
  246. U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
  247. U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
  248. U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
  249. U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
  250. U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
  251. U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
  252. U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
  253. U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
  254. U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
  255. U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
  256. U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
  257. U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
  258. U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
  259. U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
  260. U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
  261. U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
  262. U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
  263. U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
  264. U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
  265. U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
  266. U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
  267. U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
  268. U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
  269. U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
  270. U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
  271. U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
  272. U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
  273. U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
  274. U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
  275. U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
  276. U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
  277. U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
  278. U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
  279. U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
  280. U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
  281. U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
  282. U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
  283. U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
  284. U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
  285. U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
  286. };
  287. # ifndef PEDANTIC
  288. # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  289. # if defined(__x86_64) || defined(__x86_64__)
  290. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  291. asm ("rorq %1,%0" \
  292. : "=r"(ret) \
  293. : "J"(n),"0"(a) \
  294. : "cc"); ret; })
  295. # if !defined(B_ENDIAN)
  296. # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
  297. asm ("bswapq %0" \
  298. : "=r"(ret) \
  299. : "0"(ret)); ret; })
  300. # endif
  301. # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
  302. # if defined(I386_ONLY)
  303. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  304. unsigned int hi=p[0],lo=p[1]; \
  305. asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  306. "roll $16,%%eax; roll $16,%%edx; "\
  307. "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
  308. : "=a"(lo),"=d"(hi) \
  309. : "0"(lo),"1"(hi) : "cc"); \
  310. ((SHA_LONG64)hi)<<32|lo; })
  311. # else
  312. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  313. unsigned int hi=p[0],lo=p[1]; \
  314. asm ("bswapl %0; bswapl %1;" \
  315. : "=r"(lo),"=r"(hi) \
  316. : "0"(lo),"1"(hi)); \
  317. ((SHA_LONG64)hi)<<32|lo; })
  318. # endif
  319. # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  320. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  321. asm ("rotrdi %0,%1,%2" \
  322. : "=r"(ret) \
  323. : "r"(a),"K"(n)); ret; })
  324. # elif defined(__aarch64__)
  325. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  326. asm ("ror %0,%1,%2" \
  327. : "=r"(ret) \
  328. : "r"(a),"I"(n)); ret; })
  329. # if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
  330. __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
  331. # define PULL64(x) ({ SHA_LONG64 ret; \
  332. asm ("rev %0,%1" \
  333. : "=r"(ret) \
  334. : "r"(*((const SHA_LONG64 *)(&(x))))); ret; })
  335. # endif
  336. # endif
  337. # elif defined(_MSC_VER)
  338. # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  339. # pragma intrinsic(_rotr64)
  340. # define ROTR(a,n) _rotr64((a),n)
  341. # endif
  342. # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  343. # if defined(I386_ONLY)
  344. static SHA_LONG64 __fastcall __pull64be(const void *x)
  345. {
  346. _asm mov edx,[ecx + 0]
  347. _asm mov eax,[ecx + 4]
  348. _asm xchg dh, dl
  349. _asm xchg ah, al
  350. _asm rol edx, 16 _asm rol eax, 16 _asm xchg dh, dl _asm xchg ah, al}
  351. # else
  352. static SHA_LONG64 __fastcall __pull64be(const void *x)
  353. {
  354. _asm mov edx,[ecx + 0]
  355. _asm mov eax,[ecx + 4]
  356. _asm bswap edx _asm bswap eax}
  357. # endif
  358. # define PULL64(x) __pull64be(&(x))
  359. # if _MSC_VER<=1200
  360. # pragma inline_depth(0)
  361. # endif
  362. # endif
  363. # endif
  364. # endif
  365. # ifndef PULL64
  366. # define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
  367. # define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
  368. # endif
  369. # ifndef ROTR
  370. # define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
  371. # endif
  372. # define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
  373. # define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
  374. # define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
  375. # define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
  376. # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  377. # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  378. # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  379. /*
  380. * This code should give better results on 32-bit CPU with less than
  381. * ~24 registers, both size and performance wise...
  382. */ static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  383. size_t num)
  384. {
  385. const SHA_LONG64 *W = in;
  386. SHA_LONG64 A, E, T;
  387. SHA_LONG64 X[9 + 80], *F;
  388. int i;
  389. while (num--) {
  390. F = X + 80;
  391. A = ctx->h[0];
  392. F[1] = ctx->h[1];
  393. F[2] = ctx->h[2];
  394. F[3] = ctx->h[3];
  395. E = ctx->h[4];
  396. F[5] = ctx->h[5];
  397. F[6] = ctx->h[6];
  398. F[7] = ctx->h[7];
  399. for (i = 0; i < 16; i++, F--) {
  400. # ifdef B_ENDIAN
  401. T = W[i];
  402. # else
  403. T = PULL64(W[i]);
  404. # endif
  405. F[0] = A;
  406. F[4] = E;
  407. F[8] = T;
  408. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  409. E = F[3] + T;
  410. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  411. }
  412. for (; i < 80; i++, F--) {
  413. T = sigma0(F[8 + 16 - 1]);
  414. T += sigma1(F[8 + 16 - 14]);
  415. T += F[8 + 16] + F[8 + 16 - 9];
  416. F[0] = A;
  417. F[4] = E;
  418. F[8] = T;
  419. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  420. E = F[3] + T;
  421. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  422. }
  423. ctx->h[0] += A;
  424. ctx->h[1] += F[1];
  425. ctx->h[2] += F[2];
  426. ctx->h[3] += F[3];
  427. ctx->h[4] += E;
  428. ctx->h[5] += F[5];
  429. ctx->h[6] += F[6];
  430. ctx->h[7] += F[7];
  431. W += SHA_LBLOCK;
  432. }
  433. }
  434. # elif defined(OPENSSL_SMALL_FOOTPRINT)
  435. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  436. size_t num)
  437. {
  438. const SHA_LONG64 *W = in;
  439. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2;
  440. SHA_LONG64 X[16];
  441. int i;
  442. while (num--) {
  443. a = ctx->h[0];
  444. b = ctx->h[1];
  445. c = ctx->h[2];
  446. d = ctx->h[3];
  447. e = ctx->h[4];
  448. f = ctx->h[5];
  449. g = ctx->h[6];
  450. h = ctx->h[7];
  451. for (i = 0; i < 16; i++) {
  452. # ifdef B_ENDIAN
  453. T1 = X[i] = W[i];
  454. # else
  455. T1 = X[i] = PULL64(W[i]);
  456. # endif
  457. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  458. T2 = Sigma0(a) + Maj(a, b, c);
  459. h = g;
  460. g = f;
  461. f = e;
  462. e = d + T1;
  463. d = c;
  464. c = b;
  465. b = a;
  466. a = T1 + T2;
  467. }
  468. for (; i < 80; i++) {
  469. s0 = X[(i + 1) & 0x0f];
  470. s0 = sigma0(s0);
  471. s1 = X[(i + 14) & 0x0f];
  472. s1 = sigma1(s1);
  473. T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
  474. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  475. T2 = Sigma0(a) + Maj(a, b, c);
  476. h = g;
  477. g = f;
  478. f = e;
  479. e = d + T1;
  480. d = c;
  481. c = b;
  482. b = a;
  483. a = T1 + T2;
  484. }
  485. ctx->h[0] += a;
  486. ctx->h[1] += b;
  487. ctx->h[2] += c;
  488. ctx->h[3] += d;
  489. ctx->h[4] += e;
  490. ctx->h[5] += f;
  491. ctx->h[6] += g;
  492. ctx->h[7] += h;
  493. W += SHA_LBLOCK;
  494. }
  495. }
  496. # else
  497. # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  498. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
  499. h = Sigma0(a) + Maj(a,b,c); \
  500. d += T1; h += T1; } while (0)
  501. # define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
  502. s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
  503. s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
  504. T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
  505. ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
  506. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  507. size_t num)
  508. {
  509. const SHA_LONG64 *W = in;
  510. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1;
  511. SHA_LONG64 X[16];
  512. int i;
  513. while (num--) {
  514. a = ctx->h[0];
  515. b = ctx->h[1];
  516. c = ctx->h[2];
  517. d = ctx->h[3];
  518. e = ctx->h[4];
  519. f = ctx->h[5];
  520. g = ctx->h[6];
  521. h = ctx->h[7];
  522. # ifdef B_ENDIAN
  523. T1 = X[0] = W[0];
  524. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  525. T1 = X[1] = W[1];
  526. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  527. T1 = X[2] = W[2];
  528. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  529. T1 = X[3] = W[3];
  530. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  531. T1 = X[4] = W[4];
  532. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  533. T1 = X[5] = W[5];
  534. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  535. T1 = X[6] = W[6];
  536. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  537. T1 = X[7] = W[7];
  538. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  539. T1 = X[8] = W[8];
  540. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  541. T1 = X[9] = W[9];
  542. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  543. T1 = X[10] = W[10];
  544. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  545. T1 = X[11] = W[11];
  546. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  547. T1 = X[12] = W[12];
  548. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  549. T1 = X[13] = W[13];
  550. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  551. T1 = X[14] = W[14];
  552. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  553. T1 = X[15] = W[15];
  554. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  555. # else
  556. T1 = X[0] = PULL64(W[0]);
  557. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  558. T1 = X[1] = PULL64(W[1]);
  559. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  560. T1 = X[2] = PULL64(W[2]);
  561. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  562. T1 = X[3] = PULL64(W[3]);
  563. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  564. T1 = X[4] = PULL64(W[4]);
  565. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  566. T1 = X[5] = PULL64(W[5]);
  567. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  568. T1 = X[6] = PULL64(W[6]);
  569. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  570. T1 = X[7] = PULL64(W[7]);
  571. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  572. T1 = X[8] = PULL64(W[8]);
  573. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  574. T1 = X[9] = PULL64(W[9]);
  575. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  576. T1 = X[10] = PULL64(W[10]);
  577. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  578. T1 = X[11] = PULL64(W[11]);
  579. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  580. T1 = X[12] = PULL64(W[12]);
  581. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  582. T1 = X[13] = PULL64(W[13]);
  583. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  584. T1 = X[14] = PULL64(W[14]);
  585. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  586. T1 = X[15] = PULL64(W[15]);
  587. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  588. # endif
  589. for (i = 16; i < 80; i += 16) {
  590. ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
  591. ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
  592. ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
  593. ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
  594. ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
  595. ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
  596. ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
  597. ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
  598. ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
  599. ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
  600. ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
  601. ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
  602. ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
  603. ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
  604. ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
  605. ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
  606. }
  607. ctx->h[0] += a;
  608. ctx->h[1] += b;
  609. ctx->h[2] += c;
  610. ctx->h[3] += d;
  611. ctx->h[4] += e;
  612. ctx->h[5] += f;
  613. ctx->h[6] += g;
  614. ctx->h[7] += h;
  615. W += SHA_LBLOCK;
  616. }
  617. }
  618. # endif
  619. #endif /* SHA512_ASM */