1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369 |
- /* crypto/bn/bn_gf2m.c */
- /* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
- * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
- * to the OpenSSL project.
- *
- * The ECC Code is licensed pursuant to the OpenSSL open source
- * license provided below.
- *
- * In addition, Sun covenants to all licensees who provide a reciprocal
- * covenant with respect to their own patents if any, not to sue under
- * current and future patent claims necessarily infringed by the making,
- * using, practicing, selling, offering for sale and/or otherwise
- * disposing of the ECC Code as delivered hereunder (or portions thereof),
- * provided that such covenant shall not apply:
- * 1) for code that a licensee deletes from the ECC Code;
- * 2) separates from the ECC Code; or
- * 3) for infringements caused by:
- * i) the modification of the ECC Code or
- * ii) the combination of the ECC Code with other software or
- * devices where such combination causes the infringement.
- *
- * The software is originally written by Sheueling Chang Shantz and
- * Douglas Stebila of Sun Microsystems Laboratories.
- *
- */
- /*
- * NOTE: This file is licensed pursuant to the OpenSSL license below and may
- * be modified; but after modifications, the above covenant may no longer
- * apply! In such cases, the corresponding paragraph ["In addition, Sun
- * covenants ... causes the infringement."] and this note can be edited out;
- * but please keep the Sun copyright notice and attribution.
- */
- /* ====================================================================
- * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
- #include <assert.h>
- #include <limits.h>
- #include <stdio.h>
- #include "cryptlib.h"
- #include "bn_lcl.h"
- /*
- * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
- * fail.
- */
- #define MAX_ITERATIONS 50
- static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
- 64, 65, 68, 69, 80, 81, 84, 85
- };
- /* Platform-specific macros to accelerate squaring. */
- #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
- # define SQR1(w) \
- SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
- SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
- SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
- SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
- # define SQR0(w) \
- SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
- SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
- SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
- SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
- #endif
- #ifdef THIRTY_TWO_BIT
- # define SQR1(w) \
- SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
- SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
- # define SQR0(w) \
- SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
- SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
- #endif
- #ifdef SIXTEEN_BIT
- # define SQR1(w) \
- SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF]
- # define SQR0(w) \
- SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
- #endif
- #ifdef EIGHT_BIT
- # define SQR1(w) \
- SQR_tb[(w) >> 4 & 0xF]
- # define SQR0(w) \
- SQR_tb[(w) & 15]
- #endif
- /*
- * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
- * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
- * the variables have the right amount of space allocated.
- */
- #ifdef EIGHT_BIT
- static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
- const BN_ULONG b)
- {
- register BN_ULONG h, l, s;
- BN_ULONG tab[4], top1b = a >> 7;
- register BN_ULONG a1, a2;
- a1 = a & (0x7F);
- a2 = a1 << 1;
- tab[0] = 0;
- tab[1] = a1;
- tab[2] = a2;
- tab[3] = a1 ^ a2;
- s = tab[b & 0x3];
- l = s;
- s = tab[b >> 2 & 0x3];
- l ^= s << 2;
- h = s >> 6;
- s = tab[b >> 4 & 0x3];
- l ^= s << 4;
- h ^= s >> 4;
- s = tab[b >> 6];
- l ^= s << 6;
- h ^= s >> 2;
- /* compensate for the top bit of a */
- if (top1b & 01) {
- l ^= b << 7;
- h ^= b >> 1;
- }
- *r1 = h;
- *r0 = l;
- }
- #endif
- #ifdef SIXTEEN_BIT
- static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
- const BN_ULONG b)
- {
- register BN_ULONG h, l, s;
- BN_ULONG tab[4], top1b = a >> 15;
- register BN_ULONG a1, a2;
- a1 = a & (0x7FFF);
- a2 = a1 << 1;
- tab[0] = 0;
- tab[1] = a1;
- tab[2] = a2;
- tab[3] = a1 ^ a2;
- s = tab[b & 0x3];
- l = s;
- s = tab[b >> 2 & 0x3];
- l ^= s << 2;
- h = s >> 14;
- s = tab[b >> 4 & 0x3];
- l ^= s << 4;
- h ^= s >> 12;
- s = tab[b >> 6 & 0x3];
- l ^= s << 6;
- h ^= s >> 10;
- s = tab[b >> 8 & 0x3];
- l ^= s << 8;
- h ^= s >> 8;
- s = tab[b >> 10 & 0x3];
- l ^= s << 10;
- h ^= s >> 6;
- s = tab[b >> 12 & 0x3];
- l ^= s << 12;
- h ^= s >> 4;
- s = tab[b >> 14];
- l ^= s << 14;
- h ^= s >> 2;
- /* compensate for the top bit of a */
- if (top1b & 01) {
- l ^= b << 15;
- h ^= b >> 1;
- }
- *r1 = h;
- *r0 = l;
- }
- #endif
- #ifdef THIRTY_TWO_BIT
- static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
- const BN_ULONG b)
- {
- register BN_ULONG h, l, s;
- BN_ULONG tab[8], top2b = a >> 30;
- register BN_ULONG a1, a2, a4;
- a1 = a & (0x3FFFFFFF);
- a2 = a1 << 1;
- a4 = a2 << 1;
- tab[0] = 0;
- tab[1] = a1;
- tab[2] = a2;
- tab[3] = a1 ^ a2;
- tab[4] = a4;
- tab[5] = a1 ^ a4;
- tab[6] = a2 ^ a4;
- tab[7] = a1 ^ a2 ^ a4;
- s = tab[b & 0x7];
- l = s;
- s = tab[b >> 3 & 0x7];
- l ^= s << 3;
- h = s >> 29;
- s = tab[b >> 6 & 0x7];
- l ^= s << 6;
- h ^= s >> 26;
- s = tab[b >> 9 & 0x7];
- l ^= s << 9;
- h ^= s >> 23;
- s = tab[b >> 12 & 0x7];
- l ^= s << 12;
- h ^= s >> 20;
- s = tab[b >> 15 & 0x7];
- l ^= s << 15;
- h ^= s >> 17;
- s = tab[b >> 18 & 0x7];
- l ^= s << 18;
- h ^= s >> 14;
- s = tab[b >> 21 & 0x7];
- l ^= s << 21;
- h ^= s >> 11;
- s = tab[b >> 24 & 0x7];
- l ^= s << 24;
- h ^= s >> 8;
- s = tab[b >> 27 & 0x7];
- l ^= s << 27;
- h ^= s >> 5;
- s = tab[b >> 30];
- l ^= s << 30;
- h ^= s >> 2;
- /* compensate for the top two bits of a */
- if (top2b & 01) {
- l ^= b << 30;
- h ^= b >> 2;
- }
- if (top2b & 02) {
- l ^= b << 31;
- h ^= b >> 1;
- }
- *r1 = h;
- *r0 = l;
- }
- #endif
- #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
- static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
- const BN_ULONG b)
- {
- register BN_ULONG h, l, s;
- BN_ULONG tab[16], top3b = a >> 61;
- register BN_ULONG a1, a2, a4, a8;
- a1 = a & (0x1FFFFFFFFFFFFFFFULL);
- a2 = a1 << 1;
- a4 = a2 << 1;
- a8 = a4 << 1;
- tab[0] = 0;
- tab[1] = a1;
- tab[2] = a2;
- tab[3] = a1 ^ a2;
- tab[4] = a4;
- tab[5] = a1 ^ a4;
- tab[6] = a2 ^ a4;
- tab[7] = a1 ^ a2 ^ a4;
- tab[8] = a8;
- tab[9] = a1 ^ a8;
- tab[10] = a2 ^ a8;
- tab[11] = a1 ^ a2 ^ a8;
- tab[12] = a4 ^ a8;
- tab[13] = a1 ^ a4 ^ a8;
- tab[14] = a2 ^ a4 ^ a8;
- tab[15] = a1 ^ a2 ^ a4 ^ a8;
- s = tab[b & 0xF];
- l = s;
- s = tab[b >> 4 & 0xF];
- l ^= s << 4;
- h = s >> 60;
- s = tab[b >> 8 & 0xF];
- l ^= s << 8;
- h ^= s >> 56;
- s = tab[b >> 12 & 0xF];
- l ^= s << 12;
- h ^= s >> 52;
- s = tab[b >> 16 & 0xF];
- l ^= s << 16;
- h ^= s >> 48;
- s = tab[b >> 20 & 0xF];
- l ^= s << 20;
- h ^= s >> 44;
- s = tab[b >> 24 & 0xF];
- l ^= s << 24;
- h ^= s >> 40;
- s = tab[b >> 28 & 0xF];
- l ^= s << 28;
- h ^= s >> 36;
- s = tab[b >> 32 & 0xF];
- l ^= s << 32;
- h ^= s >> 32;
- s = tab[b >> 36 & 0xF];
- l ^= s << 36;
- h ^= s >> 28;
- s = tab[b >> 40 & 0xF];
- l ^= s << 40;
- h ^= s >> 24;
- s = tab[b >> 44 & 0xF];
- l ^= s << 44;
- h ^= s >> 20;
- s = tab[b >> 48 & 0xF];
- l ^= s << 48;
- h ^= s >> 16;
- s = tab[b >> 52 & 0xF];
- l ^= s << 52;
- h ^= s >> 12;
- s = tab[b >> 56 & 0xF];
- l ^= s << 56;
- h ^= s >> 8;
- s = tab[b >> 60];
- l ^= s << 60;
- h ^= s >> 4;
- /* compensate for the top three bits of a */
- if (top3b & 01) {
- l ^= b << 61;
- h ^= b >> 3;
- }
- if (top3b & 02) {
- l ^= b << 62;
- h ^= b >> 2;
- }
- if (top3b & 04) {
- l ^= b << 63;
- h ^= b >> 1;
- }
- *r1 = h;
- *r0 = l;
- }
- #endif
- /*
- * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
- * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
- * ensure that the variables have the right amount of space allocated.
- */
- static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
- const BN_ULONG b1, const BN_ULONG b0)
- {
- BN_ULONG m1, m0;
- /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
- bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
- bn_GF2m_mul_1x1(r + 1, r, a0, b0);
- bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
- /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
- r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
- r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
- }
- /*
- * Add polynomials a and b and store result in r; r could be a or b, a and b
- * could be equal; r is the bitwise XOR of a and b.
- */
- int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
- {
- int i;
- const BIGNUM *at, *bt;
- bn_check_top(a);
- bn_check_top(b);
- if (a->top < b->top) {
- at = b;
- bt = a;
- } else {
- at = a;
- bt = b;
- }
- if (bn_wexpand(r, at->top) == NULL)
- return 0;
- for (i = 0; i < bt->top; i++) {
- r->d[i] = at->d[i] ^ bt->d[i];
- }
- for (; i < at->top; i++) {
- r->d[i] = at->d[i];
- }
- r->top = at->top;
- bn_correct_top(r);
- return 1;
- }
- /*-
- * Some functions allow for representation of the irreducible polynomials
- * as an int[], say p. The irreducible f(t) is then of the form:
- * t^p[0] + t^p[1] + ... + t^p[k]
- * where m = p[0] > p[1] > ... > p[k] = 0.
- */
- /* Performs modular reduction of a and store result in r. r could be a. */
- int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
- {
- int j, k;
- int n, dN, d0, d1;
- BN_ULONG zz, *z;
- bn_check_top(a);
- if (!p[0]) {
- /* reduction mod 1 => return 0 */
- BN_zero(r);
- return 1;
- }
- /*
- * Since the algorithm does reduction in the r value, if a != r, copy the
- * contents of a into r so we can do reduction in r.
- */
- if (a != r) {
- if (!bn_wexpand(r, a->top))
- return 0;
- for (j = 0; j < a->top; j++) {
- r->d[j] = a->d[j];
- }
- r->top = a->top;
- }
- z = r->d;
- /* start reduction */
- dN = p[0] / BN_BITS2;
- for (j = r->top - 1; j > dN;) {
- zz = z[j];
- if (z[j] == 0) {
- j--;
- continue;
- }
- z[j] = 0;
- for (k = 1; p[k] != 0; k++) {
- /* reducing component t^p[k] */
- n = p[0] - p[k];
- d0 = n % BN_BITS2;
- d1 = BN_BITS2 - d0;
- n /= BN_BITS2;
- z[j - n] ^= (zz >> d0);
- if (d0)
- z[j - n - 1] ^= (zz << d1);
- }
- /* reducing component t^0 */
- n = dN;
- d0 = p[0] % BN_BITS2;
- d1 = BN_BITS2 - d0;
- z[j - n] ^= (zz >> d0);
- if (d0)
- z[j - n - 1] ^= (zz << d1);
- }
- /* final round of reduction */
- while (j == dN) {
- d0 = p[0] % BN_BITS2;
- zz = z[dN] >> d0;
- if (zz == 0)
- break;
- d1 = BN_BITS2 - d0;
- /* clear up the top d1 bits */
- if (d0)
- z[dN] = (z[dN] << d1) >> d1;
- else
- z[dN] = 0;
- z[0] ^= zz; /* reduction t^0 component */
- for (k = 1; p[k] != 0; k++) {
- BN_ULONG tmp_ulong;
- /* reducing component t^p[k] */
- n = p[k] / BN_BITS2;
- d0 = p[k] % BN_BITS2;
- d1 = BN_BITS2 - d0;
- z[n] ^= (zz << d0);
- tmp_ulong = zz >> d1;
- if (d0 && tmp_ulong)
- z[n + 1] ^= tmp_ulong;
- }
- }
- bn_correct_top(r);
- return 1;
- }
- /*
- * Performs modular reduction of a by p and store result in r. r could be a.
- * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
- * function is only provided for convenience; for best performance, use the
- * BN_GF2m_mod_arr function.
- */
- int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
- {
- int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr = NULL;
- bn_check_top(a);
- bn_check_top(p);
- if ((arr =
- (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL)
- goto err;
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_arr(r, a, arr);
- bn_check_top(r);
- err:
- if (arr)
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Compute the product of two polynomials a and b, reduce modulo p, and store
- * the result in r. r could be a or b; a could be b.
- */
- int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const unsigned int p[], BN_CTX *ctx)
- {
- int zlen, i, j, k, ret = 0;
- BIGNUM *s;
- BN_ULONG x1, x0, y1, y0, zz[4];
- bn_check_top(a);
- bn_check_top(b);
- if (a == b) {
- return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
- }
- BN_CTX_start(ctx);
- if ((s = BN_CTX_get(ctx)) == NULL)
- goto err;
- zlen = a->top + b->top + 4;
- if (!bn_wexpand(s, zlen))
- goto err;
- s->top = zlen;
- for (i = 0; i < zlen; i++)
- s->d[i] = 0;
- for (j = 0; j < b->top; j += 2) {
- y0 = b->d[j];
- y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
- for (i = 0; i < a->top; i += 2) {
- x0 = a->d[i];
- x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
- bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
- for (k = 0; k < 4; k++)
- s->d[i + j + k] ^= zz[k];
- }
- }
- bn_correct_top(s);
- if (BN_GF2m_mod_arr(r, s, p))
- ret = 1;
- bn_check_top(r);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Compute the product of two polynomials a and b, reduce modulo p, and store
- * the result in r. r could be a or b; a could equal b. This function calls
- * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
- * only provided for convenience; for best performance, use the
- * BN_GF2m_mod_mul_arr function.
- */
- int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *p, BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr = NULL;
- bn_check_top(a);
- bn_check_top(b);
- bn_check_top(p);
- if ((arr =
- (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL)
- goto err;
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
- bn_check_top(r);
- err:
- if (arr)
- OPENSSL_free(arr);
- return ret;
- }
- /* Square a, reduce the result mod p, and store it in a. r could be a. */
- int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[],
- BN_CTX *ctx)
- {
- int i, ret = 0;
- BIGNUM *s;
- bn_check_top(a);
- BN_CTX_start(ctx);
- if ((s = BN_CTX_get(ctx)) == NULL)
- return 0;
- if (!bn_wexpand(s, 2 * a->top))
- goto err;
- for (i = a->top - 1; i >= 0; i--) {
- s->d[2 * i + 1] = SQR1(a->d[i]);
- s->d[2 * i] = SQR0(a->d[i]);
- }
- s->top = 2 * a->top;
- bn_correct_top(s);
- if (!BN_GF2m_mod_arr(r, s, p))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Square a, reduce the result mod p, and store it in a. r could be a. This
- * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
- * wrapper function is only provided for convenience; for best performance,
- * use the BN_GF2m_mod_sqr_arr function.
- */
- int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr = NULL;
- bn_check_top(a);
- bn_check_top(p);
- if ((arr =
- (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL)
- goto err;
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
- bn_check_top(r);
- err:
- if (arr)
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
- * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
- * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
- * Curve Cryptography Over Binary Fields".
- */
- int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
- {
- BIGNUM *b, *c, *u, *v, *tmp;
- int ret = 0;
- bn_check_top(a);
- bn_check_top(p);
- BN_CTX_start(ctx);
- b = BN_CTX_get(ctx);
- c = BN_CTX_get(ctx);
- u = BN_CTX_get(ctx);
- v = BN_CTX_get(ctx);
- if (v == NULL)
- goto err;
- if (!BN_one(b))
- goto err;
- if (!BN_GF2m_mod(u, a, p))
- goto err;
- if (!BN_copy(v, p))
- goto err;
- if (BN_is_zero(u))
- goto err;
- while (1) {
- while (!BN_is_odd(u)) {
- if (BN_is_zero(u))
- goto err;
- if (!BN_rshift1(u, u))
- goto err;
- if (BN_is_odd(b)) {
- if (!BN_GF2m_add(b, b, p))
- goto err;
- }
- if (!BN_rshift1(b, b))
- goto err;
- }
- if (BN_abs_is_word(u, 1))
- break;
- if (BN_num_bits(u) < BN_num_bits(v)) {
- tmp = u;
- u = v;
- v = tmp;
- tmp = b;
- b = c;
- c = tmp;
- }
- if (!BN_GF2m_add(u, u, v))
- goto err;
- if (!BN_GF2m_add(b, b, c))
- goto err;
- }
- if (!BN_copy(r, b))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Invert xx, reduce modulo p, and store the result in r. r could be xx.
- * This function calls down to the BN_GF2m_mod_inv implementation; this
- * wrapper function is only provided for convenience; for best performance,
- * use the BN_GF2m_mod_inv function.
- */
- int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[],
- BN_CTX *ctx)
- {
- BIGNUM *field;
- int ret = 0;
- bn_check_top(xx);
- BN_CTX_start(ctx);
- if ((field = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_GF2m_arr2poly(p, field))
- goto err;
- ret = BN_GF2m_mod_inv(r, xx, field, ctx);
- bn_check_top(r);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- #ifndef OPENSSL_SUN_GF2M_DIV
- /*
- * Divide y by x, reduce modulo p, and store the result in r. r could be x
- * or y, x could equal y.
- */
- int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
- const BIGNUM *p, BN_CTX *ctx)
- {
- BIGNUM *xinv = NULL;
- int ret = 0;
- bn_check_top(y);
- bn_check_top(x);
- bn_check_top(p);
- BN_CTX_start(ctx);
- xinv = BN_CTX_get(ctx);
- if (xinv == NULL)
- goto err;
- if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
- goto err;
- if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- #else
- /*
- * Divide y by x, reduce modulo p, and store the result in r. r could be x
- * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
- * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
- * Great Divide".
- */
- int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
- const BIGNUM *p, BN_CTX *ctx)
- {
- BIGNUM *a, *b, *u, *v;
- int ret = 0;
- bn_check_top(y);
- bn_check_top(x);
- bn_check_top(p);
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- b = BN_CTX_get(ctx);
- u = BN_CTX_get(ctx);
- v = BN_CTX_get(ctx);
- if (v == NULL)
- goto err;
- /* reduce x and y mod p */
- if (!BN_GF2m_mod(u, y, p))
- goto err;
- if (!BN_GF2m_mod(a, x, p))
- goto err;
- if (!BN_copy(b, p))
- goto err;
- while (!BN_is_odd(a)) {
- if (!BN_rshift1(a, a))
- goto err;
- if (BN_is_odd(u))
- if (!BN_GF2m_add(u, u, p))
- goto err;
- if (!BN_rshift1(u, u))
- goto err;
- }
- do {
- if (BN_GF2m_cmp(b, a) > 0) {
- if (!BN_GF2m_add(b, b, a))
- goto err;
- if (!BN_GF2m_add(v, v, u))
- goto err;
- do {
- if (!BN_rshift1(b, b))
- goto err;
- if (BN_is_odd(v))
- if (!BN_GF2m_add(v, v, p))
- goto err;
- if (!BN_rshift1(v, v))
- goto err;
- } while (!BN_is_odd(b));
- } else if (BN_abs_is_word(a, 1))
- break;
- else {
- if (!BN_GF2m_add(a, a, b))
- goto err;
- if (!BN_GF2m_add(u, u, v))
- goto err;
- do {
- if (!BN_rshift1(a, a))
- goto err;
- if (BN_is_odd(u))
- if (!BN_GF2m_add(u, u, p))
- goto err;
- if (!BN_rshift1(u, u))
- goto err;
- } while (!BN_is_odd(a));
- }
- } while (1);
- if (!BN_copy(r, u))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- #endif
- /*
- * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
- * * or yy, xx could equal yy. This function calls down to the
- * BN_GF2m_mod_div implementation; this wrapper function is only provided for
- * convenience; for best performance, use the BN_GF2m_mod_div function.
- */
- int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
- const unsigned int p[], BN_CTX *ctx)
- {
- BIGNUM *field;
- int ret = 0;
- bn_check_top(yy);
- bn_check_top(xx);
- BN_CTX_start(ctx);
- if ((field = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_GF2m_arr2poly(p, field))
- goto err;
- ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
- bn_check_top(r);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Compute the bth power of a, reduce modulo p, and store the result in r. r
- * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
- * P1363.
- */
- int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const unsigned int p[], BN_CTX *ctx)
- {
- int ret = 0, i, n;
- BIGNUM *u;
- bn_check_top(a);
- bn_check_top(b);
- if (BN_is_zero(b))
- return (BN_one(r));
- if (BN_abs_is_word(b, 1))
- return (BN_copy(r, a) != NULL);
- BN_CTX_start(ctx);
- if ((u = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_GF2m_mod_arr(u, a, p))
- goto err;
- n = BN_num_bits(b) - 1;
- for (i = n - 1; i >= 0; i--) {
- if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
- goto err;
- if (BN_is_bit_set(b, i)) {
- if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
- goto err;
- }
- }
- if (!BN_copy(r, u))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Compute the bth power of a, reduce modulo p, and store the result in r. r
- * could be a. This function calls down to the BN_GF2m_mod_exp_arr
- * implementation; this wrapper function is only provided for convenience;
- * for best performance, use the BN_GF2m_mod_exp_arr function.
- */
- int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *p, BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr = NULL;
- bn_check_top(a);
- bn_check_top(b);
- bn_check_top(p);
- if ((arr =
- (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL)
- goto err;
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
- bn_check_top(r);
- err:
- if (arr)
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Compute the square root of a, reduce modulo p, and store the result in r.
- * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
- */
- int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[],
- BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *u;
- bn_check_top(a);
- if (!p[0]) {
- /* reduction mod 1 => return 0 */
- BN_zero(r);
- return 1;
- }
- BN_CTX_start(ctx);
- if ((u = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_set_bit(u, p[0] - 1))
- goto err;
- ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
- bn_check_top(r);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Compute the square root of a, reduce modulo p, and store the result in r.
- * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
- * implementation; this wrapper function is only provided for convenience;
- * for best performance, use the BN_GF2m_mod_sqrt_arr function.
- */
- int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr = NULL;
- bn_check_top(a);
- bn_check_top(p);
- if ((arr =
- (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL)
- goto err;
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
- bn_check_top(r);
- err:
- if (arr)
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
- * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
- */
- int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_,
- const unsigned int p[], BN_CTX *ctx)
- {
- int ret = 0, count = 0;
- unsigned int j;
- BIGNUM *a, *z, *rho, *w, *w2, *tmp;
- bn_check_top(a_);
- if (!p[0]) {
- /* reduction mod 1 => return 0 */
- BN_zero(r);
- return 1;
- }
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- z = BN_CTX_get(ctx);
- w = BN_CTX_get(ctx);
- if (w == NULL)
- goto err;
- if (!BN_GF2m_mod_arr(a, a_, p))
- goto err;
- if (BN_is_zero(a)) {
- BN_zero(r);
- ret = 1;
- goto err;
- }
- if (p[0] & 0x1) { /* m is odd */
- /* compute half-trace of a */
- if (!BN_copy(z, a))
- goto err;
- for (j = 1; j <= (p[0] - 1) / 2; j++) {
- if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
- goto err;
- if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
- goto err;
- if (!BN_GF2m_add(z, z, a))
- goto err;
- }
- } else { /* m is even */
- rho = BN_CTX_get(ctx);
- w2 = BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- if (tmp == NULL)
- goto err;
- do {
- if (!BN_rand(rho, p[0], 0, 0))
- goto err;
- if (!BN_GF2m_mod_arr(rho, rho, p))
- goto err;
- BN_zero(z);
- if (!BN_copy(w, rho))
- goto err;
- for (j = 1; j <= p[0] - 1; j++) {
- if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
- goto err;
- if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
- goto err;
- if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
- goto err;
- if (!BN_GF2m_add(z, z, tmp))
- goto err;
- if (!BN_GF2m_add(w, w2, rho))
- goto err;
- }
- count++;
- } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
- if (BN_is_zero(w)) {
- BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
- goto err;
- }
- }
- if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
- goto err;
- if (!BN_GF2m_add(w, z, w))
- goto err;
- if (BN_GF2m_cmp(w, a)) {
- BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
- goto err;
- }
- if (!BN_copy(r, z))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
- * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
- * implementation; this wrapper function is only provided for convenience;
- * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
- */
- int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
- BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr = NULL;
- bn_check_top(a);
- bn_check_top(p);
- if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
- max)) == NULL)
- goto err;
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
- bn_check_top(r);
- err:
- if (arr)
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
- * x^i , where a_0 is *not* zero) into an array of integers corresponding to
- * the bits with non-zero coefficient. Up to max elements of the array will
- * be filled. Return value is total number of coefficients that would be
- * extracted if array was large enough.
- */
- int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
- {
- int i, j, k = 0;
- BN_ULONG mask;
- if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
- /*
- * a_0 == 0 => return error (the unsigned int array must be
- * terminated by 0)
- */
- return 0;
- for (i = a->top - 1; i >= 0; i--) {
- if (!a->d[i])
- /* skip word if a->d[i] == 0 */
- continue;
- mask = BN_TBIT;
- for (j = BN_BITS2 - 1; j >= 0; j--) {
- if (a->d[i] & mask) {
- if (k < max)
- p[k] = BN_BITS2 * i + j;
- k++;
- }
- mask >>= 1;
- }
- }
- return k;
- }
- /*
- * Convert the coefficient array representation of a polynomial to a
- * bit-string. The array must be terminated by 0.
- */
- int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
- {
- int i;
- bn_check_top(a);
- BN_zero(a);
- for (i = 0; p[i] != 0; i++) {
- if (BN_set_bit(a, p[i]) == 0)
- return 0;
- }
- BN_set_bit(a, 0);
- bn_check_top(a);
- return 1;
- }
- /*
- * Constant-time conditional swap of a and b.
- * a and b are swapped if condition is not 0. The code assumes that at most one bit of condition is set.
- * nwords is the number of words to swap. The code assumes that at least nwords are allocated in both a and b,
- * and that no more than nwords are used by either a or b.
- * a and b cannot be the same number
- */
- void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
- {
- BN_ULONG t;
- int i;
- bn_wcheck_size(a, nwords);
- bn_wcheck_size(b, nwords);
- assert(a != b);
- assert((condition & (condition - 1)) == 0);
- assert(sizeof(BN_ULONG) >= sizeof(int));
- condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1;
- t = (a->top ^ b->top) & condition;
- a->top ^= t;
- b->top ^= t;
- #define BN_CONSTTIME_SWAP(ind) \
- do { \
- t = (a->d[ind] ^ b->d[ind]) & condition; \
- a->d[ind] ^= t; \
- b->d[ind] ^= t; \
- } while (0)
- switch (nwords) {
- default:
- for (i = 10; i < nwords; i++)
- BN_CONSTTIME_SWAP(i);
- /* Fallthrough */
- case 10:
- BN_CONSTTIME_SWAP(9); /* Fallthrough */
- case 9:
- BN_CONSTTIME_SWAP(8); /* Fallthrough */
- case 8:
- BN_CONSTTIME_SWAP(7); /* Fallthrough */
- case 7:
- BN_CONSTTIME_SWAP(6); /* Fallthrough */
- case 6:
- BN_CONSTTIME_SWAP(5); /* Fallthrough */
- case 5:
- BN_CONSTTIME_SWAP(4); /* Fallthrough */
- case 4:
- BN_CONSTTIME_SWAP(3); /* Fallthrough */
- case 3:
- BN_CONSTTIME_SWAP(2); /* Fallthrough */
- case 2:
- BN_CONSTTIME_SWAP(1); /* Fallthrough */
- case 1:
- BN_CONSTTIME_SWAP(0);
- }
- #undef BN_CONSTTIME_SWAP
- }
|