list.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651
  1. /*
  2. * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /* We need to use some deprecated APIs */
  10. #define OPENSSL_SUPPRESS_DEPRECATED
  11. #include <string.h>
  12. #include <openssl/evp.h>
  13. #include <openssl/err.h>
  14. #include <openssl/provider.h>
  15. #include <openssl/safestack.h>
  16. #include <openssl/kdf.h>
  17. #include <openssl/encoder.h>
  18. #include <openssl/decoder.h>
  19. #include <openssl/core_names.h>
  20. #include <openssl/rand.h>
  21. #include "apps.h"
  22. #include "app_params.h"
  23. #include "progs.h"
  24. #include "opt.h"
  25. #include "names.h"
  26. static int verbose = 0;
  27. static const char *select_name = NULL;
  28. static void legacy_cipher_fn(const EVP_CIPHER *c,
  29. const char *from, const char *to, void *arg)
  30. {
  31. if (select_name != NULL
  32. && (c == NULL
  33. || strcasecmp(select_name, EVP_CIPHER_name(c)) != 0))
  34. return;
  35. if (c != NULL) {
  36. BIO_printf(arg, " %s\n", EVP_CIPHER_name(c));
  37. } else {
  38. if (from == NULL)
  39. from = "<undefined>";
  40. if (to == NULL)
  41. to = "<undefined>";
  42. BIO_printf(arg, " %s => %s\n", from, to);
  43. }
  44. }
  45. DEFINE_STACK_OF(EVP_CIPHER)
  46. static int cipher_cmp(const EVP_CIPHER * const *a,
  47. const EVP_CIPHER * const *b)
  48. {
  49. int ret = EVP_CIPHER_number(*a) - EVP_CIPHER_number(*b);
  50. if (ret == 0)
  51. ret = strcmp(OSSL_PROVIDER_name(EVP_CIPHER_provider(*a)),
  52. OSSL_PROVIDER_name(EVP_CIPHER_provider(*b)));
  53. return ret;
  54. }
  55. static void collect_ciphers(EVP_CIPHER *cipher, void *stack)
  56. {
  57. STACK_OF(EVP_CIPHER) *cipher_stack = stack;
  58. if (sk_EVP_CIPHER_push(cipher_stack, cipher) > 0)
  59. EVP_CIPHER_up_ref(cipher);
  60. }
  61. static void list_ciphers(void)
  62. {
  63. STACK_OF(EVP_CIPHER) *ciphers = sk_EVP_CIPHER_new(cipher_cmp);
  64. int i;
  65. if (ciphers == NULL) {
  66. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  67. return;
  68. }
  69. BIO_printf(bio_out, "Legacy:\n");
  70. EVP_CIPHER_do_all_sorted(legacy_cipher_fn, bio_out);
  71. BIO_printf(bio_out, "Provided:\n");
  72. EVP_CIPHER_do_all_provided(NULL, collect_ciphers, ciphers);
  73. sk_EVP_CIPHER_sort(ciphers);
  74. for (i = 0; i < sk_EVP_CIPHER_num(ciphers); i++) {
  75. const EVP_CIPHER *c = sk_EVP_CIPHER_value(ciphers, i);
  76. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  77. if (select_name != NULL && !EVP_CIPHER_is_a(c, select_name))
  78. continue;
  79. names = sk_OPENSSL_CSTRING_new(name_cmp);
  80. if (names != NULL && EVP_CIPHER_names_do_all(c, collect_names, names)) {
  81. BIO_printf(bio_out, " ");
  82. print_names(bio_out, names);
  83. BIO_printf(bio_out, " @ %s\n",
  84. OSSL_PROVIDER_name(EVP_CIPHER_provider(c)));
  85. if (verbose) {
  86. const char *desc = EVP_CIPHER_description(c);
  87. if (desc != NULL)
  88. BIO_printf(bio_out, " description: %s\n", desc);
  89. print_param_types("retrievable algorithm parameters",
  90. EVP_CIPHER_gettable_params(c), 4);
  91. print_param_types("retrievable operation parameters",
  92. EVP_CIPHER_gettable_ctx_params(c), 4);
  93. print_param_types("settable operation parameters",
  94. EVP_CIPHER_settable_ctx_params(c), 4);
  95. }
  96. }
  97. sk_OPENSSL_CSTRING_free(names);
  98. }
  99. sk_EVP_CIPHER_pop_free(ciphers, EVP_CIPHER_free);
  100. }
  101. static void list_md_fn(const EVP_MD *m,
  102. const char *from, const char *to, void *arg)
  103. {
  104. if (m != NULL) {
  105. BIO_printf(arg, " %s\n", EVP_MD_name(m));
  106. } else {
  107. if (from == NULL)
  108. from = "<undefined>";
  109. if (to == NULL)
  110. to = "<undefined>";
  111. BIO_printf((BIO *)arg, " %s => %s\n", from, to);
  112. }
  113. }
  114. DEFINE_STACK_OF(EVP_MD)
  115. static int md_cmp(const EVP_MD * const *a, const EVP_MD * const *b)
  116. {
  117. int ret = EVP_MD_number(*a) - EVP_MD_number(*b);
  118. if (ret == 0)
  119. ret = strcmp(OSSL_PROVIDER_name(EVP_MD_provider(*a)),
  120. OSSL_PROVIDER_name(EVP_MD_provider(*b)));
  121. return ret;
  122. }
  123. static void collect_digests(EVP_MD *md, void *stack)
  124. {
  125. STACK_OF(EVP_MD) *digest_stack = stack;
  126. if (sk_EVP_MD_push(digest_stack, md) > 0)
  127. EVP_MD_up_ref(md);
  128. }
  129. static void list_digests(void)
  130. {
  131. STACK_OF(EVP_MD) *digests = sk_EVP_MD_new(md_cmp);
  132. int i;
  133. if (digests == NULL) {
  134. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  135. return;
  136. }
  137. BIO_printf(bio_out, "Legacy:\n");
  138. EVP_MD_do_all_sorted(list_md_fn, bio_out);
  139. BIO_printf(bio_out, "Provided:\n");
  140. EVP_MD_do_all_provided(NULL, collect_digests, digests);
  141. sk_EVP_MD_sort(digests);
  142. for (i = 0; i < sk_EVP_MD_num(digests); i++) {
  143. const EVP_MD *m = sk_EVP_MD_value(digests, i);
  144. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  145. if (select_name != NULL && !EVP_MD_is_a(m, select_name))
  146. continue;
  147. names = sk_OPENSSL_CSTRING_new(name_cmp);
  148. if (names != NULL && EVP_MD_names_do_all(m, collect_names, names)) {
  149. BIO_printf(bio_out, " ");
  150. print_names(bio_out, names);
  151. BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_MD_provider(m)));
  152. if (verbose) {
  153. const char *desc = EVP_MD_description(m);
  154. if (desc != NULL)
  155. BIO_printf(bio_out, " description: %s\n", desc);
  156. print_param_types("retrievable algorithm parameters",
  157. EVP_MD_gettable_params(m), 4);
  158. print_param_types("retrievable operation parameters",
  159. EVP_MD_gettable_ctx_params(m), 4);
  160. print_param_types("settable operation parameters",
  161. EVP_MD_settable_ctx_params(m), 4);
  162. }
  163. }
  164. sk_OPENSSL_CSTRING_free(names);
  165. }
  166. sk_EVP_MD_pop_free(digests, EVP_MD_free);
  167. }
  168. DEFINE_STACK_OF(EVP_MAC)
  169. static int mac_cmp(const EVP_MAC * const *a, const EVP_MAC * const *b)
  170. {
  171. int ret = EVP_MAC_number(*a) - EVP_MAC_number(*b);
  172. if (ret == 0)
  173. ret = strcmp(OSSL_PROVIDER_name(EVP_MAC_provider(*a)),
  174. OSSL_PROVIDER_name(EVP_MAC_provider(*b)));
  175. return ret;
  176. }
  177. static void collect_macs(EVP_MAC *mac, void *stack)
  178. {
  179. STACK_OF(EVP_MAC) *mac_stack = stack;
  180. if (sk_EVP_MAC_push(mac_stack, mac) > 0)
  181. EVP_MAC_up_ref(mac);
  182. }
  183. static void list_macs(void)
  184. {
  185. STACK_OF(EVP_MAC) *macs = sk_EVP_MAC_new(mac_cmp);
  186. int i;
  187. if (macs == NULL) {
  188. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  189. return;
  190. }
  191. BIO_printf(bio_out, "Provided MACs:\n");
  192. EVP_MAC_do_all_provided(NULL, collect_macs, macs);
  193. sk_EVP_MAC_sort(macs);
  194. for (i = 0; i < sk_EVP_MAC_num(macs); i++) {
  195. const EVP_MAC *m = sk_EVP_MAC_value(macs, i);
  196. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  197. if (select_name != NULL && !EVP_MAC_is_a(m, select_name))
  198. continue;
  199. names = sk_OPENSSL_CSTRING_new(name_cmp);
  200. if (names != NULL && EVP_MAC_names_do_all(m, collect_names, names)) {
  201. BIO_printf(bio_out, " ");
  202. print_names(bio_out, names);
  203. BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_MAC_provider(m)));
  204. if (verbose) {
  205. const char *desc = EVP_MAC_description(m);
  206. if (desc != NULL)
  207. BIO_printf(bio_out, " description: %s\n", desc);
  208. print_param_types("retrievable algorithm parameters",
  209. EVP_MAC_gettable_params(m), 4);
  210. print_param_types("retrievable operation parameters",
  211. EVP_MAC_gettable_ctx_params(m), 4);
  212. print_param_types("settable operation parameters",
  213. EVP_MAC_settable_ctx_params(m), 4);
  214. }
  215. }
  216. sk_OPENSSL_CSTRING_free(names);
  217. }
  218. sk_EVP_MAC_pop_free(macs, EVP_MAC_free);
  219. }
  220. /*
  221. * KDFs and PRFs
  222. */
  223. DEFINE_STACK_OF(EVP_KDF)
  224. static int kdf_cmp(const EVP_KDF * const *a, const EVP_KDF * const *b)
  225. {
  226. int ret = EVP_KDF_number(*a) - EVP_KDF_number(*b);
  227. if (ret == 0)
  228. ret = strcmp(OSSL_PROVIDER_name(EVP_KDF_provider(*a)),
  229. OSSL_PROVIDER_name(EVP_KDF_provider(*b)));
  230. return ret;
  231. }
  232. static void collect_kdfs(EVP_KDF *kdf, void *stack)
  233. {
  234. STACK_OF(EVP_KDF) *kdf_stack = stack;
  235. sk_EVP_KDF_push(kdf_stack, kdf);
  236. EVP_KDF_up_ref(kdf);
  237. }
  238. static void list_kdfs(void)
  239. {
  240. STACK_OF(EVP_KDF) *kdfs = sk_EVP_KDF_new(kdf_cmp);
  241. int i;
  242. if (kdfs == NULL) {
  243. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  244. return;
  245. }
  246. BIO_printf(bio_out, "Provided KDFs and PDFs:\n");
  247. EVP_KDF_do_all_provided(NULL, collect_kdfs, kdfs);
  248. sk_EVP_KDF_sort(kdfs);
  249. for (i = 0; i < sk_EVP_KDF_num(kdfs); i++) {
  250. const EVP_KDF *k = sk_EVP_KDF_value(kdfs, i);
  251. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  252. if (select_name != NULL && !EVP_KDF_is_a(k, select_name))
  253. continue;
  254. names = sk_OPENSSL_CSTRING_new(name_cmp);
  255. if (names != NULL && EVP_KDF_names_do_all(k, collect_names, names)) {
  256. BIO_printf(bio_out, " ");
  257. print_names(bio_out, names);
  258. BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_KDF_provider(k)));
  259. if (verbose) {
  260. const char *desc = EVP_KDF_description(k);
  261. if (desc != NULL)
  262. BIO_printf(bio_out, " description: %s\n", desc);
  263. print_param_types("retrievable algorithm parameters",
  264. EVP_KDF_gettable_params(k), 4);
  265. print_param_types("retrievable operation parameters",
  266. EVP_KDF_gettable_ctx_params(k), 4);
  267. print_param_types("settable operation parameters",
  268. EVP_KDF_settable_ctx_params(k), 4);
  269. }
  270. }
  271. sk_OPENSSL_CSTRING_free(names);
  272. }
  273. sk_EVP_KDF_pop_free(kdfs, EVP_KDF_free);
  274. }
  275. /*
  276. * RANDs
  277. */
  278. DEFINE_STACK_OF(EVP_RAND)
  279. static int rand_cmp(const EVP_RAND * const *a, const EVP_RAND * const *b)
  280. {
  281. int ret = strcasecmp(EVP_RAND_name(*a), EVP_RAND_name(*b));
  282. if (ret == 0)
  283. ret = strcmp(OSSL_PROVIDER_name(EVP_RAND_provider(*a)),
  284. OSSL_PROVIDER_name(EVP_RAND_provider(*b)));
  285. return ret;
  286. }
  287. static void collect_rands(EVP_RAND *rand, void *stack)
  288. {
  289. STACK_OF(EVP_RAND) *rand_stack = stack;
  290. sk_EVP_RAND_push(rand_stack, rand);
  291. EVP_RAND_up_ref(rand);
  292. }
  293. static void list_random_generators(void)
  294. {
  295. STACK_OF(EVP_RAND) *rands = sk_EVP_RAND_new(rand_cmp);
  296. int i;
  297. if (rands == NULL) {
  298. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  299. return;
  300. }
  301. BIO_printf(bio_out, "Provided RNGs and seed sources:\n");
  302. EVP_RAND_do_all_provided(NULL, collect_rands, rands);
  303. sk_EVP_RAND_sort(rands);
  304. for (i = 0; i < sk_EVP_RAND_num(rands); i++) {
  305. const EVP_RAND *m = sk_EVP_RAND_value(rands, i);
  306. if (select_name != NULL
  307. && strcasecmp(EVP_RAND_name(m), select_name) != 0)
  308. continue;
  309. BIO_printf(bio_out, " %s", EVP_RAND_name(m));
  310. BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_RAND_provider(m)));
  311. if (verbose) {
  312. const char *desc = EVP_RAND_description(m);
  313. if (desc != NULL)
  314. BIO_printf(bio_out, " description: %s\n", desc);
  315. print_param_types("retrievable algorithm parameters",
  316. EVP_RAND_gettable_params(m), 4);
  317. print_param_types("retrievable operation parameters",
  318. EVP_RAND_gettable_ctx_params(m), 4);
  319. print_param_types("settable operation parameters",
  320. EVP_RAND_settable_ctx_params(m), 4);
  321. }
  322. }
  323. sk_EVP_RAND_pop_free(rands, EVP_RAND_free);
  324. }
  325. static void display_random(const char *name, EVP_RAND_CTX *drbg)
  326. {
  327. EVP_RAND *rand;
  328. uint64_t u;
  329. const char *p;
  330. const OSSL_PARAM *gettables;
  331. OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
  332. unsigned char buf[1000];
  333. BIO_printf(bio_out, "%s:\n", name);
  334. if (drbg != NULL) {
  335. rand = EVP_RAND_CTX_rand(drbg);
  336. BIO_printf(bio_out, " %s", EVP_RAND_name(rand));
  337. BIO_printf(bio_out, " @ %s\n",
  338. OSSL_PROVIDER_name(EVP_RAND_provider(rand)));
  339. switch (EVP_RAND_state(drbg)) {
  340. case EVP_RAND_STATE_UNINITIALISED:
  341. p = "uninitialised";
  342. break;
  343. case EVP_RAND_STATE_READY:
  344. p = "ready";
  345. break;
  346. case EVP_RAND_STATE_ERROR:
  347. p = "error";
  348. break;
  349. default:
  350. p = "unknown";
  351. break;
  352. }
  353. BIO_printf(bio_out, " state = %s\n", p);
  354. gettables = EVP_RAND_gettable_ctx_params(rand);
  355. if (gettables != NULL)
  356. for (; gettables->key != NULL; gettables++) {
  357. /* State has been dealt with already, so ignore */
  358. if (strcasecmp(gettables->key, OSSL_RAND_PARAM_STATE) == 0)
  359. continue;
  360. /* Outside of verbose mode, we skip non-string values */
  361. if (gettables->data_type != OSSL_PARAM_UTF8_STRING
  362. && gettables->data_type != OSSL_PARAM_UTF8_PTR
  363. && !verbose)
  364. continue;
  365. params->key = gettables->key;
  366. params->data_type = gettables->data_type;
  367. if (gettables->data_type == OSSL_PARAM_UNSIGNED_INTEGER
  368. || gettables->data_type == OSSL_PARAM_INTEGER) {
  369. params->data = &u;
  370. params->data_size = sizeof(u);
  371. } else {
  372. params->data = buf;
  373. params->data_size = sizeof(buf);
  374. }
  375. params->return_size = 0;
  376. if (EVP_RAND_CTX_get_params(drbg, params))
  377. print_param_value(params, 2);
  378. }
  379. }
  380. }
  381. static void list_random_instances(void)
  382. {
  383. display_random("primary", RAND_get0_primary(NULL));
  384. display_random("public", RAND_get0_public(NULL));
  385. display_random("private", RAND_get0_private(NULL));
  386. }
  387. /*
  388. * Encoders
  389. */
  390. DEFINE_STACK_OF(OSSL_ENCODER)
  391. static int encoder_cmp(const OSSL_ENCODER * const *a,
  392. const OSSL_ENCODER * const *b)
  393. {
  394. int ret = OSSL_ENCODER_number(*a) - OSSL_ENCODER_number(*b);
  395. if (ret == 0)
  396. ret = strcmp(OSSL_PROVIDER_name(OSSL_ENCODER_provider(*a)),
  397. OSSL_PROVIDER_name(OSSL_ENCODER_provider(*b)));
  398. return ret;
  399. }
  400. static void collect_encoders(OSSL_ENCODER *encoder, void *stack)
  401. {
  402. STACK_OF(OSSL_ENCODER) *encoder_stack = stack;
  403. sk_OSSL_ENCODER_push(encoder_stack, encoder);
  404. OSSL_ENCODER_up_ref(encoder);
  405. }
  406. static void list_encoders(void)
  407. {
  408. STACK_OF(OSSL_ENCODER) *encoders;
  409. int i;
  410. encoders = sk_OSSL_ENCODER_new(encoder_cmp);
  411. if (encoders == NULL) {
  412. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  413. return;
  414. }
  415. BIO_printf(bio_out, "Provided ENCODERs:\n");
  416. OSSL_ENCODER_do_all_provided(NULL, collect_encoders, encoders);
  417. sk_OSSL_ENCODER_sort(encoders);
  418. for (i = 0; i < sk_OSSL_ENCODER_num(encoders); i++) {
  419. OSSL_ENCODER *k = sk_OSSL_ENCODER_value(encoders, i);
  420. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  421. if (select_name != NULL && !OSSL_ENCODER_is_a(k, select_name))
  422. continue;
  423. names = sk_OPENSSL_CSTRING_new(name_cmp);
  424. if (names != NULL && OSSL_ENCODER_names_do_all(k, collect_names, names)) {
  425. BIO_printf(bio_out, " ");
  426. print_names(bio_out, names);
  427. BIO_printf(bio_out, " @ %s (%s)\n",
  428. OSSL_PROVIDER_name(OSSL_ENCODER_provider(k)),
  429. OSSL_ENCODER_properties(k));
  430. if (verbose) {
  431. const char *desc = OSSL_ENCODER_description(k);
  432. if (desc != NULL)
  433. BIO_printf(bio_out, " description: %s\n", desc);
  434. print_param_types("settable operation parameters",
  435. OSSL_ENCODER_settable_ctx_params(k), 4);
  436. }
  437. }
  438. sk_OPENSSL_CSTRING_free(names);
  439. }
  440. sk_OSSL_ENCODER_pop_free(encoders, OSSL_ENCODER_free);
  441. }
  442. /*
  443. * Decoders
  444. */
  445. DEFINE_STACK_OF(OSSL_DECODER)
  446. static int decoder_cmp(const OSSL_DECODER * const *a,
  447. const OSSL_DECODER * const *b)
  448. {
  449. int ret = OSSL_DECODER_number(*a) - OSSL_DECODER_number(*b);
  450. if (ret == 0)
  451. ret = strcmp(OSSL_PROVIDER_name(OSSL_DECODER_provider(*a)),
  452. OSSL_PROVIDER_name(OSSL_DECODER_provider(*b)));
  453. return ret;
  454. }
  455. static void collect_decoders(OSSL_DECODER *decoder, void *stack)
  456. {
  457. STACK_OF(OSSL_DECODER) *decoder_stack = stack;
  458. sk_OSSL_DECODER_push(decoder_stack, decoder);
  459. OSSL_DECODER_up_ref(decoder);
  460. }
  461. static void list_decoders(void)
  462. {
  463. STACK_OF(OSSL_DECODER) *decoders;
  464. int i;
  465. decoders = sk_OSSL_DECODER_new(decoder_cmp);
  466. if (decoders == NULL) {
  467. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  468. return;
  469. }
  470. BIO_printf(bio_out, "Provided DECODERs:\n");
  471. OSSL_DECODER_do_all_provided(NULL, collect_decoders,
  472. decoders);
  473. sk_OSSL_DECODER_sort(decoders);
  474. for (i = 0; i < sk_OSSL_DECODER_num(decoders); i++) {
  475. OSSL_DECODER *k = sk_OSSL_DECODER_value(decoders, i);
  476. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  477. if (select_name != NULL && !OSSL_DECODER_is_a(k, select_name))
  478. continue;
  479. names = sk_OPENSSL_CSTRING_new(name_cmp);
  480. if (names != NULL && OSSL_DECODER_names_do_all(k, collect_names, names)) {
  481. BIO_printf(bio_out, " ");
  482. print_names(bio_out, names);
  483. BIO_printf(bio_out, " @ %s (%s)\n",
  484. OSSL_PROVIDER_name(OSSL_DECODER_provider(k)),
  485. OSSL_DECODER_properties(k));
  486. if (verbose) {
  487. const char *desc = OSSL_DECODER_description(k);
  488. if (desc != NULL)
  489. BIO_printf(bio_out, " description: %s\n", desc);
  490. print_param_types("settable operation parameters",
  491. OSSL_DECODER_settable_ctx_params(k), 4);
  492. }
  493. }
  494. sk_OPENSSL_CSTRING_free(names);
  495. }
  496. sk_OSSL_DECODER_pop_free(decoders, OSSL_DECODER_free);
  497. }
  498. DEFINE_STACK_OF(EVP_KEYMGMT)
  499. static int keymanager_cmp(const EVP_KEYMGMT * const *a,
  500. const EVP_KEYMGMT * const *b)
  501. {
  502. int ret = EVP_KEYMGMT_number(*a) - EVP_KEYMGMT_number(*b);
  503. if (ret == 0)
  504. ret = strcmp(OSSL_PROVIDER_name(EVP_KEYMGMT_provider(*a)),
  505. OSSL_PROVIDER_name(EVP_KEYMGMT_provider(*b)));
  506. return ret;
  507. }
  508. static void collect_keymanagers(EVP_KEYMGMT *km, void *stack)
  509. {
  510. STACK_OF(EVP_KEYMGMT) *km_stack = stack;
  511. sk_EVP_KEYMGMT_push(km_stack, km);
  512. EVP_KEYMGMT_up_ref(km);
  513. }
  514. static void list_keymanagers(void)
  515. {
  516. int i;
  517. STACK_OF(EVP_KEYMGMT) *km_stack = sk_EVP_KEYMGMT_new(keymanager_cmp);
  518. EVP_KEYMGMT_do_all_provided(NULL, collect_keymanagers, km_stack);
  519. sk_EVP_KEYMGMT_sort(km_stack);
  520. for (i = 0; i < sk_EVP_KEYMGMT_num(km_stack); i++) {
  521. EVP_KEYMGMT *k = sk_EVP_KEYMGMT_value(km_stack, i);
  522. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  523. if (select_name != NULL && !EVP_KEYMGMT_is_a(k, select_name))
  524. continue;
  525. names = sk_OPENSSL_CSTRING_new(name_cmp);
  526. if (names != NULL && EVP_KEYMGMT_names_do_all(k, collect_names, names)) {
  527. const char *desc = EVP_KEYMGMT_description(k);
  528. BIO_printf(bio_out, " Name: ");
  529. if (desc != NULL)
  530. BIO_printf(bio_out, "%s", desc);
  531. else
  532. BIO_printf(bio_out, "%s", sk_OPENSSL_CSTRING_value(names, 0));
  533. BIO_printf(bio_out, "\n");
  534. BIO_printf(bio_out, " Type: Provider Algorithm\n");
  535. BIO_printf(bio_out, " IDs: ");
  536. print_names(bio_out, names);
  537. BIO_printf(bio_out, " @ %s\n",
  538. OSSL_PROVIDER_name(EVP_KEYMGMT_provider(k)));
  539. if (verbose) {
  540. print_param_types("settable key generation parameters",
  541. EVP_KEYMGMT_gen_settable_params(k), 4);
  542. print_param_types("settable operation parameters",
  543. EVP_KEYMGMT_settable_params(k), 4);
  544. print_param_types("retrievable operation parameters",
  545. EVP_KEYMGMT_gettable_params(k), 4);
  546. }
  547. }
  548. sk_OPENSSL_CSTRING_free(names);
  549. }
  550. sk_EVP_KEYMGMT_pop_free(km_stack, EVP_KEYMGMT_free);
  551. }
  552. DEFINE_STACK_OF(EVP_SIGNATURE)
  553. static int signature_cmp(const EVP_SIGNATURE * const *a,
  554. const EVP_SIGNATURE * const *b)
  555. {
  556. int ret = EVP_SIGNATURE_number(*a) - EVP_SIGNATURE_number(*b);
  557. if (ret == 0)
  558. ret = strcmp(OSSL_PROVIDER_name(EVP_SIGNATURE_provider(*a)),
  559. OSSL_PROVIDER_name(EVP_SIGNATURE_provider(*b)));
  560. return ret;
  561. }
  562. static void collect_signatures(EVP_SIGNATURE *km, void *stack)
  563. {
  564. STACK_OF(EVP_SIGNATURE) *km_stack = stack;
  565. sk_EVP_SIGNATURE_push(km_stack, km);
  566. EVP_SIGNATURE_up_ref(km);
  567. }
  568. static void list_signatures(void)
  569. {
  570. int i, count = 0;
  571. STACK_OF(EVP_SIGNATURE) *sig_stack = sk_EVP_SIGNATURE_new(signature_cmp);
  572. EVP_SIGNATURE_do_all_provided(NULL, collect_signatures, sig_stack);
  573. sk_EVP_SIGNATURE_sort(sig_stack);
  574. for (i = 0; i < sk_EVP_SIGNATURE_num(sig_stack); i++) {
  575. EVP_SIGNATURE *k = sk_EVP_SIGNATURE_value(sig_stack, i);
  576. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  577. if (select_name != NULL && !EVP_SIGNATURE_is_a(k, select_name))
  578. continue;
  579. names = sk_OPENSSL_CSTRING_new(name_cmp);
  580. if (names != NULL && EVP_SIGNATURE_names_do_all(k, collect_names, names)) {
  581. count++;
  582. BIO_printf(bio_out, " ");
  583. print_names(bio_out, names);
  584. BIO_printf(bio_out, " @ %s\n",
  585. OSSL_PROVIDER_name(EVP_SIGNATURE_provider(k)));
  586. if (verbose) {
  587. const char *desc = EVP_SIGNATURE_description(k);
  588. if (desc != NULL)
  589. BIO_printf(bio_out, " description: %s\n", desc);
  590. print_param_types("settable operation parameters",
  591. EVP_SIGNATURE_settable_ctx_params(k), 4);
  592. print_param_types("retrievable operation parameters",
  593. EVP_SIGNATURE_gettable_ctx_params(k), 4);
  594. }
  595. }
  596. sk_OPENSSL_CSTRING_free(names);
  597. }
  598. sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free);
  599. if (count == 0)
  600. BIO_printf(bio_out, " -\n");
  601. }
  602. DEFINE_STACK_OF(EVP_KEM)
  603. static int kem_cmp(const EVP_KEM * const *a,
  604. const EVP_KEM * const *b)
  605. {
  606. int ret = EVP_KEM_number(*a) - EVP_KEM_number(*b);
  607. if (ret == 0)
  608. ret = strcmp(OSSL_PROVIDER_name(EVP_KEM_provider(*a)),
  609. OSSL_PROVIDER_name(EVP_KEM_provider(*b)));
  610. return ret;
  611. }
  612. static void collect_kem(EVP_KEM *km, void *stack)
  613. {
  614. STACK_OF(EVP_KEM) *km_stack = stack;
  615. sk_EVP_KEM_push(km_stack, km);
  616. EVP_KEM_up_ref(km);
  617. }
  618. static void list_kems(void)
  619. {
  620. int i, count = 0;
  621. STACK_OF(EVP_KEM) *kem_stack = sk_EVP_KEM_new(kem_cmp);
  622. EVP_KEM_do_all_provided(NULL, collect_kem, kem_stack);
  623. sk_EVP_KEM_sort(kem_stack);
  624. for (i = 0; i < sk_EVP_KEM_num(kem_stack); i++) {
  625. EVP_KEM *k = sk_EVP_KEM_value(kem_stack, i);
  626. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  627. if (select_name != NULL && !EVP_KEM_is_a(k, select_name))
  628. continue;
  629. names = sk_OPENSSL_CSTRING_new(name_cmp);
  630. if (names != NULL && EVP_KEM_names_do_all(k, collect_names, names)) {
  631. count++;
  632. BIO_printf(bio_out, " ");
  633. print_names(bio_out, names);
  634. BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_KEM_provider(k)));
  635. if (verbose) {
  636. const char *desc = EVP_KEM_description(k);
  637. if (desc != NULL)
  638. BIO_printf(bio_out, " description: %s\n", desc);
  639. print_param_types("settable operation parameters",
  640. EVP_KEM_settable_ctx_params(k), 4);
  641. print_param_types("retrievable operation parameters",
  642. EVP_KEM_gettable_ctx_params(k), 4);
  643. }
  644. }
  645. sk_OPENSSL_CSTRING_free(names);
  646. }
  647. sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free);
  648. if (count == 0)
  649. BIO_printf(bio_out, " -\n");
  650. }
  651. DEFINE_STACK_OF(EVP_ASYM_CIPHER)
  652. static int asymcipher_cmp(const EVP_ASYM_CIPHER * const *a,
  653. const EVP_ASYM_CIPHER * const *b)
  654. {
  655. int ret = EVP_ASYM_CIPHER_number(*a) - EVP_ASYM_CIPHER_number(*b);
  656. if (ret == 0)
  657. ret = strcmp(OSSL_PROVIDER_name(EVP_ASYM_CIPHER_provider(*a)),
  658. OSSL_PROVIDER_name(EVP_ASYM_CIPHER_provider(*b)));
  659. return ret;
  660. }
  661. static void collect_asymciph(EVP_ASYM_CIPHER *km, void *stack)
  662. {
  663. STACK_OF(EVP_ASYM_CIPHER) *km_stack = stack;
  664. sk_EVP_ASYM_CIPHER_push(km_stack, km);
  665. EVP_ASYM_CIPHER_up_ref(km);
  666. }
  667. static void list_asymciphers(void)
  668. {
  669. int i, count = 0;
  670. STACK_OF(EVP_ASYM_CIPHER) *asymciph_stack =
  671. sk_EVP_ASYM_CIPHER_new(asymcipher_cmp);
  672. EVP_ASYM_CIPHER_do_all_provided(NULL, collect_asymciph, asymciph_stack);
  673. sk_EVP_ASYM_CIPHER_sort(asymciph_stack);
  674. for (i = 0; i < sk_EVP_ASYM_CIPHER_num(asymciph_stack); i++) {
  675. EVP_ASYM_CIPHER *k = sk_EVP_ASYM_CIPHER_value(asymciph_stack, i);
  676. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  677. if (select_name != NULL && !EVP_ASYM_CIPHER_is_a(k, select_name))
  678. continue;
  679. names = sk_OPENSSL_CSTRING_new(name_cmp);
  680. if (names != NULL
  681. && EVP_ASYM_CIPHER_names_do_all(k, collect_names, names)) {
  682. count++;
  683. BIO_printf(bio_out, " ");
  684. print_names(bio_out, names);
  685. BIO_printf(bio_out, " @ %s\n",
  686. OSSL_PROVIDER_name(EVP_ASYM_CIPHER_provider(k)));
  687. if (verbose) {
  688. const char *desc = EVP_ASYM_CIPHER_description(k);
  689. if (desc != NULL)
  690. BIO_printf(bio_out, " description: %s\n", desc);
  691. print_param_types("settable operation parameters",
  692. EVP_ASYM_CIPHER_settable_ctx_params(k), 4);
  693. print_param_types("retrievable operation parameters",
  694. EVP_ASYM_CIPHER_gettable_ctx_params(k), 4);
  695. }
  696. }
  697. sk_OPENSSL_CSTRING_free(names);
  698. }
  699. sk_EVP_ASYM_CIPHER_pop_free(asymciph_stack, EVP_ASYM_CIPHER_free);
  700. if (count == 0)
  701. BIO_printf(bio_out, " -\n");
  702. }
  703. DEFINE_STACK_OF(EVP_KEYEXCH)
  704. static int kex_cmp(const EVP_KEYEXCH * const *a,
  705. const EVP_KEYEXCH * const *b)
  706. {
  707. int ret = EVP_KEYEXCH_number(*a) - EVP_KEYEXCH_number(*b);
  708. if (ret == 0)
  709. ret = strcmp(OSSL_PROVIDER_name(EVP_KEYEXCH_provider(*a)),
  710. OSSL_PROVIDER_name(EVP_KEYEXCH_provider(*b)));
  711. return ret;
  712. }
  713. static void collect_kex(EVP_KEYEXCH *ke, void *stack)
  714. {
  715. STACK_OF(EVP_KEYEXCH) *kex_stack = stack;
  716. sk_EVP_KEYEXCH_push(kex_stack, ke);
  717. EVP_KEYEXCH_up_ref(ke);
  718. }
  719. static void list_keyexchanges(void)
  720. {
  721. int i, count = 0;
  722. STACK_OF(EVP_KEYEXCH) *kex_stack = sk_EVP_KEYEXCH_new(kex_cmp);
  723. EVP_KEYEXCH_do_all_provided(NULL, collect_kex, kex_stack);
  724. sk_EVP_KEYEXCH_sort(kex_stack);
  725. for (i = 0; i < sk_EVP_KEYEXCH_num(kex_stack); i++) {
  726. EVP_KEYEXCH *k = sk_EVP_KEYEXCH_value(kex_stack, i);
  727. STACK_OF(OPENSSL_CSTRING) *names = NULL;
  728. if (select_name != NULL && !EVP_KEYEXCH_is_a(k, select_name))
  729. continue;
  730. names = sk_OPENSSL_CSTRING_new(name_cmp);
  731. if (names != NULL && EVP_KEYEXCH_names_do_all(k, collect_names, names)) {
  732. count++;
  733. BIO_printf(bio_out, " ");
  734. print_names(bio_out, names);
  735. BIO_printf(bio_out, " @ %s\n",
  736. OSSL_PROVIDER_name(EVP_KEYEXCH_provider(k)));
  737. if (verbose) {
  738. const char *desc = EVP_KEYEXCH_description(k);
  739. if (desc != NULL)
  740. BIO_printf(bio_out, " description: %s\n", desc);
  741. print_param_types("settable operation parameters",
  742. EVP_KEYEXCH_settable_ctx_params(k), 4);
  743. print_param_types("retrievable operation parameters",
  744. EVP_KEYEXCH_gettable_ctx_params(k), 4);
  745. }
  746. }
  747. sk_OPENSSL_CSTRING_free(names);
  748. }
  749. sk_EVP_KEYEXCH_pop_free(kex_stack, EVP_KEYEXCH_free);
  750. if (count == 0)
  751. BIO_printf(bio_out, " -\n");
  752. }
  753. static void list_missing_help(void)
  754. {
  755. const FUNCTION *fp;
  756. const OPTIONS *o;
  757. for (fp = functions; fp->name != NULL; fp++) {
  758. if ((o = fp->help) != NULL) {
  759. /* If there is help, list what flags are not documented. */
  760. for ( ; o->name != NULL; o++) {
  761. if (o->helpstr == NULL)
  762. BIO_printf(bio_out, "%s %s\n", fp->name, o->name);
  763. }
  764. } else if (fp->func != dgst_main) {
  765. /* If not aliased to the dgst command, */
  766. BIO_printf(bio_out, "%s *\n", fp->name);
  767. }
  768. }
  769. }
  770. static void list_objects(void)
  771. {
  772. int max_nid = OBJ_new_nid(0);
  773. int i;
  774. char *oid_buf = NULL;
  775. int oid_size = 0;
  776. /* Skip 0, since that's NID_undef */
  777. for (i = 1; i < max_nid; i++) {
  778. const ASN1_OBJECT *obj = OBJ_nid2obj(i);
  779. const char *sn = OBJ_nid2sn(i);
  780. const char *ln = OBJ_nid2ln(i);
  781. int n = 0;
  782. /*
  783. * If one of the retrieved objects somehow generated an error,
  784. * we ignore it. The check for NID_undef below will detect the
  785. * error and simply skip to the next NID.
  786. */
  787. ERR_clear_error();
  788. if (OBJ_obj2nid(obj) == NID_undef)
  789. continue;
  790. if ((n = OBJ_obj2txt(NULL, 0, obj, 1)) == 0) {
  791. BIO_printf(bio_out, "# None-OID object: %s, %s\n", sn, ln);
  792. continue;
  793. }
  794. if (n < 0)
  795. break; /* Error */
  796. if (n > oid_size) {
  797. oid_buf = OPENSSL_realloc(oid_buf, n + 1);
  798. if (oid_buf == NULL) {
  799. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  800. break; /* Error */
  801. }
  802. oid_size = n + 1;
  803. }
  804. if (OBJ_obj2txt(oid_buf, oid_size, obj, 1) < 0)
  805. break; /* Error */
  806. if (ln == NULL || strcmp(sn, ln) == 0)
  807. BIO_printf(bio_out, "%s = %s\n", sn, oid_buf);
  808. else
  809. BIO_printf(bio_out, "%s = %s, %s\n", sn, ln, oid_buf);
  810. }
  811. OPENSSL_free(oid_buf);
  812. }
  813. static void list_options_for_command(const char *command)
  814. {
  815. const FUNCTION *fp;
  816. const OPTIONS *o;
  817. for (fp = functions; fp->name != NULL; fp++)
  818. if (strcmp(fp->name, command) == 0)
  819. break;
  820. if (fp->name == NULL) {
  821. BIO_printf(bio_err, "Invalid command '%s'; type \"help\" for a list.\n",
  822. command);
  823. return;
  824. }
  825. if ((o = fp->help) == NULL)
  826. return;
  827. for ( ; o->name != NULL; o++) {
  828. char c = o->valtype;
  829. if (o->name == OPT_PARAM_STR)
  830. break;
  831. if (o->name == OPT_HELP_STR
  832. || o->name == OPT_MORE_STR
  833. || o->name == OPT_SECTION_STR
  834. || o->name[0] == '\0')
  835. continue;
  836. BIO_printf(bio_out, "%s %c\n", o->name, c == '\0' ? '-' : c);
  837. }
  838. /* Always output the -- marker since it is sometimes documented. */
  839. BIO_printf(bio_out, "- -\n");
  840. }
  841. static int is_md_available(const char *name)
  842. {
  843. EVP_MD *md;
  844. /* Look through providers' digests */
  845. ERR_set_mark();
  846. md = EVP_MD_fetch(NULL, name, NULL);
  847. ERR_pop_to_mark();
  848. if (md != NULL) {
  849. EVP_MD_free(md);
  850. return 1;
  851. }
  852. return (get_digest_from_engine(name) == NULL) ? 0 : 1;
  853. }
  854. static int is_cipher_available(const char *name)
  855. {
  856. EVP_CIPHER *cipher;
  857. /* Look through providers' ciphers */
  858. ERR_set_mark();
  859. cipher = EVP_CIPHER_fetch(NULL, name, NULL);
  860. ERR_pop_to_mark();
  861. if (cipher != NULL) {
  862. EVP_CIPHER_free(cipher);
  863. return 1;
  864. }
  865. return (get_cipher_from_engine(name) == NULL) ? 0 : 1;
  866. }
  867. static void list_type(FUNC_TYPE ft, int one)
  868. {
  869. FUNCTION *fp;
  870. int i = 0;
  871. DISPLAY_COLUMNS dc;
  872. memset(&dc, 0, sizeof(dc));
  873. if (!one)
  874. calculate_columns(functions, &dc);
  875. for (fp = functions; fp->name != NULL; fp++) {
  876. if (fp->type != ft)
  877. continue;
  878. switch (ft) {
  879. case FT_cipher:
  880. if (!is_cipher_available(fp->name))
  881. continue;
  882. break;
  883. case FT_md:
  884. if (!is_md_available(fp->name))
  885. continue;
  886. break;
  887. default:
  888. break;
  889. }
  890. if (one) {
  891. BIO_printf(bio_out, "%s\n", fp->name);
  892. } else {
  893. if (i % dc.columns == 0 && i > 0)
  894. BIO_printf(bio_out, "\n");
  895. BIO_printf(bio_out, "%-*s", dc.width, fp->name);
  896. i++;
  897. }
  898. }
  899. if (!one)
  900. BIO_printf(bio_out, "\n\n");
  901. }
  902. static void list_pkey(void)
  903. {
  904. #ifndef OPENSSL_NO_DEPRECATED_3_0
  905. int i;
  906. if (select_name == NULL) {
  907. BIO_printf(bio_out, "Legacy:\n");
  908. for (i = 0; i < EVP_PKEY_asn1_get_count(); i++) {
  909. const EVP_PKEY_ASN1_METHOD *ameth;
  910. int pkey_id, pkey_base_id, pkey_flags;
  911. const char *pinfo, *pem_str;
  912. ameth = EVP_PKEY_asn1_get0(i);
  913. EVP_PKEY_asn1_get0_info(&pkey_id, &pkey_base_id, &pkey_flags,
  914. &pinfo, &pem_str, ameth);
  915. if (pkey_flags & ASN1_PKEY_ALIAS) {
  916. BIO_printf(bio_out, " Name: %s\n", OBJ_nid2ln(pkey_id));
  917. BIO_printf(bio_out, "\tAlias for: %s\n",
  918. OBJ_nid2ln(pkey_base_id));
  919. } else {
  920. BIO_printf(bio_out, " Name: %s\n", pinfo);
  921. BIO_printf(bio_out, "\tType: %s Algorithm\n",
  922. pkey_flags & ASN1_PKEY_DYNAMIC ?
  923. "External" : "Builtin");
  924. BIO_printf(bio_out, "\tOID: %s\n", OBJ_nid2ln(pkey_id));
  925. if (pem_str == NULL)
  926. pem_str = "(none)";
  927. BIO_printf(bio_out, "\tPEM string: %s\n", pem_str);
  928. }
  929. }
  930. }
  931. #endif
  932. BIO_printf(bio_out, "Provided:\n");
  933. BIO_printf(bio_out, " Key Managers:\n");
  934. list_keymanagers();
  935. }
  936. static void list_pkey_meth(void)
  937. {
  938. #ifndef OPENSSL_NO_DEPRECATED_3_0
  939. size_t i;
  940. size_t meth_count = EVP_PKEY_meth_get_count();
  941. if (select_name == NULL) {
  942. BIO_printf(bio_out, "Legacy:\n");
  943. for (i = 0; i < meth_count; i++) {
  944. const EVP_PKEY_METHOD *pmeth = EVP_PKEY_meth_get0(i);
  945. int pkey_id, pkey_flags;
  946. EVP_PKEY_meth_get0_info(&pkey_id, &pkey_flags, pmeth);
  947. BIO_printf(bio_out, " %s\n", OBJ_nid2ln(pkey_id));
  948. BIO_printf(bio_out, "\tType: %s Algorithm\n",
  949. pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin");
  950. }
  951. }
  952. #endif
  953. BIO_printf(bio_out, "Provided:\n");
  954. BIO_printf(bio_out, " Encryption:\n");
  955. list_asymciphers();
  956. BIO_printf(bio_out, " Key Exchange:\n");
  957. list_keyexchanges();
  958. BIO_printf(bio_out, " Signatures:\n");
  959. list_signatures();
  960. BIO_printf(bio_out, " Key encapsulation:\n");
  961. list_kems();
  962. }
  963. DEFINE_STACK_OF(OSSL_PROVIDER)
  964. static int provider_cmp(const OSSL_PROVIDER * const *a,
  965. const OSSL_PROVIDER * const *b)
  966. {
  967. return strcmp(OSSL_PROVIDER_name(*a), OSSL_PROVIDER_name(*b));
  968. }
  969. static int collect_providers(OSSL_PROVIDER *provider, void *stack)
  970. {
  971. STACK_OF(OSSL_PROVIDER) *provider_stack = stack;
  972. sk_OSSL_PROVIDER_push(provider_stack, provider);
  973. return 1;
  974. }
  975. static void list_provider_info(void)
  976. {
  977. STACK_OF(OSSL_PROVIDER) *providers = sk_OSSL_PROVIDER_new(provider_cmp);
  978. OSSL_PARAM params[5];
  979. char *name, *version, *buildinfo;
  980. int status;
  981. int i;
  982. if (providers == NULL) {
  983. BIO_printf(bio_err, "ERROR: Memory allocation\n");
  984. return;
  985. }
  986. BIO_printf(bio_out, "Providers:\n");
  987. OSSL_PROVIDER_do_all(NULL, &collect_providers, providers);
  988. sk_OSSL_PROVIDER_sort(providers);
  989. for (i = 0; i < sk_OSSL_PROVIDER_num(providers); i++) {
  990. const OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(providers, i);
  991. /* Query the "known" information parameters, the order matches below */
  992. params[0] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_NAME,
  993. &name, 0);
  994. params[1] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_VERSION,
  995. &version, 0);
  996. params[2] = OSSL_PARAM_construct_int(OSSL_PROV_PARAM_STATUS, &status);
  997. params[3] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_BUILDINFO,
  998. &buildinfo, 0);
  999. params[4] = OSSL_PARAM_construct_end();
  1000. OSSL_PARAM_set_all_unmodified(params);
  1001. if (!OSSL_PROVIDER_get_params(prov, params)) {
  1002. BIO_printf(bio_err, "ERROR: Unable to query provider parameters\n");
  1003. return;
  1004. }
  1005. /* Print out the provider information, the params order matches above */
  1006. BIO_printf(bio_out, " %s\n", OSSL_PROVIDER_name(prov));
  1007. if (OSSL_PARAM_modified(params))
  1008. BIO_printf(bio_out, " name: %s\n", name);
  1009. if (OSSL_PARAM_modified(params + 1))
  1010. BIO_printf(bio_out, " version: %s\n", version);
  1011. if (OSSL_PARAM_modified(params + 2))
  1012. BIO_printf(bio_out, " status: %sactive\n", status ? "" : "in");
  1013. if (verbose) {
  1014. if (OSSL_PARAM_modified(params + 3))
  1015. BIO_printf(bio_out, " build info: %s\n", buildinfo);
  1016. print_param_types("gettable provider parameters",
  1017. OSSL_PROVIDER_gettable_params(prov), 4);
  1018. }
  1019. }
  1020. sk_OSSL_PROVIDER_free(providers);
  1021. }
  1022. #ifndef OPENSSL_NO_DEPRECATED_3_0
  1023. static void list_engines(void)
  1024. {
  1025. # ifndef OPENSSL_NO_ENGINE
  1026. ENGINE *e;
  1027. BIO_puts(bio_out, "Engines:\n");
  1028. e = ENGINE_get_first();
  1029. while (e) {
  1030. BIO_printf(bio_out, "%s\n", ENGINE_get_id(e));
  1031. e = ENGINE_get_next(e);
  1032. }
  1033. # else
  1034. BIO_puts(bio_out, "Engine support is disabled.\n");
  1035. # endif
  1036. }
  1037. #endif
  1038. static void list_disabled(void)
  1039. {
  1040. BIO_puts(bio_out, "Disabled algorithms:\n");
  1041. #ifdef OPENSSL_NO_ARIA
  1042. BIO_puts(bio_out, "ARIA\n");
  1043. #endif
  1044. #ifdef OPENSSL_NO_BF
  1045. BIO_puts(bio_out, "BF\n");
  1046. #endif
  1047. #ifdef OPENSSL_NO_BLAKE2
  1048. BIO_puts(bio_out, "BLAKE2\n");
  1049. #endif
  1050. #ifdef OPENSSL_NO_CAMELLIA
  1051. BIO_puts(bio_out, "CAMELLIA\n");
  1052. #endif
  1053. #ifdef OPENSSL_NO_CAST
  1054. BIO_puts(bio_out, "CAST\n");
  1055. #endif
  1056. #ifdef OPENSSL_NO_CMAC
  1057. BIO_puts(bio_out, "CMAC\n");
  1058. #endif
  1059. #ifdef OPENSSL_NO_CMS
  1060. BIO_puts(bio_out, "CMS\n");
  1061. #endif
  1062. #ifdef OPENSSL_NO_COMP
  1063. BIO_puts(bio_out, "COMP\n");
  1064. #endif
  1065. #ifdef OPENSSL_NO_DES
  1066. BIO_puts(bio_out, "DES\n");
  1067. #endif
  1068. #ifdef OPENSSL_NO_DGRAM
  1069. BIO_puts(bio_out, "DGRAM\n");
  1070. #endif
  1071. #ifdef OPENSSL_NO_DH
  1072. BIO_puts(bio_out, "DH\n");
  1073. #endif
  1074. #ifdef OPENSSL_NO_DSA
  1075. BIO_puts(bio_out, "DSA\n");
  1076. #endif
  1077. #if defined(OPENSSL_NO_DTLS)
  1078. BIO_puts(bio_out, "DTLS\n");
  1079. #endif
  1080. #if defined(OPENSSL_NO_DTLS1)
  1081. BIO_puts(bio_out, "DTLS1\n");
  1082. #endif
  1083. #if defined(OPENSSL_NO_DTLS1_2)
  1084. BIO_puts(bio_out, "DTLS1_2\n");
  1085. #endif
  1086. #ifdef OPENSSL_NO_EC
  1087. BIO_puts(bio_out, "EC\n");
  1088. #endif
  1089. #ifdef OPENSSL_NO_EC2M
  1090. BIO_puts(bio_out, "EC2M\n");
  1091. #endif
  1092. #if defined(OPENSSL_NO_ENGINE) && !defined(OPENSSL_NO_DEPRECATED_3_0)
  1093. BIO_puts(bio_out, "ENGINE\n");
  1094. #endif
  1095. #ifdef OPENSSL_NO_GOST
  1096. BIO_puts(bio_out, "GOST\n");
  1097. #endif
  1098. #ifdef OPENSSL_NO_IDEA
  1099. BIO_puts(bio_out, "IDEA\n");
  1100. #endif
  1101. #ifdef OPENSSL_NO_MD2
  1102. BIO_puts(bio_out, "MD2\n");
  1103. #endif
  1104. #ifdef OPENSSL_NO_MD4
  1105. BIO_puts(bio_out, "MD4\n");
  1106. #endif
  1107. #ifdef OPENSSL_NO_MD5
  1108. BIO_puts(bio_out, "MD5\n");
  1109. #endif
  1110. #ifdef OPENSSL_NO_MDC2
  1111. BIO_puts(bio_out, "MDC2\n");
  1112. #endif
  1113. #ifdef OPENSSL_NO_OCB
  1114. BIO_puts(bio_out, "OCB\n");
  1115. #endif
  1116. #ifdef OPENSSL_NO_OCSP
  1117. BIO_puts(bio_out, "OCSP\n");
  1118. #endif
  1119. #ifdef OPENSSL_NO_PSK
  1120. BIO_puts(bio_out, "PSK\n");
  1121. #endif
  1122. #ifdef OPENSSL_NO_RC2
  1123. BIO_puts(bio_out, "RC2\n");
  1124. #endif
  1125. #ifdef OPENSSL_NO_RC4
  1126. BIO_puts(bio_out, "RC4\n");
  1127. #endif
  1128. #ifdef OPENSSL_NO_RC5
  1129. BIO_puts(bio_out, "RC5\n");
  1130. #endif
  1131. #ifdef OPENSSL_NO_RMD160
  1132. BIO_puts(bio_out, "RMD160\n");
  1133. #endif
  1134. #ifdef OPENSSL_NO_SCRYPT
  1135. BIO_puts(bio_out, "SCRYPT\n");
  1136. #endif
  1137. #ifdef OPENSSL_NO_SCTP
  1138. BIO_puts(bio_out, "SCTP\n");
  1139. #endif
  1140. #ifdef OPENSSL_NO_SEED
  1141. BIO_puts(bio_out, "SEED\n");
  1142. #endif
  1143. #ifdef OPENSSL_NO_SM2
  1144. BIO_puts(bio_out, "SM2\n");
  1145. #endif
  1146. #ifdef OPENSSL_NO_SM3
  1147. BIO_puts(bio_out, "SM3\n");
  1148. #endif
  1149. #ifdef OPENSSL_NO_SM4
  1150. BIO_puts(bio_out, "SM4\n");
  1151. #endif
  1152. #ifdef OPENSSL_NO_SOCK
  1153. BIO_puts(bio_out, "SOCK\n");
  1154. #endif
  1155. #ifdef OPENSSL_NO_SRP
  1156. BIO_puts(bio_out, "SRP\n");
  1157. #endif
  1158. #ifdef OPENSSL_NO_SRTP
  1159. BIO_puts(bio_out, "SRTP\n");
  1160. #endif
  1161. #ifdef OPENSSL_NO_SSL3
  1162. BIO_puts(bio_out, "SSL3\n");
  1163. #endif
  1164. #ifdef OPENSSL_NO_TLS1
  1165. BIO_puts(bio_out, "TLS1\n");
  1166. #endif
  1167. #ifdef OPENSSL_NO_TLS1_1
  1168. BIO_puts(bio_out, "TLS1_1\n");
  1169. #endif
  1170. #ifdef OPENSSL_NO_TLS1_2
  1171. BIO_puts(bio_out, "TLS1_2\n");
  1172. #endif
  1173. #ifdef OPENSSL_NO_WHIRLPOOL
  1174. BIO_puts(bio_out, "WHIRLPOOL\n");
  1175. #endif
  1176. #ifndef ZLIB
  1177. BIO_puts(bio_out, "ZLIB\n");
  1178. #endif
  1179. }
  1180. /* Unified enum for help and list commands. */
  1181. typedef enum HELPLIST_CHOICE {
  1182. OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ONE, OPT_VERBOSE,
  1183. OPT_COMMANDS, OPT_DIGEST_COMMANDS, OPT_MAC_ALGORITHMS, OPT_OPTIONS,
  1184. OPT_DIGEST_ALGORITHMS, OPT_CIPHER_COMMANDS, OPT_CIPHER_ALGORITHMS,
  1185. OPT_PK_ALGORITHMS, OPT_PK_METHOD, OPT_DISABLED,
  1186. OPT_KDF_ALGORITHMS, OPT_RANDOM_INSTANCES, OPT_RANDOM_GENERATORS,
  1187. OPT_ENCODERS, OPT_DECODERS, OPT_KEYMANAGERS, OPT_KEYEXCHANGE_ALGORITHMS,
  1188. OPT_KEM_ALGORITHMS, OPT_SIGNATURE_ALGORITHMS, OPT_ASYM_CIPHER_ALGORITHMS,
  1189. OPT_PROVIDER_INFO,
  1190. OPT_MISSING_HELP, OPT_OBJECTS, OPT_SELECT_NAME,
  1191. #ifndef OPENSSL_NO_DEPRECATED_3_0
  1192. OPT_ENGINES,
  1193. #endif
  1194. OPT_PROV_ENUM
  1195. } HELPLIST_CHOICE;
  1196. const OPTIONS list_options[] = {
  1197. OPT_SECTION("General"),
  1198. {"help", OPT_HELP, '-', "Display this summary"},
  1199. OPT_SECTION("Output"),
  1200. {"1", OPT_ONE, '-', "List in one column"},
  1201. {"verbose", OPT_VERBOSE, '-', "Verbose listing"},
  1202. {"select", OPT_SELECT_NAME, 's', "Select a single algorithm"},
  1203. {"commands", OPT_COMMANDS, '-', "List of standard commands"},
  1204. {"standard-commands", OPT_COMMANDS, '-', "List of standard commands"},
  1205. #ifndef OPENSSL_NO_DEPRECATED_3_0
  1206. {"digest-commands", OPT_DIGEST_COMMANDS, '-',
  1207. "List of message digest commands (deprecated)"},
  1208. #endif
  1209. {"digest-algorithms", OPT_DIGEST_ALGORITHMS, '-',
  1210. "List of message digest algorithms"},
  1211. {"kdf-algorithms", OPT_KDF_ALGORITHMS, '-',
  1212. "List of key derivation and pseudo random function algorithms"},
  1213. {"random-instances", OPT_RANDOM_INSTANCES, '-',
  1214. "List the primary, pubic and private random number generator details"},
  1215. {"random-generators", OPT_RANDOM_GENERATORS, '-',
  1216. "List of random number generators"},
  1217. {"mac-algorithms", OPT_MAC_ALGORITHMS, '-',
  1218. "List of message authentication code algorithms"},
  1219. #ifndef OPENSSL_NO_DEPRECATED_3_0
  1220. {"cipher-commands", OPT_CIPHER_COMMANDS, '-',
  1221. "List of cipher commands (deprecated)"},
  1222. #endif
  1223. {"cipher-algorithms", OPT_CIPHER_ALGORITHMS, '-',
  1224. "List of cipher algorithms"},
  1225. {"encoders", OPT_ENCODERS, '-', "List of encoding methods" },
  1226. {"decoders", OPT_DECODERS, '-', "List of decoding methods" },
  1227. {"key-managers", OPT_KEYMANAGERS, '-', "List of key managers" },
  1228. {"key-exchange-algorithms", OPT_KEYEXCHANGE_ALGORITHMS, '-',
  1229. "List of key exchange algorithms" },
  1230. {"kem-algorithms", OPT_KEM_ALGORITHMS, '-',
  1231. "List of key encapsulation mechanism algorithms" },
  1232. {"signature-algorithms", OPT_SIGNATURE_ALGORITHMS, '-',
  1233. "List of signature algorithms" },
  1234. { "asymcipher-algorithms", OPT_ASYM_CIPHER_ALGORITHMS, '-',
  1235. "List of asymmetric cipher algorithms" },
  1236. {"public-key-algorithms", OPT_PK_ALGORITHMS, '-',
  1237. "List of public key algorithms"},
  1238. {"public-key-methods", OPT_PK_METHOD, '-',
  1239. "List of public key methods"},
  1240. {"providers", OPT_PROVIDER_INFO, '-',
  1241. "List of provider information"},
  1242. #ifndef OPENSSL_NO_DEPRECATED_3_0
  1243. {"engines", OPT_ENGINES, '-',
  1244. "List of loaded engines"},
  1245. #endif
  1246. {"disabled", OPT_DISABLED, '-', "List of disabled features"},
  1247. {"missing-help", OPT_MISSING_HELP, '-',
  1248. "List missing detailed help strings"},
  1249. {"options", OPT_OPTIONS, 's',
  1250. "List options for specified command"},
  1251. {"objects", OPT_OBJECTS, '-',
  1252. "List built in objects (OID<->name mappings)"},
  1253. OPT_PROV_OPTIONS,
  1254. {NULL}
  1255. };
  1256. int list_main(int argc, char **argv)
  1257. {
  1258. char *prog;
  1259. HELPLIST_CHOICE o;
  1260. int one = 0, done = 0;
  1261. struct {
  1262. unsigned int commands:1;
  1263. unsigned int random_instances:1;
  1264. unsigned int random_generators:1;
  1265. unsigned int digest_commands:1;
  1266. unsigned int digest_algorithms:1;
  1267. unsigned int kdf_algorithms:1;
  1268. unsigned int mac_algorithms:1;
  1269. unsigned int cipher_commands:1;
  1270. unsigned int cipher_algorithms:1;
  1271. unsigned int encoder_algorithms:1;
  1272. unsigned int decoder_algorithms:1;
  1273. unsigned int keymanager_algorithms:1;
  1274. unsigned int signature_algorithms:1;
  1275. unsigned int keyexchange_algorithms:1;
  1276. unsigned int kem_algorithms:1;
  1277. unsigned int asym_cipher_algorithms:1;
  1278. unsigned int pk_algorithms:1;
  1279. unsigned int pk_method:1;
  1280. unsigned int provider_info:1;
  1281. #ifndef OPENSSL_NO_DEPRECATED_3_0
  1282. unsigned int engines:1;
  1283. #endif
  1284. unsigned int disabled:1;
  1285. unsigned int missing_help:1;
  1286. unsigned int objects:1;
  1287. unsigned int options:1;
  1288. } todo = { 0, };
  1289. verbose = 0; /* Clear a possible previous call */
  1290. prog = opt_init(argc, argv, list_options);
  1291. while ((o = opt_next()) != OPT_EOF) {
  1292. switch (o) {
  1293. case OPT_EOF: /* Never hit, but suppresses warning */
  1294. case OPT_ERR:
  1295. opthelp:
  1296. BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
  1297. return 1;
  1298. case OPT_HELP:
  1299. opt_help(list_options);
  1300. break;
  1301. case OPT_ONE:
  1302. one = 1;
  1303. break;
  1304. case OPT_COMMANDS:
  1305. todo.commands = 1;
  1306. break;
  1307. case OPT_DIGEST_COMMANDS:
  1308. todo.digest_commands = 1;
  1309. break;
  1310. case OPT_DIGEST_ALGORITHMS:
  1311. todo.digest_algorithms = 1;
  1312. break;
  1313. case OPT_KDF_ALGORITHMS:
  1314. todo.kdf_algorithms = 1;
  1315. break;
  1316. case OPT_RANDOM_INSTANCES:
  1317. todo.random_instances = 1;
  1318. break;
  1319. case OPT_RANDOM_GENERATORS:
  1320. todo.random_generators = 1;
  1321. break;
  1322. case OPT_MAC_ALGORITHMS:
  1323. todo.mac_algorithms = 1;
  1324. break;
  1325. case OPT_CIPHER_COMMANDS:
  1326. todo.cipher_commands = 1;
  1327. break;
  1328. case OPT_CIPHER_ALGORITHMS:
  1329. todo.cipher_algorithms = 1;
  1330. break;
  1331. case OPT_ENCODERS:
  1332. todo.encoder_algorithms = 1;
  1333. break;
  1334. case OPT_DECODERS:
  1335. todo.decoder_algorithms = 1;
  1336. break;
  1337. case OPT_KEYMANAGERS:
  1338. todo.keymanager_algorithms = 1;
  1339. break;
  1340. case OPT_SIGNATURE_ALGORITHMS:
  1341. todo.signature_algorithms = 1;
  1342. break;
  1343. case OPT_KEYEXCHANGE_ALGORITHMS:
  1344. todo.keyexchange_algorithms = 1;
  1345. break;
  1346. case OPT_KEM_ALGORITHMS:
  1347. todo.kem_algorithms = 1;
  1348. break;
  1349. case OPT_ASYM_CIPHER_ALGORITHMS:
  1350. todo.asym_cipher_algorithms = 1;
  1351. break;
  1352. case OPT_PK_ALGORITHMS:
  1353. todo.pk_algorithms = 1;
  1354. break;
  1355. case OPT_PK_METHOD:
  1356. todo.pk_method = 1;
  1357. break;
  1358. case OPT_PROVIDER_INFO:
  1359. todo.provider_info = 1;
  1360. break;
  1361. #ifndef OPENSSL_NO_DEPRECATED_3_0
  1362. case OPT_ENGINES:
  1363. todo.engines = 1;
  1364. break;
  1365. #endif
  1366. case OPT_DISABLED:
  1367. todo.disabled = 1;
  1368. break;
  1369. case OPT_MISSING_HELP:
  1370. todo.missing_help = 1;
  1371. break;
  1372. case OPT_OBJECTS:
  1373. todo.objects = 1;
  1374. break;
  1375. case OPT_OPTIONS:
  1376. list_options_for_command(opt_arg());
  1377. break;
  1378. case OPT_VERBOSE:
  1379. verbose = 1;
  1380. break;
  1381. case OPT_SELECT_NAME:
  1382. select_name = opt_arg();
  1383. break;
  1384. case OPT_PROV_CASES:
  1385. if (!opt_provider(o))
  1386. return 1;
  1387. break;
  1388. }
  1389. done = 1;
  1390. }
  1391. /* No extra arguments. */
  1392. if (opt_num_rest() != 0)
  1393. goto opthelp;
  1394. if (todo.commands)
  1395. list_type(FT_general, one);
  1396. if (todo.random_instances)
  1397. list_random_instances();
  1398. if (todo.random_generators)
  1399. list_random_generators();
  1400. if (todo.digest_commands)
  1401. list_type(FT_md, one);
  1402. if (todo.digest_algorithms)
  1403. list_digests();
  1404. if (todo.kdf_algorithms)
  1405. list_kdfs();
  1406. if (todo.mac_algorithms)
  1407. list_macs();
  1408. if (todo.cipher_commands)
  1409. list_type(FT_cipher, one);
  1410. if (todo.cipher_algorithms)
  1411. list_ciphers();
  1412. if (todo.encoder_algorithms)
  1413. list_encoders();
  1414. if (todo.decoder_algorithms)
  1415. list_decoders();
  1416. if (todo.keymanager_algorithms)
  1417. list_keymanagers();
  1418. if (todo.signature_algorithms)
  1419. list_signatures();
  1420. if (todo.asym_cipher_algorithms)
  1421. list_asymciphers();
  1422. if (todo.keyexchange_algorithms)
  1423. list_keyexchanges();
  1424. if (todo.kem_algorithms)
  1425. list_kems();
  1426. if (todo.pk_algorithms)
  1427. list_pkey();
  1428. if (todo.pk_method)
  1429. list_pkey_meth();
  1430. if (todo.provider_info)
  1431. list_provider_info();
  1432. #ifndef OPENSSL_NO_DEPRECATED_3_0
  1433. if (todo.engines)
  1434. list_engines();
  1435. #endif
  1436. if (todo.disabled)
  1437. list_disabled();
  1438. if (todo.missing_help)
  1439. list_missing_help();
  1440. if (todo.objects)
  1441. list_objects();
  1442. if (!done)
  1443. goto opthelp;
  1444. return 0;
  1445. }