12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724 |
- /*
- * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /*
- * ECDSA low level APIs are deprecated for public use, but still ok for
- * internal use.
- */
- #include "internal/deprecated.h"
- #include <openssl/err.h>
- #include <openssl/symhacks.h>
- #include "ec_local.h"
- const EC_METHOD *EC_GFp_simple_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_prime_field,
- ec_GFp_simple_group_init,
- ec_GFp_simple_group_finish,
- ec_GFp_simple_group_clear_finish,
- ec_GFp_simple_group_copy,
- ec_GFp_simple_group_set_curve,
- ec_GFp_simple_group_get_curve,
- ec_GFp_simple_group_get_degree,
- ec_group_simple_order_bits,
- ec_GFp_simple_group_check_discriminant,
- ec_GFp_simple_point_init,
- ec_GFp_simple_point_finish,
- ec_GFp_simple_point_clear_finish,
- ec_GFp_simple_point_copy,
- ec_GFp_simple_point_set_to_infinity,
- ec_GFp_simple_point_set_affine_coordinates,
- ec_GFp_simple_point_get_affine_coordinates,
- 0, 0, 0,
- ec_GFp_simple_add,
- ec_GFp_simple_dbl,
- ec_GFp_simple_invert,
- ec_GFp_simple_is_at_infinity,
- ec_GFp_simple_is_on_curve,
- ec_GFp_simple_cmp,
- ec_GFp_simple_make_affine,
- ec_GFp_simple_points_make_affine,
- 0 /* mul */ ,
- 0 /* precompute_mult */ ,
- 0 /* have_precompute_mult */ ,
- ec_GFp_simple_field_mul,
- ec_GFp_simple_field_sqr,
- 0 /* field_div */ ,
- ec_GFp_simple_field_inv,
- 0 /* field_encode */ ,
- 0 /* field_decode */ ,
- 0, /* field_set_to_one */
- ec_key_simple_priv2oct,
- ec_key_simple_oct2priv,
- 0, /* set private */
- ec_key_simple_generate_key,
- ec_key_simple_check_key,
- ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ecdh_simple_compute_key,
- ecdsa_simple_sign_setup,
- ecdsa_simple_sign_sig,
- ecdsa_simple_verify_sig,
- 0, /* field_inverse_mod_ord */
- ec_GFp_simple_blind_coordinates,
- ec_GFp_simple_ladder_pre,
- ec_GFp_simple_ladder_step,
- ec_GFp_simple_ladder_post
- };
- return &ret;
- }
- /*
- * Most method functions in this file are designed to work with
- * non-trivial representations of field elements if necessary
- * (see ecp_mont.c): while standard modular addition and subtraction
- * are used, the field_mul and field_sqr methods will be used for
- * multiplication, and field_encode and field_decode (if defined)
- * will be used for converting between representations.
- *
- * Functions ec_GFp_simple_points_make_affine() and
- * ec_GFp_simple_point_get_affine_coordinates() specifically assume
- * that if a non-trivial representation is used, it is a Montgomery
- * representation (i.e. 'encoding' means multiplying by some factor R).
- */
- int ec_GFp_simple_group_init(EC_GROUP *group)
- {
- group->field = BN_new();
- group->a = BN_new();
- group->b = BN_new();
- if (group->field == NULL || group->a == NULL || group->b == NULL) {
- BN_free(group->field);
- BN_free(group->a);
- BN_free(group->b);
- return 0;
- }
- group->a_is_minus3 = 0;
- return 1;
- }
- void ec_GFp_simple_group_finish(EC_GROUP *group)
- {
- BN_free(group->field);
- BN_free(group->a);
- BN_free(group->b);
- }
- void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
- {
- BN_clear_free(group->field);
- BN_clear_free(group->a);
- BN_clear_free(group->b);
- }
- int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
- {
- if (!BN_copy(dest->field, src->field))
- return 0;
- if (!BN_copy(dest->a, src->a))
- return 0;
- if (!BN_copy(dest->b, src->b))
- return 0;
- dest->a_is_minus3 = src->a_is_minus3;
- return 1;
- }
- int ec_GFp_simple_group_set_curve(EC_GROUP *group,
- const BIGNUM *p, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp_a;
- /* p must be a prime > 3 */
- if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
- ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
- return 0;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- tmp_a = BN_CTX_get(ctx);
- if (tmp_a == NULL)
- goto err;
- /* group->field */
- if (!BN_copy(group->field, p))
- goto err;
- BN_set_negative(group->field, 0);
- /* group->a */
- if (!BN_nnmod(tmp_a, a, p, ctx))
- goto err;
- if (group->meth->field_encode) {
- if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
- goto err;
- } else if (!BN_copy(group->a, tmp_a))
- goto err;
- /* group->b */
- if (!BN_nnmod(group->b, b, p, ctx))
- goto err;
- if (group->meth->field_encode)
- if (!group->meth->field_encode(group, group->b, group->b, ctx))
- goto err;
- /* group->a_is_minus3 */
- if (!BN_add_word(tmp_a, 3))
- goto err;
- group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
- BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- if (p != NULL) {
- if (!BN_copy(p, group->field))
- return 0;
- }
- if (a != NULL || b != NULL) {
- if (group->meth->field_decode) {
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- if (a != NULL) {
- if (!group->meth->field_decode(group, a, group->a, ctx))
- goto err;
- }
- if (b != NULL) {
- if (!group->meth->field_decode(group, b, group->b, ctx))
- goto err;
- }
- } else {
- if (a != NULL) {
- if (!BN_copy(a, group->a))
- goto err;
- }
- if (b != NULL) {
- if (!BN_copy(b, group->b))
- goto err;
- }
- }
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
- {
- return BN_num_bits(group->field);
- }
- int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
- const BIGNUM *p = group->field;
- BN_CTX *new_ctx = NULL;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL) {
- ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
- ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- b = BN_CTX_get(ctx);
- tmp_1 = BN_CTX_get(ctx);
- tmp_2 = BN_CTX_get(ctx);
- order = BN_CTX_get(ctx);
- if (order == NULL)
- goto err;
- if (group->meth->field_decode) {
- if (!group->meth->field_decode(group, a, group->a, ctx))
- goto err;
- if (!group->meth->field_decode(group, b, group->b, ctx))
- goto err;
- } else {
- if (!BN_copy(a, group->a))
- goto err;
- if (!BN_copy(b, group->b))
- goto err;
- }
- /*-
- * check the discriminant:
- * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
- * 0 =< a, b < p
- */
- if (BN_is_zero(a)) {
- if (BN_is_zero(b))
- goto err;
- } else if (!BN_is_zero(b)) {
- if (!BN_mod_sqr(tmp_1, a, p, ctx))
- goto err;
- if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
- goto err;
- if (!BN_lshift(tmp_1, tmp_2, 2))
- goto err;
- /* tmp_1 = 4*a^3 */
- if (!BN_mod_sqr(tmp_2, b, p, ctx))
- goto err;
- if (!BN_mul_word(tmp_2, 27))
- goto err;
- /* tmp_2 = 27*b^2 */
- if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
- goto err;
- if (BN_is_zero(a))
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_point_init(EC_POINT *point)
- {
- point->X = BN_new();
- point->Y = BN_new();
- point->Z = BN_new();
- point->Z_is_one = 0;
- if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
- BN_free(point->X);
- BN_free(point->Y);
- BN_free(point->Z);
- return 0;
- }
- return 1;
- }
- void ec_GFp_simple_point_finish(EC_POINT *point)
- {
- BN_free(point->X);
- BN_free(point->Y);
- BN_free(point->Z);
- }
- void ec_GFp_simple_point_clear_finish(EC_POINT *point)
- {
- BN_clear_free(point->X);
- BN_clear_free(point->Y);
- BN_clear_free(point->Z);
- point->Z_is_one = 0;
- }
- int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
- {
- if (!BN_copy(dest->X, src->X))
- return 0;
- if (!BN_copy(dest->Y, src->Y))
- return 0;
- if (!BN_copy(dest->Z, src->Z))
- return 0;
- dest->Z_is_one = src->Z_is_one;
- dest->curve_name = src->curve_name;
- return 1;
- }
- int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
- EC_POINT *point)
- {
- point->Z_is_one = 0;
- BN_zero(point->Z);
- return 1;
- }
- int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
- EC_POINT *point,
- const BIGNUM *x,
- const BIGNUM *y,
- const BIGNUM *z,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- if (x != NULL) {
- if (!BN_nnmod(point->X, x, group->field, ctx))
- goto err;
- if (group->meth->field_encode) {
- if (!group->meth->field_encode(group, point->X, point->X, ctx))
- goto err;
- }
- }
- if (y != NULL) {
- if (!BN_nnmod(point->Y, y, group->field, ctx))
- goto err;
- if (group->meth->field_encode) {
- if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
- goto err;
- }
- }
- if (z != NULL) {
- int Z_is_one;
- if (!BN_nnmod(point->Z, z, group->field, ctx))
- goto err;
- Z_is_one = BN_is_one(point->Z);
- if (group->meth->field_encode) {
- if (Z_is_one && (group->meth->field_set_to_one != 0)) {
- if (!group->meth->field_set_to_one(group, point->Z, ctx))
- goto err;
- } else {
- if (!group->
- meth->field_encode(group, point->Z, point->Z, ctx))
- goto err;
- }
- }
- point->Z_is_one = Z_is_one;
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BIGNUM *z, BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (group->meth->field_decode != 0) {
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- if (x != NULL) {
- if (!group->meth->field_decode(group, x, point->X, ctx))
- goto err;
- }
- if (y != NULL) {
- if (!group->meth->field_decode(group, y, point->Y, ctx))
- goto err;
- }
- if (z != NULL) {
- if (!group->meth->field_decode(group, z, point->Z, ctx))
- goto err;
- }
- } else {
- if (x != NULL) {
- if (!BN_copy(x, point->X))
- goto err;
- }
- if (y != NULL) {
- if (!BN_copy(y, point->Y))
- goto err;
- }
- if (z != NULL) {
- if (!BN_copy(z, point->Z))
- goto err;
- }
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
- EC_POINT *point,
- const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx)
- {
- if (x == NULL || y == NULL) {
- /*
- * unlike for projective coordinates, we do not tolerate this
- */
- ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
- ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- }
- return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
- BN_value_one(), ctx);
- }
- int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *Z, *Z_1, *Z_2, *Z_3;
- const BIGNUM *Z_;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
- EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- Z = BN_CTX_get(ctx);
- Z_1 = BN_CTX_get(ctx);
- Z_2 = BN_CTX_get(ctx);
- Z_3 = BN_CTX_get(ctx);
- if (Z_3 == NULL)
- goto err;
- /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
- if (group->meth->field_decode) {
- if (!group->meth->field_decode(group, Z, point->Z, ctx))
- goto err;
- Z_ = Z;
- } else {
- Z_ = point->Z;
- }
- if (BN_is_one(Z_)) {
- if (group->meth->field_decode) {
- if (x != NULL) {
- if (!group->meth->field_decode(group, x, point->X, ctx))
- goto err;
- }
- if (y != NULL) {
- if (!group->meth->field_decode(group, y, point->Y, ctx))
- goto err;
- }
- } else {
- if (x != NULL) {
- if (!BN_copy(x, point->X))
- goto err;
- }
- if (y != NULL) {
- if (!BN_copy(y, point->Y))
- goto err;
- }
- }
- } else {
- if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
- ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
- ERR_R_BN_LIB);
- goto err;
- }
- if (group->meth->field_encode == 0) {
- /* field_sqr works on standard representation */
- if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
- goto err;
- } else {
- if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
- goto err;
- }
- if (x != NULL) {
- /*
- * in the Montgomery case, field_mul will cancel out Montgomery
- * factor in X:
- */
- if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
- goto err;
- }
- if (y != NULL) {
- if (group->meth->field_encode == 0) {
- /*
- * field_mul works on standard representation
- */
- if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
- goto err;
- } else {
- if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
- goto err;
- }
- /*
- * in the Montgomery case, field_mul will cancel out Montgomery
- * factor in Y:
- */
- if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
- goto err;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx)
- {
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
- int ret = 0;
- if (a == b)
- return EC_POINT_dbl(group, r, a, ctx);
- if (EC_POINT_is_at_infinity(group, a))
- return EC_POINT_copy(r, b);
- if (EC_POINT_is_at_infinity(group, b))
- return EC_POINT_copy(r, a);
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- n0 = BN_CTX_get(ctx);
- n1 = BN_CTX_get(ctx);
- n2 = BN_CTX_get(ctx);
- n3 = BN_CTX_get(ctx);
- n4 = BN_CTX_get(ctx);
- n5 = BN_CTX_get(ctx);
- n6 = BN_CTX_get(ctx);
- if (n6 == NULL)
- goto end;
- /*
- * Note that in this function we must not read components of 'a' or 'b'
- * once we have written the corresponding components of 'r'. ('r' might
- * be one of 'a' or 'b'.)
- */
- /* n1, n2 */
- if (b->Z_is_one) {
- if (!BN_copy(n1, a->X))
- goto end;
- if (!BN_copy(n2, a->Y))
- goto end;
- /* n1 = X_a */
- /* n2 = Y_a */
- } else {
- if (!field_sqr(group, n0, b->Z, ctx))
- goto end;
- if (!field_mul(group, n1, a->X, n0, ctx))
- goto end;
- /* n1 = X_a * Z_b^2 */
- if (!field_mul(group, n0, n0, b->Z, ctx))
- goto end;
- if (!field_mul(group, n2, a->Y, n0, ctx))
- goto end;
- /* n2 = Y_a * Z_b^3 */
- }
- /* n3, n4 */
- if (a->Z_is_one) {
- if (!BN_copy(n3, b->X))
- goto end;
- if (!BN_copy(n4, b->Y))
- goto end;
- /* n3 = X_b */
- /* n4 = Y_b */
- } else {
- if (!field_sqr(group, n0, a->Z, ctx))
- goto end;
- if (!field_mul(group, n3, b->X, n0, ctx))
- goto end;
- /* n3 = X_b * Z_a^2 */
- if (!field_mul(group, n0, n0, a->Z, ctx))
- goto end;
- if (!field_mul(group, n4, b->Y, n0, ctx))
- goto end;
- /* n4 = Y_b * Z_a^3 */
- }
- /* n5, n6 */
- if (!BN_mod_sub_quick(n5, n1, n3, p))
- goto end;
- if (!BN_mod_sub_quick(n6, n2, n4, p))
- goto end;
- /* n5 = n1 - n3 */
- /* n6 = n2 - n4 */
- if (BN_is_zero(n5)) {
- if (BN_is_zero(n6)) {
- /* a is the same point as b */
- BN_CTX_end(ctx);
- ret = EC_POINT_dbl(group, r, a, ctx);
- ctx = NULL;
- goto end;
- } else {
- /* a is the inverse of b */
- BN_zero(r->Z);
- r->Z_is_one = 0;
- ret = 1;
- goto end;
- }
- }
- /* 'n7', 'n8' */
- if (!BN_mod_add_quick(n1, n1, n3, p))
- goto end;
- if (!BN_mod_add_quick(n2, n2, n4, p))
- goto end;
- /* 'n7' = n1 + n3 */
- /* 'n8' = n2 + n4 */
- /* Z_r */
- if (a->Z_is_one && b->Z_is_one) {
- if (!BN_copy(r->Z, n5))
- goto end;
- } else {
- if (a->Z_is_one) {
- if (!BN_copy(n0, b->Z))
- goto end;
- } else if (b->Z_is_one) {
- if (!BN_copy(n0, a->Z))
- goto end;
- } else {
- if (!field_mul(group, n0, a->Z, b->Z, ctx))
- goto end;
- }
- if (!field_mul(group, r->Z, n0, n5, ctx))
- goto end;
- }
- r->Z_is_one = 0;
- /* Z_r = Z_a * Z_b * n5 */
- /* X_r */
- if (!field_sqr(group, n0, n6, ctx))
- goto end;
- if (!field_sqr(group, n4, n5, ctx))
- goto end;
- if (!field_mul(group, n3, n1, n4, ctx))
- goto end;
- if (!BN_mod_sub_quick(r->X, n0, n3, p))
- goto end;
- /* X_r = n6^2 - n5^2 * 'n7' */
- /* 'n9' */
- if (!BN_mod_lshift1_quick(n0, r->X, p))
- goto end;
- if (!BN_mod_sub_quick(n0, n3, n0, p))
- goto end;
- /* n9 = n5^2 * 'n7' - 2 * X_r */
- /* Y_r */
- if (!field_mul(group, n0, n0, n6, ctx))
- goto end;
- if (!field_mul(group, n5, n4, n5, ctx))
- goto end; /* now n5 is n5^3 */
- if (!field_mul(group, n1, n2, n5, ctx))
- goto end;
- if (!BN_mod_sub_quick(n0, n0, n1, p))
- goto end;
- if (BN_is_odd(n0))
- if (!BN_add(n0, n0, p))
- goto end;
- /* now 0 <= n0 < 2*p, and n0 is even */
- if (!BN_rshift1(r->Y, n0))
- goto end;
- /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
- ret = 1;
- end:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- BN_CTX *ctx)
- {
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *n0, *n1, *n2, *n3;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, a)) {
- BN_zero(r->Z);
- r->Z_is_one = 0;
- return 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- n0 = BN_CTX_get(ctx);
- n1 = BN_CTX_get(ctx);
- n2 = BN_CTX_get(ctx);
- n3 = BN_CTX_get(ctx);
- if (n3 == NULL)
- goto err;
- /*
- * Note that in this function we must not read components of 'a' once we
- * have written the corresponding components of 'r'. ('r' might the same
- * as 'a'.)
- */
- /* n1 */
- if (a->Z_is_one) {
- if (!field_sqr(group, n0, a->X, ctx))
- goto err;
- if (!BN_mod_lshift1_quick(n1, n0, p))
- goto err;
- if (!BN_mod_add_quick(n0, n0, n1, p))
- goto err;
- if (!BN_mod_add_quick(n1, n0, group->a, p))
- goto err;
- /* n1 = 3 * X_a^2 + a_curve */
- } else if (group->a_is_minus3) {
- if (!field_sqr(group, n1, a->Z, ctx))
- goto err;
- if (!BN_mod_add_quick(n0, a->X, n1, p))
- goto err;
- if (!BN_mod_sub_quick(n2, a->X, n1, p))
- goto err;
- if (!field_mul(group, n1, n0, n2, ctx))
- goto err;
- if (!BN_mod_lshift1_quick(n0, n1, p))
- goto err;
- if (!BN_mod_add_quick(n1, n0, n1, p))
- goto err;
- /*-
- * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
- * = 3 * X_a^2 - 3 * Z_a^4
- */
- } else {
- if (!field_sqr(group, n0, a->X, ctx))
- goto err;
- if (!BN_mod_lshift1_quick(n1, n0, p))
- goto err;
- if (!BN_mod_add_quick(n0, n0, n1, p))
- goto err;
- if (!field_sqr(group, n1, a->Z, ctx))
- goto err;
- if (!field_sqr(group, n1, n1, ctx))
- goto err;
- if (!field_mul(group, n1, n1, group->a, ctx))
- goto err;
- if (!BN_mod_add_quick(n1, n1, n0, p))
- goto err;
- /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
- }
- /* Z_r */
- if (a->Z_is_one) {
- if (!BN_copy(n0, a->Y))
- goto err;
- } else {
- if (!field_mul(group, n0, a->Y, a->Z, ctx))
- goto err;
- }
- if (!BN_mod_lshift1_quick(r->Z, n0, p))
- goto err;
- r->Z_is_one = 0;
- /* Z_r = 2 * Y_a * Z_a */
- /* n2 */
- if (!field_sqr(group, n3, a->Y, ctx))
- goto err;
- if (!field_mul(group, n2, a->X, n3, ctx))
- goto err;
- if (!BN_mod_lshift_quick(n2, n2, 2, p))
- goto err;
- /* n2 = 4 * X_a * Y_a^2 */
- /* X_r */
- if (!BN_mod_lshift1_quick(n0, n2, p))
- goto err;
- if (!field_sqr(group, r->X, n1, ctx))
- goto err;
- if (!BN_mod_sub_quick(r->X, r->X, n0, p))
- goto err;
- /* X_r = n1^2 - 2 * n2 */
- /* n3 */
- if (!field_sqr(group, n0, n3, ctx))
- goto err;
- if (!BN_mod_lshift_quick(n3, n0, 3, p))
- goto err;
- /* n3 = 8 * Y_a^4 */
- /* Y_r */
- if (!BN_mod_sub_quick(n0, n2, r->X, p))
- goto err;
- if (!field_mul(group, n0, n1, n0, ctx))
- goto err;
- if (!BN_mod_sub_quick(r->Y, n0, n3, p))
- goto err;
- /* Y_r = n1 * (n2 - X_r) - n3 */
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
- if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
- /* point is its own inverse */
- return 1;
- return BN_usub(point->Y, group->field, point->Y);
- }
- int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
- {
- return BN_is_zero(point->Z);
- }
- int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
- BN_CTX *ctx)
- {
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *rh, *tmp, *Z4, *Z6;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, point))
- return 1;
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return -1;
- }
- BN_CTX_start(ctx);
- rh = BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- Z4 = BN_CTX_get(ctx);
- Z6 = BN_CTX_get(ctx);
- if (Z6 == NULL)
- goto err;
- /*-
- * We have a curve defined by a Weierstrass equation
- * y^2 = x^3 + a*x + b.
- * The point to consider is given in Jacobian projective coordinates
- * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
- * Substituting this and multiplying by Z^6 transforms the above equation into
- * Y^2 = X^3 + a*X*Z^4 + b*Z^6.
- * To test this, we add up the right-hand side in 'rh'.
- */
- /* rh := X^2 */
- if (!field_sqr(group, rh, point->X, ctx))
- goto err;
- if (!point->Z_is_one) {
- if (!field_sqr(group, tmp, point->Z, ctx))
- goto err;
- if (!field_sqr(group, Z4, tmp, ctx))
- goto err;
- if (!field_mul(group, Z6, Z4, tmp, ctx))
- goto err;
- /* rh := (rh + a*Z^4)*X */
- if (group->a_is_minus3) {
- if (!BN_mod_lshift1_quick(tmp, Z4, p))
- goto err;
- if (!BN_mod_add_quick(tmp, tmp, Z4, p))
- goto err;
- if (!BN_mod_sub_quick(rh, rh, tmp, p))
- goto err;
- if (!field_mul(group, rh, rh, point->X, ctx))
- goto err;
- } else {
- if (!field_mul(group, tmp, Z4, group->a, ctx))
- goto err;
- if (!BN_mod_add_quick(rh, rh, tmp, p))
- goto err;
- if (!field_mul(group, rh, rh, point->X, ctx))
- goto err;
- }
- /* rh := rh + b*Z^6 */
- if (!field_mul(group, tmp, group->b, Z6, ctx))
- goto err;
- if (!BN_mod_add_quick(rh, rh, tmp, p))
- goto err;
- } else {
- /* point->Z_is_one */
- /* rh := (rh + a)*X */
- if (!BN_mod_add_quick(rh, rh, group->a, p))
- goto err;
- if (!field_mul(group, rh, rh, point->X, ctx))
- goto err;
- /* rh := rh + b */
- if (!BN_mod_add_quick(rh, rh, group->b, p))
- goto err;
- }
- /* 'lh' := Y^2 */
- if (!field_sqr(group, tmp, point->Y, ctx))
- goto err;
- ret = (0 == BN_ucmp(tmp, rh));
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx)
- {
- /*-
- * return values:
- * -1 error
- * 0 equal (in affine coordinates)
- * 1 not equal
- */
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
- const BIGNUM *tmp1_, *tmp2_;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, a)) {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
- if (EC_POINT_is_at_infinity(group, b))
- return 1;
- if (a->Z_is_one && b->Z_is_one) {
- return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return -1;
- }
- BN_CTX_start(ctx);
- tmp1 = BN_CTX_get(ctx);
- tmp2 = BN_CTX_get(ctx);
- Za23 = BN_CTX_get(ctx);
- Zb23 = BN_CTX_get(ctx);
- if (Zb23 == NULL)
- goto end;
- /*-
- * We have to decide whether
- * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
- * or equivalently, whether
- * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
- */
- if (!b->Z_is_one) {
- if (!field_sqr(group, Zb23, b->Z, ctx))
- goto end;
- if (!field_mul(group, tmp1, a->X, Zb23, ctx))
- goto end;
- tmp1_ = tmp1;
- } else
- tmp1_ = a->X;
- if (!a->Z_is_one) {
- if (!field_sqr(group, Za23, a->Z, ctx))
- goto end;
- if (!field_mul(group, tmp2, b->X, Za23, ctx))
- goto end;
- tmp2_ = tmp2;
- } else
- tmp2_ = b->X;
- /* compare X_a*Z_b^2 with X_b*Z_a^2 */
- if (BN_cmp(tmp1_, tmp2_) != 0) {
- ret = 1; /* points differ */
- goto end;
- }
- if (!b->Z_is_one) {
- if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
- goto end;
- if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
- goto end;
- /* tmp1_ = tmp1 */
- } else
- tmp1_ = a->Y;
- if (!a->Z_is_one) {
- if (!field_mul(group, Za23, Za23, a->Z, ctx))
- goto end;
- if (!field_mul(group, tmp2, b->Y, Za23, ctx))
- goto end;
- /* tmp2_ = tmp2 */
- } else
- tmp2_ = b->Y;
- /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
- if (BN_cmp(tmp1_, tmp2_) != 0) {
- ret = 1; /* points differ */
- goto end;
- }
- /* points are equal */
- ret = 0;
- end:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- int ret = 0;
- if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
- return 1;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL)
- goto err;
- if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
- goto err;
- if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
- goto err;
- if (!point->Z_is_one) {
- ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
- EC_POINT *points[], BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp, *tmp_Z;
- BIGNUM **prod_Z = NULL;
- size_t i;
- int ret = 0;
- if (num == 0)
- return 1;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new_ex(group->libctx);
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- tmp = BN_CTX_get(ctx);
- tmp_Z = BN_CTX_get(ctx);
- if (tmp_Z == NULL)
- goto err;
- prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
- if (prod_Z == NULL)
- goto err;
- for (i = 0; i < num; i++) {
- prod_Z[i] = BN_new();
- if (prod_Z[i] == NULL)
- goto err;
- }
- /*
- * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
- * skipping any zero-valued inputs (pretend that they're 1).
- */
- if (!BN_is_zero(points[0]->Z)) {
- if (!BN_copy(prod_Z[0], points[0]->Z))
- goto err;
- } else {
- if (group->meth->field_set_to_one != 0) {
- if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
- goto err;
- } else {
- if (!BN_one(prod_Z[0]))
- goto err;
- }
- }
- for (i = 1; i < num; i++) {
- if (!BN_is_zero(points[i]->Z)) {
- if (!group->
- meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
- ctx))
- goto err;
- } else {
- if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
- goto err;
- }
- }
- /*
- * Now use a single explicit inversion to replace every non-zero
- * points[i]->Z by its inverse.
- */
- if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
- ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
- goto err;
- }
- if (group->meth->field_encode != 0) {
- /*
- * In the Montgomery case, we just turned R*H (representing H) into
- * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
- * multiply by the Montgomery factor twice.
- */
- if (!group->meth->field_encode(group, tmp, tmp, ctx))
- goto err;
- if (!group->meth->field_encode(group, tmp, tmp, ctx))
- goto err;
- }
- for (i = num - 1; i > 0; --i) {
- /*
- * Loop invariant: tmp is the product of the inverses of points[0]->Z
- * .. points[i]->Z (zero-valued inputs skipped).
- */
- if (!BN_is_zero(points[i]->Z)) {
- /*
- * Set tmp_Z to the inverse of points[i]->Z (as product of Z
- * inverses 0 .. i, Z values 0 .. i - 1).
- */
- if (!group->
- meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
- goto err;
- /*
- * Update tmp to satisfy the loop invariant for i - 1.
- */
- if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
- goto err;
- /* Replace points[i]->Z by its inverse. */
- if (!BN_copy(points[i]->Z, tmp_Z))
- goto err;
- }
- }
- if (!BN_is_zero(points[0]->Z)) {
- /* Replace points[0]->Z by its inverse. */
- if (!BN_copy(points[0]->Z, tmp))
- goto err;
- }
- /* Finally, fix up the X and Y coordinates for all points. */
- for (i = 0; i < num; i++) {
- EC_POINT *p = points[i];
- if (!BN_is_zero(p->Z)) {
- /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
- if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
- goto err;
- if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
- goto err;
- if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
- goto err;
- if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
- goto err;
- if (group->meth->field_set_to_one != 0) {
- if (!group->meth->field_set_to_one(group, p->Z, ctx))
- goto err;
- } else {
- if (!BN_one(p->Z))
- goto err;
- }
- p->Z_is_one = 1;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- if (prod_Z != NULL) {
- for (i = 0; i < num; i++) {
- if (prod_Z[i] == NULL)
- break;
- BN_clear_free(prod_Z[i]);
- }
- OPENSSL_free(prod_Z);
- }
- return ret;
- }
- int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_mod_mul(r, a, b, group->field, ctx);
- }
- int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- BN_CTX *ctx)
- {
- return BN_mod_sqr(r, a, group->field, ctx);
- }
- /*-
- * Computes the multiplicative inverse of a in GF(p), storing the result in r.
- * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
- * Since we don't have a Mont structure here, SCA hardening is with blinding.
- * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
- */
- int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- BN_CTX *ctx)
- {
- BIGNUM *e = NULL;
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (ctx == NULL
- && (ctx = new_ctx = BN_CTX_secure_new_ex(group->libctx)) == NULL)
- return 0;
- BN_CTX_start(ctx);
- if ((e = BN_CTX_get(ctx)) == NULL)
- goto err;
- do {
- if (!BN_priv_rand_range_ex(e, group->field, ctx))
- goto err;
- } while (BN_is_zero(e));
- /* r := a * e */
- if (!group->meth->field_mul(group, r, a, e, ctx))
- goto err;
- /* r := 1/(a * e) */
- if (!BN_mod_inverse(r, r, group->field, ctx)) {
- ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
- goto err;
- }
- /* r := e/(a * e) = 1/a */
- if (!group->meth->field_mul(group, r, r, e, ctx))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*-
- * Apply randomization of EC point projective coordinates:
- *
- * (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z)
- * lambda = [1,group->field)
- *
- */
- int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
- BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *lambda = NULL;
- BIGNUM *temp = NULL;
- BN_CTX_start(ctx);
- lambda = BN_CTX_get(ctx);
- temp = BN_CTX_get(ctx);
- if (temp == NULL) {
- ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE);
- goto end;
- }
- /*-
- * Make sure lambda is not zero.
- * If the RNG fails, we cannot blind but nevertheless want
- * code to continue smoothly and not clobber the error stack.
- */
- do {
- ERR_set_mark();
- ret = BN_priv_rand_range_ex(lambda, group->field, ctx);
- ERR_pop_to_mark();
- if (ret == 0) {
- ret = 1;
- goto end;
- }
- } while (BN_is_zero(lambda));
- /* if field_encode defined convert between representations */
- if ((group->meth->field_encode != NULL
- && !group->meth->field_encode(group, lambda, lambda, ctx))
- || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
- || !group->meth->field_sqr(group, temp, lambda, ctx)
- || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
- || !group->meth->field_mul(group, temp, temp, lambda, ctx)
- || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
- goto end;
- p->Z_is_one = 0;
- ret = 1;
- end:
- BN_CTX_end(ctx);
- return ret;
- }
- /*-
- * Input:
- * - p: affine coordinates
- *
- * Output:
- * - s := p, r := 2p: blinded projective (homogeneous) coordinates
- *
- * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
- * multiplication resistant against side channel attacks" appendix, described at
- * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
- * simplified for Z1=1.
- *
- * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
- * for any non-zero \lambda that holds for projective (homogeneous) coords.
- */
- int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
- t1 = s->Z;
- t2 = r->Z;
- t3 = s->X;
- t4 = r->X;
- t5 = s->Y;
- if (!p->Z_is_one /* r := 2p */
- || !group->meth->field_sqr(group, t3, p->X, ctx)
- || !BN_mod_sub_quick(t4, t3, group->a, group->field)
- || !group->meth->field_sqr(group, t4, t4, ctx)
- || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
- || !BN_mod_lshift_quick(t5, t5, 3, group->field)
- /* r->X coord output */
- || !BN_mod_sub_quick(r->X, t4, t5, group->field)
- || !BN_mod_add_quick(t1, t3, group->a, group->field)
- || !group->meth->field_mul(group, t2, p->X, t1, ctx)
- || !BN_mod_add_quick(t2, group->b, t2, group->field)
- /* r->Z coord output */
- || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
- return 0;
- /* make sure lambda (r->Y here for storage) is not zero */
- do {
- if (!BN_priv_rand_range_ex(r->Y, group->field, ctx))
- return 0;
- } while (BN_is_zero(r->Y));
- /* make sure lambda (s->Z here for storage) is not zero */
- do {
- if (!BN_priv_rand_range_ex(s->Z, group->field, ctx))
- return 0;
- } while (BN_is_zero(s->Z));
- /* if field_encode defined convert between representations */
- if (group->meth->field_encode != NULL
- && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
- || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
- return 0;
- /* blind r and s independently */
- if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
- || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
- || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
- return 0;
- r->Z_is_one = 0;
- s->Z_is_one = 0;
- return 1;
- }
- /*-
- * Input:
- * - s, r: projective (homogeneous) coordinates
- * - p: affine coordinates
- *
- * Output:
- * - s := r + s, r := 2r: projective (homogeneous) coordinates
- *
- * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
- * "A fast parallel elliptic curve multiplication resistant against side channel
- * attacks", as described at
- * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
- */
- int ec_GFp_simple_ladder_step(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
- BN_CTX_start(ctx);
- t0 = BN_CTX_get(ctx);
- t1 = BN_CTX_get(ctx);
- t2 = BN_CTX_get(ctx);
- t3 = BN_CTX_get(ctx);
- t4 = BN_CTX_get(ctx);
- t5 = BN_CTX_get(ctx);
- t6 = BN_CTX_get(ctx);
- if (t6 == NULL
- || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
- || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
- || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
- || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
- || !group->meth->field_mul(group, t5, group->a, t0, ctx)
- || !BN_mod_add_quick(t5, t6, t5, group->field)
- || !BN_mod_add_quick(t6, t3, t4, group->field)
- || !group->meth->field_mul(group, t5, t6, t5, ctx)
- || !group->meth->field_sqr(group, t0, t0, ctx)
- || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
- || !group->meth->field_mul(group, t0, t2, t0, ctx)
- || !BN_mod_lshift1_quick(t5, t5, group->field)
- || !BN_mod_sub_quick(t3, t4, t3, group->field)
- /* s->Z coord output */
- || !group->meth->field_sqr(group, s->Z, t3, ctx)
- || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
- || !BN_mod_add_quick(t0, t0, t5, group->field)
- /* s->X coord output */
- || !BN_mod_sub_quick(s->X, t0, t4, group->field)
- || !group->meth->field_sqr(group, t4, r->X, ctx)
- || !group->meth->field_sqr(group, t5, r->Z, ctx)
- || !group->meth->field_mul(group, t6, t5, group->a, ctx)
- || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
- || !group->meth->field_sqr(group, t1, t1, ctx)
- || !BN_mod_sub_quick(t1, t1, t4, group->field)
- || !BN_mod_sub_quick(t1, t1, t5, group->field)
- || !BN_mod_sub_quick(t3, t4, t6, group->field)
- || !group->meth->field_sqr(group, t3, t3, ctx)
- || !group->meth->field_mul(group, t0, t5, t1, ctx)
- || !group->meth->field_mul(group, t0, t2, t0, ctx)
- /* r->X coord output */
- || !BN_mod_sub_quick(r->X, t3, t0, group->field)
- || !BN_mod_add_quick(t3, t4, t6, group->field)
- || !group->meth->field_sqr(group, t4, t5, ctx)
- || !group->meth->field_mul(group, t4, t4, t2, ctx)
- || !group->meth->field_mul(group, t1, t1, t3, ctx)
- || !BN_mod_lshift1_quick(t1, t1, group->field)
- /* r->Z coord output */
- || !BN_mod_add_quick(r->Z, t4, t1, group->field))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*-
- * Input:
- * - s, r: projective (homogeneous) coordinates
- * - p: affine coordinates
- *
- * Output:
- * - r := (x,y): affine coordinates
- *
- * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
- * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
- * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
- * coords, and return r in affine coordinates.
- *
- * X4 = two*Y1*X2*Z3*Z2;
- * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
- * Z4 = two*Y1*Z3*SQR(Z2);
- *
- * Z4 != 0 because:
- * - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
- * - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
- * - Y1==0 implies p has order 2, so either r or s are infinity and handled by
- * one of the BN_is_zero(...) branches.
- */
- int ec_GFp_simple_ladder_post(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
- if (BN_is_zero(r->Z))
- return EC_POINT_set_to_infinity(group, r);
- if (BN_is_zero(s->Z)) {
- if (!EC_POINT_copy(r, p)
- || !EC_POINT_invert(group, r, ctx))
- return 0;
- return 1;
- }
- BN_CTX_start(ctx);
- t0 = BN_CTX_get(ctx);
- t1 = BN_CTX_get(ctx);
- t2 = BN_CTX_get(ctx);
- t3 = BN_CTX_get(ctx);
- t4 = BN_CTX_get(ctx);
- t5 = BN_CTX_get(ctx);
- t6 = BN_CTX_get(ctx);
- if (t6 == NULL
- || !BN_mod_lshift1_quick(t4, p->Y, group->field)
- || !group->meth->field_mul(group, t6, r->X, t4, ctx)
- || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
- || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
- || !BN_mod_lshift1_quick(t1, group->b, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
- || !group->meth->field_sqr(group, t3, r->Z, ctx)
- || !group->meth->field_mul(group, t2, t3, t1, ctx)
- || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
- || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
- || !BN_mod_add_quick(t1, t1, t6, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
- || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
- || !BN_mod_add_quick(t6, r->X, t0, group->field)
- || !group->meth->field_mul(group, t6, t6, t1, ctx)
- || !BN_mod_add_quick(t6, t6, t2, group->field)
- || !BN_mod_sub_quick(t0, t0, r->X, group->field)
- || !group->meth->field_sqr(group, t0, t0, ctx)
- || !group->meth->field_mul(group, t0, t0, s->X, ctx)
- || !BN_mod_sub_quick(t0, t6, t0, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
- || !group->meth->field_mul(group, t1, t3, t1, ctx)
- || (group->meth->field_decode != NULL
- && !group->meth->field_decode(group, t1, t1, ctx))
- || !group->meth->field_inv(group, t1, t1, ctx)
- || (group->meth->field_encode != NULL
- && !group->meth->field_encode(group, t1, t1, ctx))
- || !group->meth->field_mul(group, r->X, t5, t1, ctx)
- || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
- goto err;
- if (group->meth->field_set_to_one != NULL) {
- if (!group->meth->field_set_to_one(group, r->Z, ctx))
- goto err;
- } else {
- if (!BN_one(r->Z))
- goto err;
- }
- r->Z_is_one = 1;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
|