evp_test.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627
  1. /*
  2. * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <stdio.h>
  10. #include <string.h>
  11. #include <stdlib.h>
  12. #include <ctype.h>
  13. #include <openssl/evp.h>
  14. #include <openssl/pem.h>
  15. #include <openssl/err.h>
  16. #include <openssl/x509v3.h>
  17. #include <openssl/pkcs12.h>
  18. #include <openssl/kdf.h>
  19. #include "internal/numbers.h"
  20. #include "testutil.h"
  21. #include "evp_test.h"
  22. typedef struct evp_test_method_st EVP_TEST_METHOD;
  23. /*
  24. * Structure holding test information
  25. */
  26. typedef struct evp_test_st {
  27. STANZA s; /* Common test stanza */
  28. char *name;
  29. int skip; /* Current test should be skipped */
  30. const EVP_TEST_METHOD *meth; /* method for this test */
  31. const char *err, *aux_err; /* Error string for test */
  32. char *expected_err; /* Expected error value of test */
  33. char *func; /* Expected error function string */
  34. char *reason; /* Expected error reason string */
  35. void *data; /* test specific data */
  36. } EVP_TEST;
  37. /*
  38. * Test method structure
  39. */
  40. struct evp_test_method_st {
  41. /* Name of test as it appears in file */
  42. const char *name;
  43. /* Initialise test for "alg" */
  44. int (*init) (EVP_TEST * t, const char *alg);
  45. /* Clean up method */
  46. void (*cleanup) (EVP_TEST * t);
  47. /* Test specific name value pair processing */
  48. int (*parse) (EVP_TEST * t, const char *name, const char *value);
  49. /* Run the test itself */
  50. int (*run_test) (EVP_TEST * t);
  51. };
  52. /*
  53. * Linked list of named keys.
  54. */
  55. typedef struct key_list_st {
  56. char *name;
  57. EVP_PKEY *key;
  58. struct key_list_st *next;
  59. } KEY_LIST;
  60. /*
  61. * List of public and private keys
  62. */
  63. static KEY_LIST *private_keys;
  64. static KEY_LIST *public_keys;
  65. static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
  66. static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
  67. /*
  68. * Structure used to hold a list of blocks of memory to test
  69. * calls to "update" like functions.
  70. */
  71. struct evp_test_buffer_st {
  72. unsigned char *buf;
  73. size_t buflen;
  74. size_t count;
  75. int count_set;
  76. };
  77. static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
  78. {
  79. if (db != NULL) {
  80. OPENSSL_free(db->buf);
  81. OPENSSL_free(db);
  82. }
  83. }
  84. /*
  85. * append buffer to a list
  86. */
  87. static int evp_test_buffer_append(const char *value,
  88. STACK_OF(EVP_TEST_BUFFER) **sk)
  89. {
  90. EVP_TEST_BUFFER *db = NULL;
  91. if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
  92. goto err;
  93. if (!parse_bin(value, &db->buf, &db->buflen))
  94. goto err;
  95. db->count = 1;
  96. db->count_set = 0;
  97. if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
  98. goto err;
  99. if (!sk_EVP_TEST_BUFFER_push(*sk, db))
  100. goto err;
  101. return 1;
  102. err:
  103. evp_test_buffer_free(db);
  104. return 0;
  105. }
  106. /*
  107. * replace last buffer in list with copies of itself
  108. */
  109. static int evp_test_buffer_ncopy(const char *value,
  110. STACK_OF(EVP_TEST_BUFFER) *sk)
  111. {
  112. EVP_TEST_BUFFER *db;
  113. unsigned char *tbuf, *p;
  114. size_t tbuflen;
  115. int ncopy = atoi(value);
  116. int i;
  117. if (ncopy <= 0)
  118. return 0;
  119. if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
  120. return 0;
  121. db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
  122. tbuflen = db->buflen * ncopy;
  123. if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
  124. return 0;
  125. for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
  126. memcpy(p, db->buf, db->buflen);
  127. OPENSSL_free(db->buf);
  128. db->buf = tbuf;
  129. db->buflen = tbuflen;
  130. return 1;
  131. }
  132. /*
  133. * set repeat count for last buffer in list
  134. */
  135. static int evp_test_buffer_set_count(const char *value,
  136. STACK_OF(EVP_TEST_BUFFER) *sk)
  137. {
  138. EVP_TEST_BUFFER *db;
  139. int count = atoi(value);
  140. if (count <= 0)
  141. return 0;
  142. if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
  143. return 0;
  144. db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
  145. if (db->count_set != 0)
  146. return 0;
  147. db->count = (size_t)count;
  148. db->count_set = 1;
  149. return 1;
  150. }
  151. /*
  152. * call "fn" with each element of the list in turn
  153. */
  154. static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
  155. int (*fn)(void *ctx,
  156. const unsigned char *buf,
  157. size_t buflen),
  158. void *ctx)
  159. {
  160. int i;
  161. for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
  162. EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
  163. size_t j;
  164. for (j = 0; j < tb->count; j++) {
  165. if (fn(ctx, tb->buf, tb->buflen) <= 0)
  166. return 0;
  167. }
  168. }
  169. return 1;
  170. }
  171. /*
  172. * Unescape some sequences in string literals (only \n for now).
  173. * Return an allocated buffer, set |out_len|. If |input_len|
  174. * is zero, get an empty buffer but set length to zero.
  175. */
  176. static unsigned char* unescape(const char *input, size_t input_len,
  177. size_t *out_len)
  178. {
  179. unsigned char *ret, *p;
  180. size_t i;
  181. if (input_len == 0) {
  182. *out_len = 0;
  183. return OPENSSL_zalloc(1);
  184. }
  185. /* Escaping is non-expanding; over-allocate original size for simplicity. */
  186. if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
  187. return NULL;
  188. for (i = 0; i < input_len; i++) {
  189. if (*input == '\\') {
  190. if (i == input_len - 1 || *++input != 'n') {
  191. TEST_error("Bad escape sequence in file");
  192. goto err;
  193. }
  194. *p++ = '\n';
  195. i++;
  196. input++;
  197. } else {
  198. *p++ = *input++;
  199. }
  200. }
  201. *out_len = p - ret;
  202. return ret;
  203. err:
  204. OPENSSL_free(ret);
  205. return NULL;
  206. }
  207. /*
  208. * For a hex string "value" convert to a binary allocated buffer.
  209. * Return 1 on success or 0 on failure.
  210. */
  211. static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
  212. {
  213. long len;
  214. /* Check for NULL literal */
  215. if (strcmp(value, "NULL") == 0) {
  216. *buf = NULL;
  217. *buflen = 0;
  218. return 1;
  219. }
  220. /* Check for empty value */
  221. if (*value == '\0') {
  222. /*
  223. * Don't return NULL for zero length buffer. This is needed for
  224. * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
  225. * buffer even if the key length is 0, in order to detect key reset.
  226. */
  227. *buf = OPENSSL_malloc(1);
  228. if (*buf == NULL)
  229. return 0;
  230. **buf = 0;
  231. *buflen = 0;
  232. return 1;
  233. }
  234. /* Check for string literal */
  235. if (value[0] == '"') {
  236. size_t vlen = strlen(++value);
  237. if (vlen == 0 || value[vlen - 1] != '"')
  238. return 0;
  239. vlen--;
  240. *buf = unescape(value, vlen, buflen);
  241. return *buf == NULL ? 0 : 1;
  242. }
  243. /* Otherwise assume as hex literal and convert it to binary buffer */
  244. if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
  245. TEST_info("Can't convert %s", value);
  246. TEST_openssl_errors();
  247. return -1;
  248. }
  249. /* Size of input buffer means we'll never overflow */
  250. *buflen = len;
  251. return 1;
  252. }
  253. /**
  254. *** MESSAGE DIGEST TESTS
  255. **/
  256. typedef struct digest_data_st {
  257. /* Digest this test is for */
  258. const EVP_MD *digest;
  259. /* Input to digest */
  260. STACK_OF(EVP_TEST_BUFFER) *input;
  261. /* Expected output */
  262. unsigned char *output;
  263. size_t output_len;
  264. } DIGEST_DATA;
  265. static int digest_test_init(EVP_TEST *t, const char *alg)
  266. {
  267. DIGEST_DATA *mdat;
  268. const EVP_MD *digest;
  269. if ((digest = EVP_get_digestbyname(alg)) == NULL) {
  270. /* If alg has an OID assume disabled algorithm */
  271. if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
  272. t->skip = 1;
  273. return 1;
  274. }
  275. return 0;
  276. }
  277. if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
  278. return 0;
  279. t->data = mdat;
  280. mdat->digest = digest;
  281. return 1;
  282. }
  283. static void digest_test_cleanup(EVP_TEST *t)
  284. {
  285. DIGEST_DATA *mdat = t->data;
  286. sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
  287. OPENSSL_free(mdat->output);
  288. }
  289. static int digest_test_parse(EVP_TEST *t,
  290. const char *keyword, const char *value)
  291. {
  292. DIGEST_DATA *mdata = t->data;
  293. if (strcmp(keyword, "Input") == 0)
  294. return evp_test_buffer_append(value, &mdata->input);
  295. if (strcmp(keyword, "Output") == 0)
  296. return parse_bin(value, &mdata->output, &mdata->output_len);
  297. if (strcmp(keyword, "Count") == 0)
  298. return evp_test_buffer_set_count(value, mdata->input);
  299. if (strcmp(keyword, "Ncopy") == 0)
  300. return evp_test_buffer_ncopy(value, mdata->input);
  301. return 0;
  302. }
  303. static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
  304. {
  305. return EVP_DigestUpdate(ctx, buf, buflen);
  306. }
  307. static int digest_test_run(EVP_TEST *t)
  308. {
  309. DIGEST_DATA *expected = t->data;
  310. EVP_MD_CTX *mctx;
  311. unsigned char *got = NULL;
  312. unsigned int got_len;
  313. t->err = "TEST_FAILURE";
  314. if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
  315. goto err;
  316. got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
  317. expected->output_len : EVP_MAX_MD_SIZE);
  318. if (!TEST_ptr(got))
  319. goto err;
  320. if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
  321. t->err = "DIGESTINIT_ERROR";
  322. goto err;
  323. }
  324. if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
  325. t->err = "DIGESTUPDATE_ERROR";
  326. goto err;
  327. }
  328. if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
  329. got_len = expected->output_len;
  330. if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
  331. t->err = "DIGESTFINALXOF_ERROR";
  332. goto err;
  333. }
  334. } else {
  335. if (!EVP_DigestFinal(mctx, got, &got_len)) {
  336. t->err = "DIGESTFINAL_ERROR";
  337. goto err;
  338. }
  339. }
  340. if (!TEST_int_eq(expected->output_len, got_len)) {
  341. t->err = "DIGEST_LENGTH_MISMATCH";
  342. goto err;
  343. }
  344. if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
  345. t->err = "DIGEST_MISMATCH";
  346. goto err;
  347. }
  348. t->err = NULL;
  349. err:
  350. OPENSSL_free(got);
  351. EVP_MD_CTX_free(mctx);
  352. return 1;
  353. }
  354. static const EVP_TEST_METHOD digest_test_method = {
  355. "Digest",
  356. digest_test_init,
  357. digest_test_cleanup,
  358. digest_test_parse,
  359. digest_test_run
  360. };
  361. /**
  362. *** CIPHER TESTS
  363. **/
  364. typedef struct cipher_data_st {
  365. const EVP_CIPHER *cipher;
  366. int enc;
  367. /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
  368. int aead;
  369. unsigned char *key;
  370. size_t key_len;
  371. unsigned char *iv;
  372. size_t iv_len;
  373. unsigned char *plaintext;
  374. size_t plaintext_len;
  375. unsigned char *ciphertext;
  376. size_t ciphertext_len;
  377. /* GCM, CCM only */
  378. unsigned char *aad;
  379. size_t aad_len;
  380. unsigned char *tag;
  381. size_t tag_len;
  382. } CIPHER_DATA;
  383. static int cipher_test_init(EVP_TEST *t, const char *alg)
  384. {
  385. const EVP_CIPHER *cipher;
  386. CIPHER_DATA *cdat;
  387. int m;
  388. if ((cipher = EVP_get_cipherbyname(alg)) == NULL) {
  389. /* If alg has an OID assume disabled algorithm */
  390. if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
  391. t->skip = 1;
  392. return 1;
  393. }
  394. return 0;
  395. }
  396. cdat = OPENSSL_zalloc(sizeof(*cdat));
  397. cdat->cipher = cipher;
  398. cdat->enc = -1;
  399. m = EVP_CIPHER_mode(cipher);
  400. if (m == EVP_CIPH_GCM_MODE
  401. || m == EVP_CIPH_OCB_MODE
  402. || m == EVP_CIPH_CCM_MODE)
  403. cdat->aead = EVP_CIPHER_mode(cipher);
  404. else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
  405. cdat->aead = -1;
  406. else
  407. cdat->aead = 0;
  408. t->data = cdat;
  409. return 1;
  410. }
  411. static void cipher_test_cleanup(EVP_TEST *t)
  412. {
  413. CIPHER_DATA *cdat = t->data;
  414. OPENSSL_free(cdat->key);
  415. OPENSSL_free(cdat->iv);
  416. OPENSSL_free(cdat->ciphertext);
  417. OPENSSL_free(cdat->plaintext);
  418. OPENSSL_free(cdat->aad);
  419. OPENSSL_free(cdat->tag);
  420. }
  421. static int cipher_test_parse(EVP_TEST *t, const char *keyword,
  422. const char *value)
  423. {
  424. CIPHER_DATA *cdat = t->data;
  425. if (strcmp(keyword, "Key") == 0)
  426. return parse_bin(value, &cdat->key, &cdat->key_len);
  427. if (strcmp(keyword, "IV") == 0)
  428. return parse_bin(value, &cdat->iv, &cdat->iv_len);
  429. if (strcmp(keyword, "Plaintext") == 0)
  430. return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
  431. if (strcmp(keyword, "Ciphertext") == 0)
  432. return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
  433. if (cdat->aead) {
  434. if (strcmp(keyword, "AAD") == 0)
  435. return parse_bin(value, &cdat->aad, &cdat->aad_len);
  436. if (strcmp(keyword, "Tag") == 0)
  437. return parse_bin(value, &cdat->tag, &cdat->tag_len);
  438. }
  439. if (strcmp(keyword, "Operation") == 0) {
  440. if (strcmp(value, "ENCRYPT") == 0)
  441. cdat->enc = 1;
  442. else if (strcmp(value, "DECRYPT") == 0)
  443. cdat->enc = 0;
  444. else
  445. return 0;
  446. return 1;
  447. }
  448. return 0;
  449. }
  450. static int cipher_test_enc(EVP_TEST *t, int enc,
  451. size_t out_misalign, size_t inp_misalign, int frag)
  452. {
  453. CIPHER_DATA *expected = t->data;
  454. unsigned char *in, *expected_out, *tmp = NULL;
  455. size_t in_len, out_len, donelen = 0;
  456. int ok = 0, tmplen, chunklen, tmpflen;
  457. EVP_CIPHER_CTX *ctx = NULL;
  458. t->err = "TEST_FAILURE";
  459. if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
  460. goto err;
  461. EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
  462. if (enc) {
  463. in = expected->plaintext;
  464. in_len = expected->plaintext_len;
  465. expected_out = expected->ciphertext;
  466. out_len = expected->ciphertext_len;
  467. } else {
  468. in = expected->ciphertext;
  469. in_len = expected->ciphertext_len;
  470. expected_out = expected->plaintext;
  471. out_len = expected->plaintext_len;
  472. }
  473. if (inp_misalign == (size_t)-1) {
  474. /*
  475. * Exercise in-place encryption
  476. */
  477. tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
  478. if (!tmp)
  479. goto err;
  480. in = memcpy(tmp + out_misalign, in, in_len);
  481. } else {
  482. inp_misalign += 16 - ((out_misalign + in_len) & 15);
  483. /*
  484. * 'tmp' will store both output and copy of input. We make the copy
  485. * of input to specifically aligned part of 'tmp'. So we just
  486. * figured out how much padding would ensure the required alignment,
  487. * now we allocate extended buffer and finally copy the input just
  488. * past inp_misalign in expression below. Output will be written
  489. * past out_misalign...
  490. */
  491. tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
  492. inp_misalign + in_len);
  493. if (!tmp)
  494. goto err;
  495. in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
  496. inp_misalign, in, in_len);
  497. }
  498. if (!EVP_CipherInit_ex(ctx, expected->cipher, NULL, NULL, NULL, enc)) {
  499. t->err = "CIPHERINIT_ERROR";
  500. goto err;
  501. }
  502. if (expected->iv) {
  503. if (expected->aead) {
  504. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
  505. expected->iv_len, 0)) {
  506. t->err = "INVALID_IV_LENGTH";
  507. goto err;
  508. }
  509. } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) {
  510. t->err = "INVALID_IV_LENGTH";
  511. goto err;
  512. }
  513. }
  514. if (expected->aead) {
  515. unsigned char *tag;
  516. /*
  517. * If encrypting or OCB just set tag length initially, otherwise
  518. * set tag length and value.
  519. */
  520. if (enc || expected->aead == EVP_CIPH_OCB_MODE) {
  521. t->err = "TAG_LENGTH_SET_ERROR";
  522. tag = NULL;
  523. } else {
  524. t->err = "TAG_SET_ERROR";
  525. tag = expected->tag;
  526. }
  527. if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
  528. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
  529. expected->tag_len, tag))
  530. goto err;
  531. }
  532. }
  533. if (!EVP_CIPHER_CTX_set_key_length(ctx, expected->key_len)) {
  534. t->err = "INVALID_KEY_LENGTH";
  535. goto err;
  536. }
  537. if (!EVP_CipherInit_ex(ctx, NULL, NULL, expected->key, expected->iv, -1)) {
  538. t->err = "KEY_SET_ERROR";
  539. goto err;
  540. }
  541. if (!enc && expected->aead == EVP_CIPH_OCB_MODE) {
  542. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
  543. expected->tag_len, expected->tag)) {
  544. t->err = "TAG_SET_ERROR";
  545. goto err;
  546. }
  547. }
  548. if (expected->aead == EVP_CIPH_CCM_MODE) {
  549. if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
  550. t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
  551. goto err;
  552. }
  553. }
  554. if (expected->aad) {
  555. t->err = "AAD_SET_ERROR";
  556. if (!frag) {
  557. if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad,
  558. expected->aad_len))
  559. goto err;
  560. } else {
  561. /*
  562. * Supply the AAD in chunks less than the block size where possible
  563. */
  564. if (expected->aad_len > 0) {
  565. if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad, 1))
  566. goto err;
  567. donelen++;
  568. }
  569. if (expected->aad_len > 2) {
  570. if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
  571. expected->aad + donelen,
  572. expected->aad_len - 2))
  573. goto err;
  574. donelen += expected->aad_len - 2;
  575. }
  576. if (expected->aad_len > 1
  577. && !EVP_CipherUpdate(ctx, NULL, &chunklen,
  578. expected->aad + donelen, 1))
  579. goto err;
  580. }
  581. }
  582. EVP_CIPHER_CTX_set_padding(ctx, 0);
  583. t->err = "CIPHERUPDATE_ERROR";
  584. tmplen = 0;
  585. if (!frag) {
  586. /* We supply the data all in one go */
  587. if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
  588. goto err;
  589. } else {
  590. /* Supply the data in chunks less than the block size where possible */
  591. if (in_len > 0) {
  592. if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
  593. goto err;
  594. tmplen += chunklen;
  595. in++;
  596. in_len--;
  597. }
  598. if (in_len > 1) {
  599. if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
  600. in, in_len - 1))
  601. goto err;
  602. tmplen += chunklen;
  603. in += in_len - 1;
  604. in_len = 1;
  605. }
  606. if (in_len > 0 ) {
  607. if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
  608. in, 1))
  609. goto err;
  610. tmplen += chunklen;
  611. }
  612. }
  613. if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
  614. t->err = "CIPHERFINAL_ERROR";
  615. goto err;
  616. }
  617. if (!TEST_mem_eq(expected_out, out_len,
  618. tmp + out_misalign, tmplen + tmpflen)) {
  619. t->err = "VALUE_MISMATCH";
  620. goto err;
  621. }
  622. if (enc && expected->aead) {
  623. unsigned char rtag[16];
  624. if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
  625. t->err = "TAG_LENGTH_INTERNAL_ERROR";
  626. goto err;
  627. }
  628. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
  629. expected->tag_len, rtag)) {
  630. t->err = "TAG_RETRIEVE_ERROR";
  631. goto err;
  632. }
  633. if (!TEST_mem_eq(expected->tag, expected->tag_len,
  634. rtag, expected->tag_len)) {
  635. t->err = "TAG_VALUE_MISMATCH";
  636. goto err;
  637. }
  638. }
  639. t->err = NULL;
  640. ok = 1;
  641. err:
  642. OPENSSL_free(tmp);
  643. EVP_CIPHER_CTX_free(ctx);
  644. return ok;
  645. }
  646. static int cipher_test_run(EVP_TEST *t)
  647. {
  648. CIPHER_DATA *cdat = t->data;
  649. int rv, frag = 0;
  650. size_t out_misalign, inp_misalign;
  651. if (!cdat->key) {
  652. t->err = "NO_KEY";
  653. return 0;
  654. }
  655. if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
  656. /* IV is optional and usually omitted in wrap mode */
  657. if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
  658. t->err = "NO_IV";
  659. return 0;
  660. }
  661. }
  662. if (cdat->aead && !cdat->tag) {
  663. t->err = "NO_TAG";
  664. return 0;
  665. }
  666. for (out_misalign = 0; out_misalign <= 1;) {
  667. static char aux_err[64];
  668. t->aux_err = aux_err;
  669. for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
  670. if (inp_misalign == (size_t)-1) {
  671. /* kludge: inp_misalign == -1 means "exercise in-place" */
  672. BIO_snprintf(aux_err, sizeof(aux_err),
  673. "%s in-place, %sfragmented",
  674. out_misalign ? "misaligned" : "aligned",
  675. frag ? "" : "not ");
  676. } else {
  677. BIO_snprintf(aux_err, sizeof(aux_err),
  678. "%s output and %s input, %sfragmented",
  679. out_misalign ? "misaligned" : "aligned",
  680. inp_misalign ? "misaligned" : "aligned",
  681. frag ? "" : "not ");
  682. }
  683. if (cdat->enc) {
  684. rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
  685. /* Not fatal errors: return */
  686. if (rv != 1) {
  687. if (rv < 0)
  688. return 0;
  689. return 1;
  690. }
  691. }
  692. if (cdat->enc != 1) {
  693. rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
  694. /* Not fatal errors: return */
  695. if (rv != 1) {
  696. if (rv < 0)
  697. return 0;
  698. return 1;
  699. }
  700. }
  701. }
  702. if (out_misalign == 1 && frag == 0) {
  703. /*
  704. * XTS, CCM and Wrap modes have special requirements about input
  705. * lengths so we don't fragment for those
  706. */
  707. if (cdat->aead == EVP_CIPH_CCM_MODE
  708. || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
  709. || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
  710. break;
  711. out_misalign = 0;
  712. frag++;
  713. } else {
  714. out_misalign++;
  715. }
  716. }
  717. t->aux_err = NULL;
  718. return 1;
  719. }
  720. static const EVP_TEST_METHOD cipher_test_method = {
  721. "Cipher",
  722. cipher_test_init,
  723. cipher_test_cleanup,
  724. cipher_test_parse,
  725. cipher_test_run
  726. };
  727. /**
  728. *** MAC TESTS
  729. **/
  730. typedef struct mac_data_st {
  731. /* MAC type */
  732. int type;
  733. /* Algorithm string for this MAC */
  734. char *alg;
  735. /* MAC key */
  736. unsigned char *key;
  737. size_t key_len;
  738. /* Input to MAC */
  739. unsigned char *input;
  740. size_t input_len;
  741. /* Expected output */
  742. unsigned char *output;
  743. size_t output_len;
  744. } MAC_DATA;
  745. static int mac_test_init(EVP_TEST *t, const char *alg)
  746. {
  747. int type;
  748. MAC_DATA *mdat;
  749. if (strcmp(alg, "HMAC") == 0) {
  750. type = EVP_PKEY_HMAC;
  751. } else if (strcmp(alg, "CMAC") == 0) {
  752. #ifndef OPENSSL_NO_CMAC
  753. type = EVP_PKEY_CMAC;
  754. #else
  755. t->skip = 1;
  756. return 1;
  757. #endif
  758. } else if (strcmp(alg, "Poly1305") == 0) {
  759. #ifndef OPENSSL_NO_POLY1305
  760. type = EVP_PKEY_POLY1305;
  761. #else
  762. t->skip = 1;
  763. return 1;
  764. #endif
  765. } else if (strcmp(alg, "SipHash") == 0) {
  766. #ifndef OPENSSL_NO_SIPHASH
  767. type = EVP_PKEY_SIPHASH;
  768. #else
  769. t->skip = 1;
  770. return 1;
  771. #endif
  772. } else
  773. return 0;
  774. mdat = OPENSSL_zalloc(sizeof(*mdat));
  775. mdat->type = type;
  776. t->data = mdat;
  777. return 1;
  778. }
  779. static void mac_test_cleanup(EVP_TEST *t)
  780. {
  781. MAC_DATA *mdat = t->data;
  782. OPENSSL_free(mdat->alg);
  783. OPENSSL_free(mdat->key);
  784. OPENSSL_free(mdat->input);
  785. OPENSSL_free(mdat->output);
  786. }
  787. static int mac_test_parse(EVP_TEST *t,
  788. const char *keyword, const char *value)
  789. {
  790. MAC_DATA *mdata = t->data;
  791. if (strcmp(keyword, "Key") == 0)
  792. return parse_bin(value, &mdata->key, &mdata->key_len);
  793. if (strcmp(keyword, "Algorithm") == 0) {
  794. mdata->alg = OPENSSL_strdup(value);
  795. if (!mdata->alg)
  796. return 0;
  797. return 1;
  798. }
  799. if (strcmp(keyword, "Input") == 0)
  800. return parse_bin(value, &mdata->input, &mdata->input_len);
  801. if (strcmp(keyword, "Output") == 0)
  802. return parse_bin(value, &mdata->output, &mdata->output_len);
  803. return 0;
  804. }
  805. static int mac_test_run(EVP_TEST *t)
  806. {
  807. MAC_DATA *expected = t->data;
  808. EVP_MD_CTX *mctx = NULL;
  809. EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
  810. EVP_PKEY *key = NULL;
  811. const EVP_MD *md = NULL;
  812. unsigned char *got = NULL;
  813. size_t got_len;
  814. #ifdef OPENSSL_NO_DES
  815. if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
  816. /* Skip DES */
  817. t->err = NULL;
  818. goto err;
  819. }
  820. #endif
  821. if (expected->type == EVP_PKEY_CMAC)
  822. key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
  823. EVP_get_cipherbyname(expected->alg));
  824. else
  825. key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key,
  826. expected->key_len);
  827. if (key == NULL) {
  828. t->err = "MAC_KEY_CREATE_ERROR";
  829. goto err;
  830. }
  831. if (expected->type == EVP_PKEY_HMAC) {
  832. if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) {
  833. t->err = "MAC_ALGORITHM_SET_ERROR";
  834. goto err;
  835. }
  836. }
  837. if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
  838. t->err = "INTERNAL_ERROR";
  839. goto err;
  840. }
  841. if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
  842. t->err = "DIGESTSIGNINIT_ERROR";
  843. goto err;
  844. }
  845. if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
  846. t->err = "DIGESTSIGNUPDATE_ERROR";
  847. goto err;
  848. }
  849. if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
  850. t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
  851. goto err;
  852. }
  853. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  854. t->err = "TEST_FAILURE";
  855. goto err;
  856. }
  857. if (!EVP_DigestSignFinal(mctx, got, &got_len)
  858. || !TEST_mem_eq(expected->output, expected->output_len,
  859. got, got_len)) {
  860. t->err = "TEST_MAC_ERR";
  861. goto err;
  862. }
  863. t->err = NULL;
  864. err:
  865. EVP_MD_CTX_free(mctx);
  866. OPENSSL_free(got);
  867. EVP_PKEY_CTX_free(genctx);
  868. EVP_PKEY_free(key);
  869. return 1;
  870. }
  871. static const EVP_TEST_METHOD mac_test_method = {
  872. "MAC",
  873. mac_test_init,
  874. mac_test_cleanup,
  875. mac_test_parse,
  876. mac_test_run
  877. };
  878. /**
  879. *** PUBLIC KEY TESTS
  880. *** These are all very similar and share much common code.
  881. **/
  882. typedef struct pkey_data_st {
  883. /* Context for this operation */
  884. EVP_PKEY_CTX *ctx;
  885. /* Key operation to perform */
  886. int (*keyop) (EVP_PKEY_CTX *ctx,
  887. unsigned char *sig, size_t *siglen,
  888. const unsigned char *tbs, size_t tbslen);
  889. /* Input to MAC */
  890. unsigned char *input;
  891. size_t input_len;
  892. /* Expected output */
  893. unsigned char *output;
  894. size_t output_len;
  895. } PKEY_DATA;
  896. /*
  897. * Perform public key operation setup: lookup key, allocated ctx and call
  898. * the appropriate initialisation function
  899. */
  900. static int pkey_test_init(EVP_TEST *t, const char *name,
  901. int use_public,
  902. int (*keyopinit) (EVP_PKEY_CTX *ctx),
  903. int (*keyop)(EVP_PKEY_CTX *ctx,
  904. unsigned char *sig, size_t *siglen,
  905. const unsigned char *tbs,
  906. size_t tbslen))
  907. {
  908. PKEY_DATA *kdata;
  909. EVP_PKEY *pkey = NULL;
  910. int rv = 0;
  911. if (use_public)
  912. rv = find_key(&pkey, name, public_keys);
  913. if (rv == 0)
  914. rv = find_key(&pkey, name, private_keys);
  915. if (rv == 0 || pkey == NULL) {
  916. t->skip = 1;
  917. return 1;
  918. }
  919. if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
  920. EVP_PKEY_free(pkey);
  921. return 0;
  922. }
  923. kdata->keyop = keyop;
  924. if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) {
  925. EVP_PKEY_free(pkey);
  926. OPENSSL_free(kdata);
  927. return 0;
  928. }
  929. if (keyopinit(kdata->ctx) <= 0)
  930. t->err = "KEYOP_INIT_ERROR";
  931. t->data = kdata;
  932. return 1;
  933. }
  934. static void pkey_test_cleanup(EVP_TEST *t)
  935. {
  936. PKEY_DATA *kdata = t->data;
  937. OPENSSL_free(kdata->input);
  938. OPENSSL_free(kdata->output);
  939. EVP_PKEY_CTX_free(kdata->ctx);
  940. }
  941. static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
  942. const char *value)
  943. {
  944. int rv;
  945. char *p, *tmpval;
  946. if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
  947. return 0;
  948. p = strchr(tmpval, ':');
  949. if (p != NULL)
  950. *p++ = '\0';
  951. rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
  952. if (rv == -2) {
  953. t->err = "PKEY_CTRL_INVALID";
  954. rv = 1;
  955. } else if (p != NULL && rv <= 0) {
  956. /* If p has an OID and lookup fails assume disabled algorithm */
  957. int nid = OBJ_sn2nid(p);
  958. if (nid == NID_undef)
  959. nid = OBJ_ln2nid(p);
  960. if (nid != NID_undef
  961. && EVP_get_digestbynid(nid) == NULL
  962. && EVP_get_cipherbynid(nid) == NULL) {
  963. t->skip = 1;
  964. rv = 1;
  965. } else {
  966. t->err = "PKEY_CTRL_ERROR";
  967. rv = 1;
  968. }
  969. }
  970. OPENSSL_free(tmpval);
  971. return rv > 0;
  972. }
  973. static int pkey_test_parse(EVP_TEST *t,
  974. const char *keyword, const char *value)
  975. {
  976. PKEY_DATA *kdata = t->data;
  977. if (strcmp(keyword, "Input") == 0)
  978. return parse_bin(value, &kdata->input, &kdata->input_len);
  979. if (strcmp(keyword, "Output") == 0)
  980. return parse_bin(value, &kdata->output, &kdata->output_len);
  981. if (strcmp(keyword, "Ctrl") == 0)
  982. return pkey_test_ctrl(t, kdata->ctx, value);
  983. return 0;
  984. }
  985. static int pkey_test_run(EVP_TEST *t)
  986. {
  987. PKEY_DATA *expected = t->data;
  988. unsigned char *got = NULL;
  989. size_t got_len;
  990. if (expected->keyop(expected->ctx, NULL, &got_len,
  991. expected->input, expected->input_len) <= 0
  992. || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
  993. t->err = "KEYOP_LENGTH_ERROR";
  994. goto err;
  995. }
  996. if (expected->keyop(expected->ctx, got, &got_len,
  997. expected->input, expected->input_len) <= 0) {
  998. t->err = "KEYOP_ERROR";
  999. goto err;
  1000. }
  1001. if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
  1002. t->err = "KEYOP_MISMATCH";
  1003. goto err;
  1004. }
  1005. t->err = NULL;
  1006. err:
  1007. OPENSSL_free(got);
  1008. return 1;
  1009. }
  1010. static int sign_test_init(EVP_TEST *t, const char *name)
  1011. {
  1012. return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
  1013. }
  1014. static const EVP_TEST_METHOD psign_test_method = {
  1015. "Sign",
  1016. sign_test_init,
  1017. pkey_test_cleanup,
  1018. pkey_test_parse,
  1019. pkey_test_run
  1020. };
  1021. static int verify_recover_test_init(EVP_TEST *t, const char *name)
  1022. {
  1023. return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
  1024. EVP_PKEY_verify_recover);
  1025. }
  1026. static const EVP_TEST_METHOD pverify_recover_test_method = {
  1027. "VerifyRecover",
  1028. verify_recover_test_init,
  1029. pkey_test_cleanup,
  1030. pkey_test_parse,
  1031. pkey_test_run
  1032. };
  1033. static int decrypt_test_init(EVP_TEST *t, const char *name)
  1034. {
  1035. return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
  1036. EVP_PKEY_decrypt);
  1037. }
  1038. static const EVP_TEST_METHOD pdecrypt_test_method = {
  1039. "Decrypt",
  1040. decrypt_test_init,
  1041. pkey_test_cleanup,
  1042. pkey_test_parse,
  1043. pkey_test_run
  1044. };
  1045. static int verify_test_init(EVP_TEST *t, const char *name)
  1046. {
  1047. return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
  1048. }
  1049. static int verify_test_run(EVP_TEST *t)
  1050. {
  1051. PKEY_DATA *kdata = t->data;
  1052. if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
  1053. kdata->input, kdata->input_len) <= 0)
  1054. t->err = "VERIFY_ERROR";
  1055. return 1;
  1056. }
  1057. static const EVP_TEST_METHOD pverify_test_method = {
  1058. "Verify",
  1059. verify_test_init,
  1060. pkey_test_cleanup,
  1061. pkey_test_parse,
  1062. verify_test_run
  1063. };
  1064. static int pderive_test_init(EVP_TEST *t, const char *name)
  1065. {
  1066. return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
  1067. }
  1068. static int pderive_test_parse(EVP_TEST *t,
  1069. const char *keyword, const char *value)
  1070. {
  1071. PKEY_DATA *kdata = t->data;
  1072. if (strcmp(keyword, "PeerKey") == 0) {
  1073. EVP_PKEY *peer;
  1074. if (find_key(&peer, value, public_keys) == 0)
  1075. return 0;
  1076. if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
  1077. return 0;
  1078. return 1;
  1079. }
  1080. if (strcmp(keyword, "SharedSecret") == 0)
  1081. return parse_bin(value, &kdata->output, &kdata->output_len);
  1082. if (strcmp(keyword, "Ctrl") == 0)
  1083. return pkey_test_ctrl(t, kdata->ctx, value);
  1084. return 0;
  1085. }
  1086. static int pderive_test_run(EVP_TEST *t)
  1087. {
  1088. PKEY_DATA *expected = t->data;
  1089. unsigned char *got = NULL;
  1090. size_t got_len;
  1091. if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
  1092. t->err = "DERIVE_ERROR";
  1093. goto err;
  1094. }
  1095. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1096. t->err = "DERIVE_ERROR";
  1097. goto err;
  1098. }
  1099. if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
  1100. t->err = "DERIVE_ERROR";
  1101. goto err;
  1102. }
  1103. if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
  1104. t->err = "SHARED_SECRET_MISMATCH";
  1105. goto err;
  1106. }
  1107. t->err = NULL;
  1108. err:
  1109. OPENSSL_free(got);
  1110. return 1;
  1111. }
  1112. static const EVP_TEST_METHOD pderive_test_method = {
  1113. "Derive",
  1114. pderive_test_init,
  1115. pkey_test_cleanup,
  1116. pderive_test_parse,
  1117. pderive_test_run
  1118. };
  1119. /**
  1120. *** PBE TESTS
  1121. **/
  1122. typedef enum pbe_type_enum {
  1123. PBE_TYPE_INVALID = 0,
  1124. PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
  1125. } PBE_TYPE;
  1126. typedef struct pbe_data_st {
  1127. PBE_TYPE pbe_type;
  1128. /* scrypt parameters */
  1129. uint64_t N, r, p, maxmem;
  1130. /* PKCS#12 parameters */
  1131. int id, iter;
  1132. const EVP_MD *md;
  1133. /* password */
  1134. unsigned char *pass;
  1135. size_t pass_len;
  1136. /* salt */
  1137. unsigned char *salt;
  1138. size_t salt_len;
  1139. /* Expected output */
  1140. unsigned char *key;
  1141. size_t key_len;
  1142. } PBE_DATA;
  1143. #ifndef OPENSSL_NO_SCRYPT
  1144. /*
  1145. * Parse unsigned decimal 64 bit integer value
  1146. */
  1147. static int parse_uint64(const char *value, uint64_t *pr)
  1148. {
  1149. const char *p = value;
  1150. if (!TEST_true(*p)) {
  1151. TEST_info("Invalid empty integer value");
  1152. return -1;
  1153. }
  1154. for (*pr = 0; *p; ) {
  1155. if (*pr > UINT64_MAX / 10) {
  1156. TEST_error("Integer overflow in string %s", value);
  1157. return -1;
  1158. }
  1159. *pr *= 10;
  1160. if (!TEST_true(isdigit((unsigned char)*p))) {
  1161. TEST_error("Invalid character in string %s", value);
  1162. return -1;
  1163. }
  1164. *pr += *p - '0';
  1165. p++;
  1166. }
  1167. return 1;
  1168. }
  1169. static int scrypt_test_parse(EVP_TEST *t,
  1170. const char *keyword, const char *value)
  1171. {
  1172. PBE_DATA *pdata = t->data;
  1173. if (strcmp(keyword, "N") == 0)
  1174. return parse_uint64(value, &pdata->N);
  1175. if (strcmp(keyword, "p") == 0)
  1176. return parse_uint64(value, &pdata->p);
  1177. if (strcmp(keyword, "r") == 0)
  1178. return parse_uint64(value, &pdata->r);
  1179. if (strcmp(keyword, "maxmem") == 0)
  1180. return parse_uint64(value, &pdata->maxmem);
  1181. return 0;
  1182. }
  1183. #endif
  1184. static int pbkdf2_test_parse(EVP_TEST *t,
  1185. const char *keyword, const char *value)
  1186. {
  1187. PBE_DATA *pdata = t->data;
  1188. if (strcmp(keyword, "iter") == 0) {
  1189. pdata->iter = atoi(value);
  1190. if (pdata->iter <= 0)
  1191. return -1;
  1192. return 1;
  1193. }
  1194. if (strcmp(keyword, "MD") == 0) {
  1195. pdata->md = EVP_get_digestbyname(value);
  1196. if (pdata->md == NULL)
  1197. return -1;
  1198. return 1;
  1199. }
  1200. return 0;
  1201. }
  1202. static int pkcs12_test_parse(EVP_TEST *t,
  1203. const char *keyword, const char *value)
  1204. {
  1205. PBE_DATA *pdata = t->data;
  1206. if (strcmp(keyword, "id") == 0) {
  1207. pdata->id = atoi(value);
  1208. if (pdata->id <= 0)
  1209. return -1;
  1210. return 1;
  1211. }
  1212. return pbkdf2_test_parse(t, keyword, value);
  1213. }
  1214. static int pbe_test_init(EVP_TEST *t, const char *alg)
  1215. {
  1216. PBE_DATA *pdat;
  1217. PBE_TYPE pbe_type = PBE_TYPE_INVALID;
  1218. if (strcmp(alg, "scrypt") == 0) {
  1219. #ifndef OPENSSL_NO_SCRYPT
  1220. pbe_type = PBE_TYPE_SCRYPT;
  1221. #else
  1222. t->skip = 1;
  1223. return 1;
  1224. #endif
  1225. } else if (strcmp(alg, "pbkdf2") == 0) {
  1226. pbe_type = PBE_TYPE_PBKDF2;
  1227. } else if (strcmp(alg, "pkcs12") == 0) {
  1228. pbe_type = PBE_TYPE_PKCS12;
  1229. } else {
  1230. TEST_error("Unknown pbe algorithm %s", alg);
  1231. }
  1232. pdat = OPENSSL_zalloc(sizeof(*pdat));
  1233. pdat->pbe_type = pbe_type;
  1234. t->data = pdat;
  1235. return 1;
  1236. }
  1237. static void pbe_test_cleanup(EVP_TEST *t)
  1238. {
  1239. PBE_DATA *pdat = t->data;
  1240. OPENSSL_free(pdat->pass);
  1241. OPENSSL_free(pdat->salt);
  1242. OPENSSL_free(pdat->key);
  1243. }
  1244. static int pbe_test_parse(EVP_TEST *t,
  1245. const char *keyword, const char *value)
  1246. {
  1247. PBE_DATA *pdata = t->data;
  1248. if (strcmp(keyword, "Password") == 0)
  1249. return parse_bin(value, &pdata->pass, &pdata->pass_len);
  1250. if (strcmp(keyword, "Salt") == 0)
  1251. return parse_bin(value, &pdata->salt, &pdata->salt_len);
  1252. if (strcmp(keyword, "Key") == 0)
  1253. return parse_bin(value, &pdata->key, &pdata->key_len);
  1254. if (pdata->pbe_type == PBE_TYPE_PBKDF2)
  1255. return pbkdf2_test_parse(t, keyword, value);
  1256. else if (pdata->pbe_type == PBE_TYPE_PKCS12)
  1257. return pkcs12_test_parse(t, keyword, value);
  1258. #ifndef OPENSSL_NO_SCRYPT
  1259. else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
  1260. return scrypt_test_parse(t, keyword, value);
  1261. #endif
  1262. return 0;
  1263. }
  1264. static int pbe_test_run(EVP_TEST *t)
  1265. {
  1266. PBE_DATA *expected = t->data;
  1267. unsigned char *key;
  1268. if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
  1269. t->err = "INTERNAL_ERROR";
  1270. goto err;
  1271. }
  1272. if (expected->pbe_type == PBE_TYPE_PBKDF2) {
  1273. if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
  1274. expected->salt, expected->salt_len,
  1275. expected->iter, expected->md,
  1276. expected->key_len, key) == 0) {
  1277. t->err = "PBKDF2_ERROR";
  1278. goto err;
  1279. }
  1280. #ifndef OPENSSL_NO_SCRYPT
  1281. } else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
  1282. if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
  1283. expected->salt, expected->salt_len, expected->N,
  1284. expected->r, expected->p, expected->maxmem,
  1285. key, expected->key_len) == 0) {
  1286. t->err = "SCRYPT_ERROR";
  1287. goto err;
  1288. }
  1289. #endif
  1290. } else if (expected->pbe_type == PBE_TYPE_PKCS12) {
  1291. if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
  1292. expected->salt, expected->salt_len,
  1293. expected->id, expected->iter, expected->key_len,
  1294. key, expected->md) == 0) {
  1295. t->err = "PKCS12_ERROR";
  1296. goto err;
  1297. }
  1298. }
  1299. if (!TEST_mem_eq(expected->key, expected->key_len,
  1300. key, expected->key_len)) {
  1301. t->err = "KEY_MISMATCH";
  1302. goto err;
  1303. }
  1304. t->err = NULL;
  1305. err:
  1306. OPENSSL_free(key);
  1307. return 1;
  1308. }
  1309. static const EVP_TEST_METHOD pbe_test_method = {
  1310. "PBE",
  1311. pbe_test_init,
  1312. pbe_test_cleanup,
  1313. pbe_test_parse,
  1314. pbe_test_run
  1315. };
  1316. /**
  1317. *** BASE64 TESTS
  1318. **/
  1319. typedef enum {
  1320. BASE64_CANONICAL_ENCODING = 0,
  1321. BASE64_VALID_ENCODING = 1,
  1322. BASE64_INVALID_ENCODING = 2
  1323. } base64_encoding_type;
  1324. typedef struct encode_data_st {
  1325. /* Input to encoding */
  1326. unsigned char *input;
  1327. size_t input_len;
  1328. /* Expected output */
  1329. unsigned char *output;
  1330. size_t output_len;
  1331. base64_encoding_type encoding;
  1332. } ENCODE_DATA;
  1333. static int encode_test_init(EVP_TEST *t, const char *encoding)
  1334. {
  1335. ENCODE_DATA *edata;
  1336. if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
  1337. return 0;
  1338. if (strcmp(encoding, "canonical") == 0) {
  1339. edata->encoding = BASE64_CANONICAL_ENCODING;
  1340. } else if (strcmp(encoding, "valid") == 0) {
  1341. edata->encoding = BASE64_VALID_ENCODING;
  1342. } else if (strcmp(encoding, "invalid") == 0) {
  1343. edata->encoding = BASE64_INVALID_ENCODING;
  1344. if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
  1345. return 0;
  1346. } else {
  1347. TEST_error("Bad encoding: %s."
  1348. " Should be one of {canonical, valid, invalid}",
  1349. encoding);
  1350. return 0;
  1351. }
  1352. t->data = edata;
  1353. return 1;
  1354. }
  1355. static void encode_test_cleanup(EVP_TEST *t)
  1356. {
  1357. ENCODE_DATA *edata = t->data;
  1358. OPENSSL_free(edata->input);
  1359. OPENSSL_free(edata->output);
  1360. memset(edata, 0, sizeof(*edata));
  1361. }
  1362. static int encode_test_parse(EVP_TEST *t,
  1363. const char *keyword, const char *value)
  1364. {
  1365. ENCODE_DATA *edata = t->data;
  1366. if (strcmp(keyword, "Input") == 0)
  1367. return parse_bin(value, &edata->input, &edata->input_len);
  1368. if (strcmp(keyword, "Output") == 0)
  1369. return parse_bin(value, &edata->output, &edata->output_len);
  1370. return 0;
  1371. }
  1372. static int encode_test_run(EVP_TEST *t)
  1373. {
  1374. ENCODE_DATA *expected = t->data;
  1375. unsigned char *encode_out = NULL, *decode_out = NULL;
  1376. int output_len, chunk_len;
  1377. EVP_ENCODE_CTX *decode_ctx;
  1378. if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
  1379. t->err = "INTERNAL_ERROR";
  1380. goto err;
  1381. }
  1382. if (expected->encoding == BASE64_CANONICAL_ENCODING) {
  1383. EVP_ENCODE_CTX *encode_ctx;
  1384. if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
  1385. || !TEST_ptr(encode_out =
  1386. OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
  1387. goto err;
  1388. EVP_EncodeInit(encode_ctx);
  1389. EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
  1390. expected->input, expected->input_len);
  1391. output_len = chunk_len;
  1392. EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
  1393. output_len += chunk_len;
  1394. EVP_ENCODE_CTX_free(encode_ctx);
  1395. if (!TEST_mem_eq(expected->output, expected->output_len,
  1396. encode_out, output_len)) {
  1397. t->err = "BAD_ENCODING";
  1398. goto err;
  1399. }
  1400. }
  1401. if (!TEST_ptr(decode_out =
  1402. OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
  1403. goto err;
  1404. EVP_DecodeInit(decode_ctx);
  1405. if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
  1406. expected->output_len) < 0) {
  1407. t->err = "DECODE_ERROR";
  1408. goto err;
  1409. }
  1410. output_len = chunk_len;
  1411. if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
  1412. t->err = "DECODE_ERROR";
  1413. goto err;
  1414. }
  1415. output_len += chunk_len;
  1416. if (expected->encoding != BASE64_INVALID_ENCODING
  1417. && !TEST_mem_eq(expected->input, expected->input_len,
  1418. decode_out, output_len)) {
  1419. t->err = "BAD_DECODING";
  1420. goto err;
  1421. }
  1422. t->err = NULL;
  1423. err:
  1424. OPENSSL_free(encode_out);
  1425. OPENSSL_free(decode_out);
  1426. EVP_ENCODE_CTX_free(decode_ctx);
  1427. return 1;
  1428. }
  1429. static const EVP_TEST_METHOD encode_test_method = {
  1430. "Encoding",
  1431. encode_test_init,
  1432. encode_test_cleanup,
  1433. encode_test_parse,
  1434. encode_test_run,
  1435. };
  1436. /**
  1437. *** KDF TESTS
  1438. **/
  1439. typedef struct kdf_data_st {
  1440. /* Context for this operation */
  1441. EVP_PKEY_CTX *ctx;
  1442. /* Expected output */
  1443. unsigned char *output;
  1444. size_t output_len;
  1445. } KDF_DATA;
  1446. /*
  1447. * Perform public key operation setup: lookup key, allocated ctx and call
  1448. * the appropriate initialisation function
  1449. */
  1450. static int kdf_test_init(EVP_TEST *t, const char *name)
  1451. {
  1452. KDF_DATA *kdata;
  1453. int kdf_nid = OBJ_sn2nid(name);
  1454. #ifdef OPENSSL_NO_SCRYPT
  1455. if (strcmp(name, "scrypt") == 0) {
  1456. t->skip = 1;
  1457. return 1;
  1458. }
  1459. #endif
  1460. if (kdf_nid == NID_undef)
  1461. kdf_nid = OBJ_ln2nid(name);
  1462. if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
  1463. return 0;
  1464. kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
  1465. if (kdata->ctx == NULL) {
  1466. OPENSSL_free(kdata);
  1467. return 0;
  1468. }
  1469. if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
  1470. EVP_PKEY_CTX_free(kdata->ctx);
  1471. OPENSSL_free(kdata);
  1472. return 0;
  1473. }
  1474. t->data = kdata;
  1475. return 1;
  1476. }
  1477. static void kdf_test_cleanup(EVP_TEST *t)
  1478. {
  1479. KDF_DATA *kdata = t->data;
  1480. OPENSSL_free(kdata->output);
  1481. EVP_PKEY_CTX_free(kdata->ctx);
  1482. }
  1483. static int kdf_test_parse(EVP_TEST *t,
  1484. const char *keyword, const char *value)
  1485. {
  1486. KDF_DATA *kdata = t->data;
  1487. if (strcmp(keyword, "Output") == 0)
  1488. return parse_bin(value, &kdata->output, &kdata->output_len);
  1489. if (strncmp(keyword, "Ctrl", 4) == 0)
  1490. return pkey_test_ctrl(t, kdata->ctx, value);
  1491. return 0;
  1492. }
  1493. static int kdf_test_run(EVP_TEST *t)
  1494. {
  1495. KDF_DATA *expected = t->data;
  1496. unsigned char *got = NULL;
  1497. size_t got_len = expected->output_len;
  1498. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1499. t->err = "INTERNAL_ERROR";
  1500. goto err;
  1501. }
  1502. if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
  1503. t->err = "KDF_DERIVE_ERROR";
  1504. goto err;
  1505. }
  1506. if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
  1507. t->err = "KDF_MISMATCH";
  1508. goto err;
  1509. }
  1510. t->err = NULL;
  1511. err:
  1512. OPENSSL_free(got);
  1513. return 1;
  1514. }
  1515. static const EVP_TEST_METHOD kdf_test_method = {
  1516. "KDF",
  1517. kdf_test_init,
  1518. kdf_test_cleanup,
  1519. kdf_test_parse,
  1520. kdf_test_run
  1521. };
  1522. /**
  1523. *** KEYPAIR TESTS
  1524. **/
  1525. typedef struct keypair_test_data_st {
  1526. EVP_PKEY *privk;
  1527. EVP_PKEY *pubk;
  1528. } KEYPAIR_TEST_DATA;
  1529. static int keypair_test_init(EVP_TEST *t, const char *pair)
  1530. {
  1531. KEYPAIR_TEST_DATA *data;
  1532. int rv = 0;
  1533. EVP_PKEY *pk = NULL, *pubk = NULL;
  1534. char *pub, *priv = NULL;
  1535. /* Split private and public names. */
  1536. if (!TEST_ptr(priv = OPENSSL_strdup(pair))
  1537. || !TEST_ptr(pub = strchr(priv, ':'))) {
  1538. t->err = "PARSING_ERROR";
  1539. goto end;
  1540. }
  1541. *pub++ = '\0';
  1542. if (!TEST_true(find_key(&pk, priv, private_keys))) {
  1543. TEST_info("Can't find private key: %s", priv);
  1544. t->err = "MISSING_PRIVATE_KEY";
  1545. goto end;
  1546. }
  1547. if (!TEST_true(find_key(&pubk, pub, public_keys))) {
  1548. TEST_info("Can't find public key: %s", pub);
  1549. t->err = "MISSING_PUBLIC_KEY";
  1550. goto end;
  1551. }
  1552. if (pk == NULL && pubk == NULL) {
  1553. /* Both keys are listed but unsupported: skip this test */
  1554. t->skip = 1;
  1555. rv = 1;
  1556. goto end;
  1557. }
  1558. if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
  1559. goto end;
  1560. data->privk = pk;
  1561. data->pubk = pubk;
  1562. t->data = data;
  1563. rv = 1;
  1564. t->err = NULL;
  1565. end:
  1566. OPENSSL_free(priv);
  1567. return rv;
  1568. }
  1569. static void keypair_test_cleanup(EVP_TEST *t)
  1570. {
  1571. OPENSSL_free(t->data);
  1572. t->data = NULL;
  1573. }
  1574. /*
  1575. * For tests that do not accept any custom keywords.
  1576. */
  1577. static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
  1578. {
  1579. return 0;
  1580. }
  1581. static int keypair_test_run(EVP_TEST *t)
  1582. {
  1583. int rv = 0;
  1584. const KEYPAIR_TEST_DATA *pair = t->data;
  1585. if (pair->privk == NULL || pair->pubk == NULL) {
  1586. /*
  1587. * this can only happen if only one of the keys is not set
  1588. * which means that one of them was unsupported while the
  1589. * other isn't: hence a key type mismatch.
  1590. */
  1591. t->err = "KEYPAIR_TYPE_MISMATCH";
  1592. rv = 1;
  1593. goto end;
  1594. }
  1595. if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) {
  1596. if ( 0 == rv ) {
  1597. t->err = "KEYPAIR_MISMATCH";
  1598. } else if ( -1 == rv ) {
  1599. t->err = "KEYPAIR_TYPE_MISMATCH";
  1600. } else if ( -2 == rv ) {
  1601. t->err = "UNSUPPORTED_KEY_COMPARISON";
  1602. } else {
  1603. TEST_error("Unexpected error in key comparison");
  1604. rv = 0;
  1605. goto end;
  1606. }
  1607. rv = 1;
  1608. goto end;
  1609. }
  1610. rv = 1;
  1611. t->err = NULL;
  1612. end:
  1613. return rv;
  1614. }
  1615. static const EVP_TEST_METHOD keypair_test_method = {
  1616. "PrivPubKeyPair",
  1617. keypair_test_init,
  1618. keypair_test_cleanup,
  1619. void_test_parse,
  1620. keypair_test_run
  1621. };
  1622. /**
  1623. *** KEYGEN TEST
  1624. **/
  1625. typedef struct keygen_test_data_st {
  1626. EVP_PKEY_CTX *genctx; /* Keygen context to use */
  1627. char *keyname; /* Key name to store key or NULL */
  1628. } KEYGEN_TEST_DATA;
  1629. static int keygen_test_init(EVP_TEST *t, const char *alg)
  1630. {
  1631. KEYGEN_TEST_DATA *data;
  1632. EVP_PKEY_CTX *genctx;
  1633. int nid = OBJ_sn2nid(alg);
  1634. if (nid == NID_undef) {
  1635. nid = OBJ_ln2nid(alg);
  1636. if (nid == NID_undef)
  1637. return 0;
  1638. }
  1639. if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) {
  1640. /* assume algorithm disabled */
  1641. t->skip = 1;
  1642. return 1;
  1643. }
  1644. if (EVP_PKEY_keygen_init(genctx) <= 0) {
  1645. t->err = "KEYGEN_INIT_ERROR";
  1646. goto err;
  1647. }
  1648. if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
  1649. goto err;
  1650. data->genctx = genctx;
  1651. data->keyname = NULL;
  1652. t->data = data;
  1653. t->err = NULL;
  1654. return 1;
  1655. err:
  1656. EVP_PKEY_CTX_free(genctx);
  1657. return 0;
  1658. }
  1659. static void keygen_test_cleanup(EVP_TEST *t)
  1660. {
  1661. KEYGEN_TEST_DATA *keygen = t->data;
  1662. EVP_PKEY_CTX_free(keygen->genctx);
  1663. OPENSSL_free(keygen->keyname);
  1664. OPENSSL_free(t->data);
  1665. t->data = NULL;
  1666. }
  1667. static int keygen_test_parse(EVP_TEST *t,
  1668. const char *keyword, const char *value)
  1669. {
  1670. KEYGEN_TEST_DATA *keygen = t->data;
  1671. if (strcmp(keyword, "KeyName") == 0)
  1672. return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
  1673. if (strcmp(keyword, "Ctrl") == 0)
  1674. return pkey_test_ctrl(t, keygen->genctx, value);
  1675. return 0;
  1676. }
  1677. static int keygen_test_run(EVP_TEST *t)
  1678. {
  1679. KEYGEN_TEST_DATA *keygen = t->data;
  1680. EVP_PKEY *pkey = NULL;
  1681. t->err = NULL;
  1682. if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
  1683. t->err = "KEYGEN_GENERATE_ERROR";
  1684. goto err;
  1685. }
  1686. if (keygen->keyname != NULL) {
  1687. KEY_LIST *key;
  1688. if (find_key(NULL, keygen->keyname, private_keys)) {
  1689. TEST_info("Duplicate key %s", keygen->keyname);
  1690. goto err;
  1691. }
  1692. if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
  1693. goto err;
  1694. key->name = keygen->keyname;
  1695. keygen->keyname = NULL;
  1696. key->key = pkey;
  1697. key->next = private_keys;
  1698. private_keys = key;
  1699. } else {
  1700. EVP_PKEY_free(pkey);
  1701. }
  1702. return 1;
  1703. err:
  1704. EVP_PKEY_free(pkey);
  1705. return 0;
  1706. }
  1707. static const EVP_TEST_METHOD keygen_test_method = {
  1708. "KeyGen",
  1709. keygen_test_init,
  1710. keygen_test_cleanup,
  1711. keygen_test_parse,
  1712. keygen_test_run,
  1713. };
  1714. /**
  1715. *** DIGEST SIGN+VERIFY TESTS
  1716. **/
  1717. typedef struct {
  1718. int is_verify; /* Set to 1 if verifying */
  1719. int is_oneshot; /* Set to 1 for one shot operation */
  1720. const EVP_MD *md; /* Digest to use */
  1721. EVP_MD_CTX *ctx; /* Digest context */
  1722. EVP_PKEY_CTX *pctx;
  1723. STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
  1724. unsigned char *osin; /* Input data if one shot */
  1725. size_t osin_len; /* Input length data if one shot */
  1726. unsigned char *output; /* Expected output */
  1727. size_t output_len; /* Expected output length */
  1728. } DIGESTSIGN_DATA;
  1729. static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
  1730. int is_oneshot)
  1731. {
  1732. const EVP_MD *md = NULL;
  1733. DIGESTSIGN_DATA *mdat;
  1734. if (strcmp(alg, "NULL") != 0) {
  1735. if ((md = EVP_get_digestbyname(alg)) == NULL) {
  1736. /* If alg has an OID assume disabled algorithm */
  1737. if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
  1738. t->skip = 1;
  1739. return 1;
  1740. }
  1741. return 0;
  1742. }
  1743. }
  1744. if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
  1745. return 0;
  1746. mdat->md = md;
  1747. if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
  1748. OPENSSL_free(mdat);
  1749. return 0;
  1750. }
  1751. mdat->is_verify = is_verify;
  1752. mdat->is_oneshot = is_oneshot;
  1753. t->data = mdat;
  1754. return 1;
  1755. }
  1756. static int digestsign_test_init(EVP_TEST *t, const char *alg)
  1757. {
  1758. return digestsigver_test_init(t, alg, 0, 0);
  1759. }
  1760. static void digestsigver_test_cleanup(EVP_TEST *t)
  1761. {
  1762. DIGESTSIGN_DATA *mdata = t->data;
  1763. EVP_MD_CTX_free(mdata->ctx);
  1764. sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
  1765. OPENSSL_free(mdata->osin);
  1766. OPENSSL_free(mdata->output);
  1767. OPENSSL_free(mdata);
  1768. t->data = NULL;
  1769. }
  1770. static int digestsigver_test_parse(EVP_TEST *t,
  1771. const char *keyword, const char *value)
  1772. {
  1773. DIGESTSIGN_DATA *mdata = t->data;
  1774. if (strcmp(keyword, "Key") == 0) {
  1775. EVP_PKEY *pkey = NULL;
  1776. int rv = 0;
  1777. if (mdata->is_verify)
  1778. rv = find_key(&pkey, value, public_keys);
  1779. if (rv == 0)
  1780. rv = find_key(&pkey, value, private_keys);
  1781. if (rv == 0 || pkey == NULL) {
  1782. t->skip = 1;
  1783. return 1;
  1784. }
  1785. if (mdata->is_verify) {
  1786. if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md,
  1787. NULL, pkey))
  1788. t->err = "DIGESTVERIFYINIT_ERROR";
  1789. return 1;
  1790. }
  1791. if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL,
  1792. pkey))
  1793. t->err = "DIGESTSIGNINIT_ERROR";
  1794. return 1;
  1795. }
  1796. if (strcmp(keyword, "Input") == 0) {
  1797. if (mdata->is_oneshot)
  1798. return parse_bin(value, &mdata->osin, &mdata->osin_len);
  1799. return evp_test_buffer_append(value, &mdata->input);
  1800. }
  1801. if (strcmp(keyword, "Output") == 0)
  1802. return parse_bin(value, &mdata->output, &mdata->output_len);
  1803. if (!mdata->is_oneshot) {
  1804. if (strcmp(keyword, "Count") == 0)
  1805. return evp_test_buffer_set_count(value, mdata->input);
  1806. if (strcmp(keyword, "Ncopy") == 0)
  1807. return evp_test_buffer_ncopy(value, mdata->input);
  1808. }
  1809. if (strcmp(keyword, "Ctrl") == 0) {
  1810. if (mdata->pctx == NULL)
  1811. return 0;
  1812. return pkey_test_ctrl(t, mdata->pctx, value);
  1813. }
  1814. return 0;
  1815. }
  1816. static int digestsign_update_fn(void *ctx, const unsigned char *buf,
  1817. size_t buflen)
  1818. {
  1819. return EVP_DigestSignUpdate(ctx, buf, buflen);
  1820. }
  1821. static int digestsign_test_run(EVP_TEST *t)
  1822. {
  1823. DIGESTSIGN_DATA *expected = t->data;
  1824. unsigned char *got = NULL;
  1825. size_t got_len;
  1826. if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
  1827. expected->ctx)) {
  1828. t->err = "DIGESTUPDATE_ERROR";
  1829. goto err;
  1830. }
  1831. if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
  1832. t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
  1833. goto err;
  1834. }
  1835. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1836. t->err = "MALLOC_FAILURE";
  1837. goto err;
  1838. }
  1839. if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
  1840. t->err = "DIGESTSIGNFINAL_ERROR";
  1841. goto err;
  1842. }
  1843. if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
  1844. t->err = "SIGNATURE_MISMATCH";
  1845. goto err;
  1846. }
  1847. err:
  1848. OPENSSL_free(got);
  1849. return 1;
  1850. }
  1851. static const EVP_TEST_METHOD digestsign_test_method = {
  1852. "DigestSign",
  1853. digestsign_test_init,
  1854. digestsigver_test_cleanup,
  1855. digestsigver_test_parse,
  1856. digestsign_test_run
  1857. };
  1858. static int digestverify_test_init(EVP_TEST *t, const char *alg)
  1859. {
  1860. return digestsigver_test_init(t, alg, 1, 0);
  1861. }
  1862. static int digestverify_update_fn(void *ctx, const unsigned char *buf,
  1863. size_t buflen)
  1864. {
  1865. return EVP_DigestVerifyUpdate(ctx, buf, buflen);
  1866. }
  1867. static int digestverify_test_run(EVP_TEST *t)
  1868. {
  1869. DIGESTSIGN_DATA *mdata = t->data;
  1870. if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
  1871. t->err = "DIGESTUPDATE_ERROR";
  1872. return 1;
  1873. }
  1874. if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
  1875. mdata->output_len) <= 0)
  1876. t->err = "VERIFY_ERROR";
  1877. return 1;
  1878. }
  1879. static const EVP_TEST_METHOD digestverify_test_method = {
  1880. "DigestVerify",
  1881. digestverify_test_init,
  1882. digestsigver_test_cleanup,
  1883. digestsigver_test_parse,
  1884. digestverify_test_run
  1885. };
  1886. static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
  1887. {
  1888. return digestsigver_test_init(t, alg, 0, 1);
  1889. }
  1890. static int oneshot_digestsign_test_run(EVP_TEST *t)
  1891. {
  1892. DIGESTSIGN_DATA *expected = t->data;
  1893. unsigned char *got = NULL;
  1894. size_t got_len;
  1895. if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
  1896. expected->osin, expected->osin_len)) {
  1897. t->err = "DIGESTSIGN_LENGTH_ERROR";
  1898. goto err;
  1899. }
  1900. if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
  1901. t->err = "MALLOC_FAILURE";
  1902. goto err;
  1903. }
  1904. if (!EVP_DigestSign(expected->ctx, got, &got_len,
  1905. expected->osin, expected->osin_len)) {
  1906. t->err = "DIGESTSIGN_ERROR";
  1907. goto err;
  1908. }
  1909. if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
  1910. t->err = "SIGNATURE_MISMATCH";
  1911. goto err;
  1912. }
  1913. err:
  1914. OPENSSL_free(got);
  1915. return 1;
  1916. }
  1917. static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
  1918. "OneShotDigestSign",
  1919. oneshot_digestsign_test_init,
  1920. digestsigver_test_cleanup,
  1921. digestsigver_test_parse,
  1922. oneshot_digestsign_test_run
  1923. };
  1924. static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
  1925. {
  1926. return digestsigver_test_init(t, alg, 1, 1);
  1927. }
  1928. static int oneshot_digestverify_test_run(EVP_TEST *t)
  1929. {
  1930. DIGESTSIGN_DATA *mdata = t->data;
  1931. if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
  1932. mdata->osin, mdata->osin_len) <= 0)
  1933. t->err = "VERIFY_ERROR";
  1934. return 1;
  1935. }
  1936. static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
  1937. "OneShotDigestVerify",
  1938. oneshot_digestverify_test_init,
  1939. digestsigver_test_cleanup,
  1940. digestsigver_test_parse,
  1941. oneshot_digestverify_test_run
  1942. };
  1943. /**
  1944. *** PARSING AND DISPATCH
  1945. **/
  1946. static const EVP_TEST_METHOD *evp_test_list[] = {
  1947. &cipher_test_method,
  1948. &digest_test_method,
  1949. &digestsign_test_method,
  1950. &digestverify_test_method,
  1951. &encode_test_method,
  1952. &kdf_test_method,
  1953. &keypair_test_method,
  1954. &keygen_test_method,
  1955. &mac_test_method,
  1956. &oneshot_digestsign_test_method,
  1957. &oneshot_digestverify_test_method,
  1958. &pbe_test_method,
  1959. &pdecrypt_test_method,
  1960. &pderive_test_method,
  1961. &psign_test_method,
  1962. &pverify_recover_test_method,
  1963. &pverify_test_method,
  1964. NULL
  1965. };
  1966. static const EVP_TEST_METHOD *find_test(const char *name)
  1967. {
  1968. const EVP_TEST_METHOD **tt;
  1969. for (tt = evp_test_list; *tt; tt++) {
  1970. if (strcmp(name, (*tt)->name) == 0)
  1971. return *tt;
  1972. }
  1973. return NULL;
  1974. }
  1975. static void clear_test(EVP_TEST *t)
  1976. {
  1977. test_clearstanza(&t->s);
  1978. ERR_clear_error();
  1979. if (t->data != NULL) {
  1980. if (t->meth != NULL)
  1981. t->meth->cleanup(t);
  1982. OPENSSL_free(t->data);
  1983. t->data = NULL;
  1984. }
  1985. OPENSSL_free(t->expected_err);
  1986. t->expected_err = NULL;
  1987. OPENSSL_free(t->func);
  1988. t->func = NULL;
  1989. OPENSSL_free(t->reason);
  1990. t->reason = NULL;
  1991. /* Text literal. */
  1992. t->err = NULL;
  1993. t->skip = 0;
  1994. t->meth = NULL;
  1995. }
  1996. /*
  1997. * Check for errors in the test structure; return 1 if okay, else 0.
  1998. */
  1999. static int check_test_error(EVP_TEST *t)
  2000. {
  2001. unsigned long err;
  2002. const char *func;
  2003. const char *reason;
  2004. if (t->err == NULL && t->expected_err == NULL)
  2005. return 1;
  2006. if (t->err != NULL && t->expected_err == NULL) {
  2007. if (t->aux_err != NULL) {
  2008. TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
  2009. t->s.test_file, t->s.start, t->aux_err, t->err);
  2010. } else {
  2011. TEST_info("%s:%d: Source of above error; unexpected error %s",
  2012. t->s.test_file, t->s.start, t->err);
  2013. }
  2014. return 0;
  2015. }
  2016. if (t->err == NULL && t->expected_err != NULL) {
  2017. TEST_info("%s:%d: Succeeded but was expecting %s",
  2018. t->s.test_file, t->s.start, t->expected_err);
  2019. return 0;
  2020. }
  2021. if (strcmp(t->err, t->expected_err) != 0) {
  2022. TEST_info("%s:%d: Expected %s got %s",
  2023. t->s.test_file, t->s.start, t->expected_err, t->err);
  2024. return 0;
  2025. }
  2026. if (t->func == NULL && t->reason == NULL)
  2027. return 1;
  2028. if (t->func == NULL || t->reason == NULL) {
  2029. TEST_info("%s:%d: Test is missing function or reason code",
  2030. t->s.test_file, t->s.start);
  2031. return 0;
  2032. }
  2033. err = ERR_peek_error();
  2034. if (err == 0) {
  2035. TEST_info("%s:%d: Expected error \"%s:%s\" not set",
  2036. t->s.test_file, t->s.start, t->func, t->reason);
  2037. return 0;
  2038. }
  2039. func = ERR_func_error_string(err);
  2040. reason = ERR_reason_error_string(err);
  2041. if (func == NULL && reason == NULL) {
  2042. TEST_info("%s:%d: Expected error \"%s:%s\", no strings available."
  2043. " Assuming ok.",
  2044. t->s.test_file, t->s.start, t->func, t->reason);
  2045. return 1;
  2046. }
  2047. if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0)
  2048. return 1;
  2049. TEST_info("%s:%d: Expected error \"%s:%s\", got \"%s:%s\"",
  2050. t->s.test_file, t->s.start, t->func, t->reason, func, reason);
  2051. return 0;
  2052. }
  2053. /*
  2054. * Run a parsed test. Log a message and return 0 on error.
  2055. */
  2056. static int run_test(EVP_TEST *t)
  2057. {
  2058. if (t->meth == NULL)
  2059. return 1;
  2060. t->s.numtests++;
  2061. if (t->skip) {
  2062. t->s.numskip++;
  2063. } else {
  2064. /* run the test */
  2065. if (t->err == NULL && t->meth->run_test(t) != 1) {
  2066. TEST_info("%s:%d %s error",
  2067. t->s.test_file, t->s.start, t->meth->name);
  2068. return 0;
  2069. }
  2070. if (!check_test_error(t)) {
  2071. TEST_openssl_errors();
  2072. t->s.errors++;
  2073. }
  2074. }
  2075. /* clean it up */
  2076. return 1;
  2077. }
  2078. static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
  2079. {
  2080. for (; lst != NULL; lst = lst->next) {
  2081. if (strcmp(lst->name, name) == 0) {
  2082. if (ppk != NULL)
  2083. *ppk = lst->key;
  2084. return 1;
  2085. }
  2086. }
  2087. return 0;
  2088. }
  2089. static void free_key_list(KEY_LIST *lst)
  2090. {
  2091. while (lst != NULL) {
  2092. KEY_LIST *next = lst->next;
  2093. EVP_PKEY_free(lst->key);
  2094. OPENSSL_free(lst->name);
  2095. OPENSSL_free(lst);
  2096. lst = next;
  2097. }
  2098. }
  2099. /*
  2100. * Is the key type an unsupported algorithm?
  2101. */
  2102. static int key_unsupported(void)
  2103. {
  2104. long err = ERR_peek_error();
  2105. if (ERR_GET_LIB(err) == ERR_LIB_EVP
  2106. && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
  2107. ERR_clear_error();
  2108. return 1;
  2109. }
  2110. #ifndef OPENSSL_NO_EC
  2111. /*
  2112. * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
  2113. * hint to an unsupported algorithm/curve (e.g. if binary EC support is
  2114. * disabled).
  2115. */
  2116. if (ERR_GET_LIB(err) == ERR_LIB_EC
  2117. && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
  2118. ERR_clear_error();
  2119. return 1;
  2120. }
  2121. #endif /* OPENSSL_NO_EC */
  2122. return 0;
  2123. }
  2124. /*
  2125. * NULL out the value from |pp| but return it. This "steals" a pointer.
  2126. */
  2127. static char *take_value(PAIR *pp)
  2128. {
  2129. char *p = pp->value;
  2130. pp->value = NULL;
  2131. return p;
  2132. }
  2133. /*
  2134. * Read and parse one test. Return 0 if failure, 1 if okay.
  2135. */
  2136. static int parse(EVP_TEST *t)
  2137. {
  2138. KEY_LIST *key, **klist;
  2139. EVP_PKEY *pkey;
  2140. PAIR *pp;
  2141. int i;
  2142. top:
  2143. do {
  2144. if (BIO_eof(t->s.fp))
  2145. return EOF;
  2146. clear_test(t);
  2147. if (!test_readstanza(&t->s))
  2148. return 0;
  2149. } while (t->s.numpairs == 0);
  2150. pp = &t->s.pairs[0];
  2151. /* Are we adding a key? */
  2152. klist = NULL;
  2153. pkey = NULL;
  2154. if (strcmp(pp->key, "PrivateKey") == 0) {
  2155. pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL);
  2156. if (pkey == NULL && !key_unsupported()) {
  2157. EVP_PKEY_free(pkey);
  2158. TEST_info("Can't read private key %s", pp->value);
  2159. TEST_openssl_errors();
  2160. return 0;
  2161. }
  2162. klist = &private_keys;
  2163. } else if (strcmp(pp->key, "PublicKey") == 0) {
  2164. pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL);
  2165. if (pkey == NULL && !key_unsupported()) {
  2166. EVP_PKEY_free(pkey);
  2167. TEST_info("Can't read public key %s", pp->value);
  2168. TEST_openssl_errors();
  2169. return 0;
  2170. }
  2171. klist = &public_keys;
  2172. } else if (strcmp(pp->key, "PrivateKeyRaw") == 0
  2173. || strcmp(pp->key, "PublicKeyRaw") == 0 ) {
  2174. char *strnid = NULL, *keydata = NULL;
  2175. unsigned char *keybin;
  2176. size_t keylen;
  2177. int nid;
  2178. if (strcmp(pp->key, "PrivateKeyRaw") == 0)
  2179. klist = &private_keys;
  2180. else
  2181. klist = &public_keys;
  2182. strnid = strchr(pp->value, ':');
  2183. if (strnid != NULL) {
  2184. *strnid++ = '\0';
  2185. keydata = strchr(strnid, ':');
  2186. if (keydata != NULL)
  2187. *keydata++ = '\0';
  2188. }
  2189. if (keydata == NULL) {
  2190. TEST_info("Failed to parse %s value", pp->key);
  2191. return 0;
  2192. }
  2193. nid = OBJ_txt2nid(strnid);
  2194. if (nid == NID_undef) {
  2195. TEST_info("Uncrecognised algorithm NID");
  2196. return 0;
  2197. }
  2198. if (!parse_bin(keydata, &keybin, &keylen)) {
  2199. TEST_info("Failed to create binary key");
  2200. return 0;
  2201. }
  2202. if (klist == &private_keys)
  2203. pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen);
  2204. else
  2205. pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen);
  2206. if (pkey == NULL && !key_unsupported()) {
  2207. TEST_info("Can't read %s data", pp->key);
  2208. OPENSSL_free(keybin);
  2209. TEST_openssl_errors();
  2210. return 0;
  2211. }
  2212. OPENSSL_free(keybin);
  2213. }
  2214. /* If we have a key add to list */
  2215. if (klist != NULL) {
  2216. if (find_key(NULL, pp->value, *klist)) {
  2217. TEST_info("Duplicate key %s", pp->value);
  2218. return 0;
  2219. }
  2220. if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
  2221. return 0;
  2222. key->name = take_value(pp);
  2223. /* Hack to detect SM2 keys */
  2224. if(pkey != NULL && strstr(key->name, "SM2") != NULL) {
  2225. #ifdef OPENSSL_NO_SM2
  2226. EVP_PKEY_free(pkey);
  2227. pkey = NULL;
  2228. #else
  2229. EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2);
  2230. #endif
  2231. }
  2232. key->key = pkey;
  2233. key->next = *klist;
  2234. *klist = key;
  2235. /* Go back and start a new stanza. */
  2236. if (t->s.numpairs != 1)
  2237. TEST_info("Line %d: missing blank line\n", t->s.curr);
  2238. goto top;
  2239. }
  2240. /* Find the test, based on first keyword. */
  2241. if (!TEST_ptr(t->meth = find_test(pp->key)))
  2242. return 0;
  2243. if (!t->meth->init(t, pp->value)) {
  2244. TEST_error("unknown %s: %s\n", pp->key, pp->value);
  2245. return 0;
  2246. }
  2247. if (t->skip == 1) {
  2248. /* TEST_info("skipping %s %s", pp->key, pp->value); */
  2249. return 0;
  2250. }
  2251. for (pp++, i = 1; i < t->s.numpairs; pp++, i++) {
  2252. if (strcmp(pp->key, "Result") == 0) {
  2253. if (t->expected_err != NULL) {
  2254. TEST_info("Line %d: multiple result lines", t->s.curr);
  2255. return 0;
  2256. }
  2257. t->expected_err = take_value(pp);
  2258. } else if (strcmp(pp->key, "Function") == 0) {
  2259. if (t->func != NULL) {
  2260. TEST_info("Line %d: multiple function lines\n", t->s.curr);
  2261. return 0;
  2262. }
  2263. t->func = take_value(pp);
  2264. } else if (strcmp(pp->key, "Reason") == 0) {
  2265. if (t->reason != NULL) {
  2266. TEST_info("Line %d: multiple reason lines", t->s.curr);
  2267. return 0;
  2268. }
  2269. t->reason = take_value(pp);
  2270. } else {
  2271. /* Must be test specific line: try to parse it */
  2272. int rv = t->meth->parse(t, pp->key, pp->value);
  2273. if (rv == 0) {
  2274. TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
  2275. return 0;
  2276. }
  2277. if (rv < 0) {
  2278. TEST_info("Line %d: error processing keyword %s\n",
  2279. t->s.curr, pp->key);
  2280. return 0;
  2281. }
  2282. }
  2283. }
  2284. return 1;
  2285. }
  2286. static int run_file_tests(int i)
  2287. {
  2288. EVP_TEST *t;
  2289. const char *testfile = test_get_argument(i);
  2290. int c;
  2291. if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
  2292. return 0;
  2293. if (!test_start_file(&t->s, testfile)) {
  2294. OPENSSL_free(t);
  2295. return 0;
  2296. }
  2297. while (!BIO_eof(t->s.fp)) {
  2298. c = parse(t);
  2299. if (t->skip)
  2300. continue;
  2301. if (c == 0 || !run_test(t)) {
  2302. t->s.errors++;
  2303. break;
  2304. }
  2305. }
  2306. test_end_file(&t->s);
  2307. clear_test(t);
  2308. free_key_list(public_keys);
  2309. free_key_list(private_keys);
  2310. BIO_free(t->s.key);
  2311. c = t->s.errors;
  2312. OPENSSL_free(t);
  2313. return c == 0;
  2314. }
  2315. int setup_tests(void)
  2316. {
  2317. size_t n = test_get_argument_count();
  2318. if (n == 0) {
  2319. TEST_error("Usage: %s file...", test_get_program_name());
  2320. return 0;
  2321. }
  2322. ADD_ALL_TESTS(run_file_tests, n);
  2323. return 1;
  2324. }